搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于极限梯度提升的完美匹配单层智能算法实现航空瞬变电磁问题高效吸收

冯乃星 王欢 朱子贤 董纯志 李宏杨 张玉贤 杨利霞 黄志祥

引用本文:
Citation:

基于极限梯度提升的完美匹配单层智能算法实现航空瞬变电磁问题高效吸收

冯乃星, 王欢, 朱子贤, 董纯志, 李宏杨, 张玉贤, 杨利霞, 黄志祥

Intelligent algorithm of extreme gradient boosting based perfectly matched monolayer and its efficient absorption on airborne transient electromagnetics problems

Feng Nai-Xing, Wang Huan, Zhu Zi-Xian, Dong Chun-Zhi, Li Hong-Yang, Zhang Yu-Xian, Yang Li-Xia, Huang Zhi-Xiang
PDF
HTML
导出引用
  • 对于航空瞬变电磁的低频探地问题, 除了精度和效率需要考虑, 深地探测问题的复杂度也不容忽视, 特别是对于低频复杂问题存在异常体与背景间的多尺度效应. 为了模拟开域问题, 有限厚度区域的完全匹配层被用于截断计算域, 然而这也无形中增大了整个模型, 造成计算复杂度增加. 鉴于此, 提出了一种新的基于极限梯度提升(extreme gradient boosting, XGB)的完美匹配单层模型, 并将该模型集成到时域有限差分求解器中, 以进一步提高时域有限差分仿真的性能. 所提出的基于XGB的完美匹配单层模型通过特征注意力集成学习方法可以获得更高的精度, 同时占用更少的内存、消耗更少的时间. 此外, 由于该模型依托于传统机器学习模型, 因此它在模型训练的稳定性和轻量级方面具有显著的优势. 最后, 通过对航空瞬变电磁应用进行三维数值模拟, 验证了该方法的有效性和稳定性. 该模型不仅在精度、效率和问题复杂性方面具有优势, 而且还可以成功地集成到时域有限差分求解器中, 解决低频航空瞬变电磁问题.
    In addition to requiring the accuracy and computational efficiency for solving low-frequency subsurface sensing problem on the airborne transient electromagnetics (ATEMs), to the best of our knowledge, the complexity of subsurface sensing problems should also be considered in order to reduce more and more computational resources, particularly for a large-scale complicated multis-cale problem with a difference between background and targets. For simulating the open-domain, the finite-thickness perfectly matched layer is used to truncate the computational region, while the whole domain becomes larger so that the problem turns more complex. As a result, we propose a novel perfectly matched monolayer (PMM) model based on the extreme gradient boosting (XGB), which is selected and added to further improve the performance during the finite-difference time-domain (FDTD) simulation. The proposed XGB-based PMM model can achieve higher accuracy by using the ensemble learning method of feature attention, and has less memory and time consumption at the same time. Besides, this model has significant advantages in terms of model training stability and its lightweight due to the fact that it relies on the characteristics of traditional machine learning models. Finally, three-dimensional numerical simulations of ATEM problems are carried out to prove the validity and stability of the proposal. The proposed model can not only achieve advantages in numerical accuracy, efficiency and problem complexity, but also be integrated into the FDTD solver to deal with the low-frequency ATEM problems.
      通信作者: 张玉贤, yxzhang_tute@126.com ; 黄志祥, zxhuang@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62271001)和安徽省自然科学基金(批准号: 2308085Y39, 2022AH030014)资助的课题.
      Corresponding author: Zhang Yu-Xian, yxzhang_tute@126.com ; Huang Zhi-Xiang, zxhuang@ahu.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 62271001) and the Natural Science Foundation of Anhui Province, China (Grant Nos. 2308085Y39, 2022AH030014).
    [1]

    Liu H, Zhao X, Yu Y, Qiu S, Ji Y 2023 IEEE Trans. Geosci. Remote Sens. 61 2002114Google Scholar

    [2]

    Feng N, Zhang Y, Sun Q, Zhu J, Joines W, Liu Q 2018 IEEE Trans. Antennas Propag. 66 2967Google Scholar

    [3]

    Qi Y Z, Huang L, Zhangh J G, Fang G Y 2013 Acta Phys. Sin. 62 234201 [齐有政, 黄玲, 张建国, 方广有 2013 物理学报 62 234201]Google Scholar

    Qi Y Z, Huang L, Zhangh J G, Fang G Y 2013 Acta Phys. Sin. 62 234201Google Scholar

    [4]

    Chen J, Li J, Liu Q 2017 IEEE Trans. Antennas Propag. 65 1896Google Scholar

    [5]

    Mou C H, Chen J, Fan K H, Lu Y 2022 Acta Phys. Sin. 71 184101 [牟春晖, 陈娟, 范凯航, 鲁艺 2022 物理学报 71 184101]Google Scholar

    Mou C H, Chen J, Fan K H, Lu Y 2022 Acta Phys. Sin. 71 184101Google Scholar

    [6]

    Xie G D, Hou G L, Niu K K, Feng N X, Fang, M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201 [谢国大, 侯桂林, 牛凯坤, 冯乃星, 方明, 李迎松, 黄志祥 2023 物理学报 72 150201]Google Scholar

    Xie G D, Hou G L, Niu K K, Feng N X, Fang, M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201Google Scholar

    [7]

    Chen J 2018 J. Comput. Phys. 363 256Google Scholar

    [8]

    Wang F, Wei B, Li L Q 2014 Acta Phys. Sin. 63 104101 [王飞, 魏兵, 李林茜 2014 物理学报 63 104101]Google Scholar

    Wang F, Wei B, Li L Q 2014 Acta Phys. Sin. 63 104101Google Scholar

    [9]

    Wang J, Yin W 2013 IEEE Trans. Antennas Propag. 61 299Google Scholar

    [10]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]Google Scholar

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101Google Scholar

    [11]

    Zhang Y, Feng N, Wang L, Guan Z, Liu Q 2020 IEEE Trans. Antennas Propag. 68 366Google Scholar

    [12]

    Zhan Q, Zhuang M, Sun Q, Ren Q, Ren Y, Mao Y, Liu Q 2017 IEEE Trans. Geosci. Remote Sens. 55 5577Google Scholar

    [13]

    Fang Y, Xi X, Wu J, Liu J, Pu Y 2016 IEEE Trans. Microwave Theory Tech. 64 1957Google Scholar

    [14]

    Fang Y, Xi X, Liu J, Pu Y, Zhao Y, Luo R 2018 IEEE Trans. Antennas Propag. 66 6209Google Scholar

    [15]

    Feng N, Yue Y, Liu Q 2015 IEEE Trans. Microwave Theory Tech. 63 877Google Scholar

    [16]

    Chen J, Wang J 2009 IEEE Trans. Antennas Propag. 57 3375Google Scholar

    [17]

    Yang S, Chen Z, Yu Y, Yin W 2012 IEEE Trans. Antennas Propag. 60 1995Google Scholar

    [18]

    Feng N, Zhang Y, Tian X, Zhu J, Joines W, Wang G 2019 IEEE Trans. Microwave Theory Tech. 67 3260Google Scholar

    [19]

    Feng N, Zhang Y, Wang G 2022 IEEE Trans. Microwave Theory Tech. 70 1026Google Scholar

    [20]

    Bishop C 2006 Pattern Recognition and Machine Learning (Springer) pp1–674

    [21]

    Cai Y, Huang Y, Feng N, Huang Z 2023 IEEE Trans. Microwave Theory Tech. 71 3284Google Scholar

    [22]

    Feng N, Chen Y, Hong B, Huang Z 2023 IEEE Trans. Microwave Theory Tech. 71 3294Google Scholar

    [23]

    Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, Qiu C, Cui T 2019 Nat. Commun. 10 1082Google Scholar

    [24]

    Pérez-López D, López A, DasMahapatra P, Capmany J 2020 Nat. Commun. 11 6359Google Scholar

    [25]

    Kim K, Ha I, Kim M, Choi J, Won P, Jo S, Ko S 2020 Nat. Commun. 11 2149Google Scholar

    [26]

    Tang Z, Li S, Xu J, Zhang H 2023 Opt. Lett. 48 4416Google Scholar

    [27]

    Tang Z, Xu J, Wang S, Zhang H 2023 Diamond Relat. Mater. 137 110091Google Scholar

    [28]

    Yao H, Jiang L 2019 IEEE Antennas Wirel. Propag. Lett. 18 192Google Scholar

    [29]

    Feng N X, Chen Y S, Zhang Y X, Tong M S, Zeng Q S, Wang G P 2021 IEEE Microwave Wirel. Compon. Lett. 31 541Google Scholar

    [30]

    Chen Y, Zhang Y, Wang H, Feng N, Yang L, Huang Z 2023 IEEE Trans. Electromagn. Compat. DOI: 10.1109/TEMC.2023.3273724

    [31]

    Feng N, Li J 2013 J. Comput. Phys. 232 318Google Scholar

    [32]

    Feng N, Yue Y, Zhu C, Wan L, Liu Q 2015 J. Comput. Phys. 285 71Google Scholar

    [33]

    Berenger J 1994 J. Comput. Phys. 114 185Google Scholar

    [34]

    Chew W, Weedon W 1994 Microwave Opt. Technol. Lett. 7 599Google Scholar

    [35]

    Kuzuoglu M, Mittra R 1996 IEEE Microwave Wirel. Compon. Lett. 6 447Google Scholar

    [36]

    Roden J, Gedney S 2000 Microwave Opt. Technol. Lett. 27 334Google Scholar

    [37]

    Becacha E, Petropoulus P, Gedney S 2004 IEEE Trans. Antennas Propag. 52 1335Google Scholar

    [38]

    Berenger J 2002 IEEE Trans. Antennas Propag. 50 258Google Scholar

    [39]

    Correia D, Jin J 2006 Microwave Opt. Technol. Lett. 48 2121Google Scholar

  • 图 1  XGB的训练过程

    Fig. 1.  Training process of XGB.

    图 2  三维ATEM问题的几何模型

    Fig. 2.  Geometry of 3D ATEM Problem.

    图 3  训练过程的精度 (a)树深度; (b)叶子的最小样本分割数; (c)单个样本的抽样比

    Fig. 3.  Accuracies of training process: (a) Tree depth; (b) minimum number of sample splits for the leaves; (c) sampling ratio for a single sample.

    图 4  训练过程中Ex, Ey, Hz的相对误差

    Fig. 4.  Relative errors of Ex, Ey, and Hz during the training process.

    图 5  三维ATEM问题的几何模型

    Fig. 5.  Geometry of 3D ATEM problems.

    图 6  双极方波脉冲, 持续时间为0.04 s, 上升时间为0.0025 s, 下降时间为0.0125 s

    Fig. 6.  Bipolar square wave pulse with duration of 0.04 s, rise time 0.0025 s, and fall time 0.0025 s.

    图 7  对于案例A, 利用五种不同方法所取得的二次磁场 (a)时间轴上二次场数值解与预测解对比; (b)相对反射误差计算

    Fig. 7.  Secondary Hz achieved by five different methods for case A: (a) Comparison of secondary Hz field between numerical methods and machine learning methods; (b) computation of relative reflection errors.

    图 8  对于案例B, 利用五种不同方法所取得的二次磁场 (a)时间轴上二次场数值解与预测解对比; (b)相对反射误差计算

    Fig. 8.  Secondary Hz achieved by five different methods for case B: (a) Comparison of secondary Hz field between numerical methods and machine learning methods; (b) computation of relative reflection errors.

    表 1  基于XGB的ABC模型算法

    Table 1.  XGB-based ABC algorithms.

    算法 基于XGB的ABC模型
    输入
      训练集、验证集、测试集
    初始化
      初始化第一颗决策树$ {T_1} $, 并基于目标函数最小来计算决策树权重:
        $ \min O = -\displaystyle \frac{1}{2}\sum\limits_{j = 1}^T {\frac{G}{{H + \lambda }}} + \gamma T $,
        $ {w_j} = - \displaystyle\frac{{{G_j}}}{{{H_j} + \lambda }} $
      初始化总模型并将第一棵数加入$ {F_1}(x) = {T_1} $
      初始化残差变量空间$ M $
    循环
      计算总模型残差:
        $ L =\displaystyle \sum\limits_{j = 1}^T {\left[ {{G_j}{x_j} + \frac{1}{2}({H_j} + \lambda )x_j^2} \right]} + \gamma T $
      基于残差数据构建新的决策树$ {T_i} $:
        $ \min O = - \displaystyle\frac{1}{2}\sum\limits_{j = 1}^T {\frac{G}{{H + \lambda }}} + \gamma T $,
        $ {w_j} = -\displaystyle \frac{{{G_j}}}{{{H_j} + \lambda }} $
      更新总模型:
        $ {F_{i + 1}}(x) = {F_i}(x) + {T_i}(x) $
      在验证集中测试模型
    停止 收敛或达到预设迭代次数
    下载: 导出CSV

    表 2  以0.04 s为周期的计算时间

    Table 2.  Computational time for 0.04 s as a period

    不同实现方法 CPU 所耗
    时间/s
    具有10层PML截断的传统FDTD方法 9711.21
    具有5层CFS-PML截断的隐式FDTD方法 342.06
    内嵌复频率因子的深度可微森林
    完全匹配单层模型
    115.21
    内嵌复频率因子的深度决策树神经
    图灵机模型
    114.51
    内嵌双极因子的梯度增强决策树
    完全匹配单层模型
    112.33
    下载: 导出CSV
  • [1]

    Liu H, Zhao X, Yu Y, Qiu S, Ji Y 2023 IEEE Trans. Geosci. Remote Sens. 61 2002114Google Scholar

    [2]

    Feng N, Zhang Y, Sun Q, Zhu J, Joines W, Liu Q 2018 IEEE Trans. Antennas Propag. 66 2967Google Scholar

    [3]

    Qi Y Z, Huang L, Zhangh J G, Fang G Y 2013 Acta Phys. Sin. 62 234201 [齐有政, 黄玲, 张建国, 方广有 2013 物理学报 62 234201]Google Scholar

    Qi Y Z, Huang L, Zhangh J G, Fang G Y 2013 Acta Phys. Sin. 62 234201Google Scholar

    [4]

    Chen J, Li J, Liu Q 2017 IEEE Trans. Antennas Propag. 65 1896Google Scholar

    [5]

    Mou C H, Chen J, Fan K H, Lu Y 2022 Acta Phys. Sin. 71 184101 [牟春晖, 陈娟, 范凯航, 鲁艺 2022 物理学报 71 184101]Google Scholar

    Mou C H, Chen J, Fan K H, Lu Y 2022 Acta Phys. Sin. 71 184101Google Scholar

    [6]

    Xie G D, Hou G L, Niu K K, Feng N X, Fang, M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201 [谢国大, 侯桂林, 牛凯坤, 冯乃星, 方明, 李迎松, 黄志祥 2023 物理学报 72 150201]Google Scholar

    Xie G D, Hou G L, Niu K K, Feng N X, Fang, M, Li Y S, Huang Z X 2023 Acta Phys. Sin. 72 150201Google Scholar

    [7]

    Chen J 2018 J. Comput. Phys. 363 256Google Scholar

    [8]

    Wang F, Wei B, Li L Q 2014 Acta Phys. Sin. 63 104101 [王飞, 魏兵, 李林茜 2014 物理学报 63 104101]Google Scholar

    Wang F, Wei B, Li L Q 2014 Acta Phys. Sin. 63 104101Google Scholar

    [9]

    Wang J, Yin W 2013 IEEE Trans. Antennas Propag. 61 299Google Scholar

    [10]

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101 [朱小敏, 任新成, 郭立新 2014 物理学报 63 054101]Google Scholar

    Zhu X M, Ren X C, Guo L X 2014 Acta Phys. Sin. 63 054101Google Scholar

    [11]

    Zhang Y, Feng N, Wang L, Guan Z, Liu Q 2020 IEEE Trans. Antennas Propag. 68 366Google Scholar

    [12]

    Zhan Q, Zhuang M, Sun Q, Ren Q, Ren Y, Mao Y, Liu Q 2017 IEEE Trans. Geosci. Remote Sens. 55 5577Google Scholar

    [13]

    Fang Y, Xi X, Wu J, Liu J, Pu Y 2016 IEEE Trans. Microwave Theory Tech. 64 1957Google Scholar

    [14]

    Fang Y, Xi X, Liu J, Pu Y, Zhao Y, Luo R 2018 IEEE Trans. Antennas Propag. 66 6209Google Scholar

    [15]

    Feng N, Yue Y, Liu Q 2015 IEEE Trans. Microwave Theory Tech. 63 877Google Scholar

    [16]

    Chen J, Wang J 2009 IEEE Trans. Antennas Propag. 57 3375Google Scholar

    [17]

    Yang S, Chen Z, Yu Y, Yin W 2012 IEEE Trans. Antennas Propag. 60 1995Google Scholar

    [18]

    Feng N, Zhang Y, Tian X, Zhu J, Joines W, Wang G 2019 IEEE Trans. Microwave Theory Tech. 67 3260Google Scholar

    [19]

    Feng N, Zhang Y, Wang G 2022 IEEE Trans. Microwave Theory Tech. 70 1026Google Scholar

    [20]

    Bishop C 2006 Pattern Recognition and Machine Learning (Springer) pp1–674

    [21]

    Cai Y, Huang Y, Feng N, Huang Z 2023 IEEE Trans. Microwave Theory Tech. 71 3284Google Scholar

    [22]

    Feng N, Chen Y, Hong B, Huang Z 2023 IEEE Trans. Microwave Theory Tech. 71 3294Google Scholar

    [23]

    Li L, Ruan H, Liu C, Li Y, Shuang Y, Alù A, Qiu C, Cui T 2019 Nat. Commun. 10 1082Google Scholar

    [24]

    Pérez-López D, López A, DasMahapatra P, Capmany J 2020 Nat. Commun. 11 6359Google Scholar

    [25]

    Kim K, Ha I, Kim M, Choi J, Won P, Jo S, Ko S 2020 Nat. Commun. 11 2149Google Scholar

    [26]

    Tang Z, Li S, Xu J, Zhang H 2023 Opt. Lett. 48 4416Google Scholar

    [27]

    Tang Z, Xu J, Wang S, Zhang H 2023 Diamond Relat. Mater. 137 110091Google Scholar

    [28]

    Yao H, Jiang L 2019 IEEE Antennas Wirel. Propag. Lett. 18 192Google Scholar

    [29]

    Feng N X, Chen Y S, Zhang Y X, Tong M S, Zeng Q S, Wang G P 2021 IEEE Microwave Wirel. Compon. Lett. 31 541Google Scholar

    [30]

    Chen Y, Zhang Y, Wang H, Feng N, Yang L, Huang Z 2023 IEEE Trans. Electromagn. Compat. DOI: 10.1109/TEMC.2023.3273724

    [31]

    Feng N, Li J 2013 J. Comput. Phys. 232 318Google Scholar

    [32]

    Feng N, Yue Y, Zhu C, Wan L, Liu Q 2015 J. Comput. Phys. 285 71Google Scholar

    [33]

    Berenger J 1994 J. Comput. Phys. 114 185Google Scholar

    [34]

    Chew W, Weedon W 1994 Microwave Opt. Technol. Lett. 7 599Google Scholar

    [35]

    Kuzuoglu M, Mittra R 1996 IEEE Microwave Wirel. Compon. Lett. 6 447Google Scholar

    [36]

    Roden J, Gedney S 2000 Microwave Opt. Technol. Lett. 27 334Google Scholar

    [37]

    Becacha E, Petropoulus P, Gedney S 2004 IEEE Trans. Antennas Propag. 52 1335Google Scholar

    [38]

    Berenger J 2002 IEEE Trans. Antennas Propag. 50 258Google Scholar

    [39]

    Correia D, Jin J 2006 Microwave Opt. Technol. Lett. 48 2121Google Scholar

  • [1] 宋睿, 刘雪梅, 王海滨, 吕皓, 宋晓艳. 机器学习辅助的WC-Co硬质合金硬度预测. 物理学报, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [4] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [5] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法. 物理学报, 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [6] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [7] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [8] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [9] 康俊锋, 冯松江, 邹倩, 李艳杰, 丁瑞强, 钟权加. 基于机器学习的非线性局部Lyapunov向量集合预报订正. 物理学报, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [10] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [11] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [13] 刘武, 朱成皖, 李昊天, 赵谡玲, 乔泊, 徐征, 宋丹丹. 基于机器学习和器件模拟对Cu(In,Ga)Se2电池中Ga含量梯度的优化分析. 物理学报, 2021, 70(23): 238802. doi: 10.7498/aps.70.20211234
    [14] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [15] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法. 物理学报, 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [16] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法. 物理学报, 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [17] 张玉强, 葛德彪. 一种基于数字信号处理技术的改进通用色散介质移位算子时域有限差分方法. 物理学报, 2009, 58(12): 8243-8248. doi: 10.7498/aps.58.8243
    [18] 姜彦南, 葛德彪. 层状介质时域有限差分方法斜入射平面波引入新方式. 物理学报, 2008, 57(10): 6283-6289. doi: 10.7498/aps.57.6283
    [19] 刘大刚, 周 俊, 刘盛纲. 用时域有限差分法实现金属支撑杆的计算机模拟. 物理学报, 2007, 56(12): 6924-6930. doi: 10.7498/aps.56.6924
    [20] 王 刚, 温激鸿, 韩小云, 赵宏刚. 二维声子晶体带隙计算中的时域有限差分方法. 物理学报, 2003, 52(8): 1943-1947. doi: 10.7498/aps.52.1943
计量
  • 文章访问数:  1902
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-29
  • 修回日期:  2023-12-13
  • 上网日期:  2023-12-20
  • 刊出日期:  2024-03-20

/

返回文章
返回