搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控

任延英 李雅宁 柳洪盛 徐楠 郭坤 徐朝辉 陈鑫 高峻峰

引用本文:
Citation:

过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控

任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰

Regulation of magnetic moment and magnetic anisotropy of magnetite by doping transition metal elements

Ren Yan-Ying, Li Ya-Ning, Liu Hong-Sheng, Xu Nan, Guo Kun, Xu Zhao-Hui, Chen Xin, Gao Jun-Feng
PDF
HTML
导出引用
  • 磁性 Fe3O4 纳米粒子在纳米医学领域展现出巨大的应用前景. 饱和磁化强度和磁各向异性对于 Fe3O4 纳米粒子在药物输送和磁热疗中的应用至关重要. 在此, 通过密度泛函理论计算, 仔细研究了 3d 和 4d 过渡金属元素的掺杂对 Fe3O4 磁矩及磁各向异性的影响. 结果表明, Fe3O4中Zn和Cd的掺杂会增大总磁矩, 而其他3d和4d过渡金属元素的掺杂会降低总磁矩. 有趣的是, Cd 的掺杂也会大大增大磁各向异性. 本文结果表明, 掺杂 Cd 是提高 Fe3O4 作为药物输送和磁热疗材料性能的可行方法.
    Magnetic Fe3O4 nanoparticles show promising applications in nanomedicine. The saturation magnetization (MS) and magnetic anisotropy are critical for the applications of Fe3O4 nanoparticles in drug delivery and magnetic hyperthermia. Here, by density functional computation, the doping effects of 3d and 4d transition metal elements (including Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd) on the magnetic properties of Fe3O4 are investigated in-depth. A conventional cell of Fe3O4, containing 24 Fe atoms and 32 O atoms, has been used to investigate the doping of group III elements. One 3d or 4d atom is doped in one conventional cell of Fe3O4, resulting in the formation of X0.125Fe2.875O4 where X represents the dopant. The results show that the doping of most 3d and 4d transition metal elements will reduce the total magnetic moment, while the doping of Ag, Zn and Cd in Fe3O4 will increase the total magnetic moment by 19%–22%. However, it is hard to dope Ag into Fe3O4 according to the positive formation energy. Therefore, Zn and Cd are good candidates to improve the MS of Fe3O4. The doping of Zn and Cd has also an influence on the magnetic anisotropy of Fe3O4. For Zn0.125Fe2.875O4, the magnetic anisotropy energy is about 0.25 meV per cell, which is slightly larger than that of intrinsic Fe3O4 (0.2 meV per cell). Interestingly, the doping of Cd (Cd0.125Fe2.875O4) will greatly increase the magnetic anisotropy energy to 0.8 meV per cell, which is significant for the specific absorption rate in the magnetic hyperthermia application. In addition, the doping of Zn and Cd will not induce any defect states in the band gap according to the density of states. Zn0.125Fe2.875O4 and Cd0.125Fe2.875O4 are both semiconducting and both the top of valence band and the bottom of conduction band originate from octahedral Fe. This is because the impurity states are very deep in energy. Our research results show that doping Cd is a feasible way to improve the performance of Fe3O4 as a material for drug delivery and magnetic hyperthermia.
      通信作者: 陈鑫, chenxincjz@gmail.com ; 高峻峰, gaojf@dlut.edu.cn
    • 基金项目: 大连医科大学附属第二医院交叉学科创新项目(批准号: 2022JCXKYB21, 2022JCXKYB01)、国家自然科学基金(批准号: 123374174, 12374253, 12004064, 12074053)、中央高校基本科研业务费专项资金(批准号: DUT22LK11, DUT22QN207)和DUT-BSU联合研究所国际合作研究基金(批准号: ICR2202)资助的课题.
      Corresponding author: Chen Xin, chenxincjz@gmail.com ; Gao Jun-Feng, gaojf@dlut.edu.cn
    • Funds: Project supported by the Interdisciplinary Innovation Project of the Second Hospital of Dalian Medical University, China (Grant Nos. 2022JCXKYB21, 2022JCXKYB01), the National Natural Science Foundation of China (Grant Nos. 123374174, 12374253, 12004064, 12074053), the Fundamental Research Funds for the Central Universities, China (Grant Nos. DUT22LK11, DUT22QN207), and the Research Fund for International Cooperation of DUT-BSU Joint Institute, China (Grant No. ICR2202).
    [1]

    Perez J M, Josephson L, O'Loughlin T, Högemann D, Weissleder R 2002 Nat. Biotechnol. 20 816Google Scholar

    [2]

    Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D 2009 Angew. Chem. Int. Ed. 48 5875Google Scholar

    [3]

    Wu W, Wu Z, Yu T, Jiang C, Kim W S 2015 Sci. Technol. Adv. Mater. 16 023501Google Scholar

    [4]

    Martinkova P, Brtnicky M, Kynicky J, Pohanka M 2018 Adv. Healthc. Mater. 7 1700932Google Scholar

    [5]

    Pankhurst Q A, Thanh N T K, Jones S K, Dobson J 2009 J. Phys. D: Appl. Phys. 42 224001Google Scholar

    [6]

    Gupta A K, Gupta M 2005 Biomaterials 26 3995Google Scholar

    [7]

    Sun C, Lee J S H, Zhang M 2008 Adv. Drug. Deliv. Rev. 60 1252Google Scholar

    [8]

    Pankhurst Q A, Connolly J, Jones S K, Dobson J 2003 J. Phys. D: Appl. Phys. 36 R167Google Scholar

    [9]

    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N 2008 Chem. Rev. 108 2064Google Scholar

    [10]

    Colombo M, Carregal-Romero S, Casula M F, Gutiérrez L, Morales M P, Böhm I B, Heverhagen J T, Prosperi D, Parak W J 2012 Chem. Soc. Rev. 41 4306Google Scholar

    [11]

    Mitchell M J, Billingsley M M, Haley R M, Wechsler M E, Peppas N A, Langer R 2021 Nat. Rev. Drug Discov. 20 101Google Scholar

    [12]

    Dilnawaz F, Singh A, Mohanty C, Sahoo S K 2010 Biomaterials 31 3694Google Scholar

    [13]

    Wang Y, Zhao R B, Wang S B, Liu Z M, Tang R K 2016 Biomaterials 75 71Google Scholar

    [14]

    Liao S H, Liu C H, Bastakoti B P, Suzuki N, Chang Y, Yamauchi Y, Lin F H, Wu K C 2015 Int. J. Nanomed. 10 3315

    [15]

    Rajan A, Sharma M, Sahu N K 2020 Sci. Rep. 10 15045Google Scholar

    [16]

    Sun S, Zeng H 2002 J. Am. Chem. Soc. 124 8204Google Scholar

    [17]

    Hou Y, Yu J, Gao S 2003 J. Mater. Chem. 13 1983Google Scholar

    [18]

    Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G 2004 J. Am. Chem. Soc. 126 273Google Scholar

    [19]

    Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T 2004 Nat. Mater. 3 891Google Scholar

    [20]

    Tian Y, Yu B B, Li X, Li K 2011 J. Mater. Chem. 21 2476Google Scholar

    [21]

    Kovalenko M V, Bodnarchuk M I, Lechner R T, Hesser G, Schäffler F, Heiss W 2007 J. Am. Chem. Soc. 129 6352Google Scholar

    [22]

    Yang H, Ogawa T, Hasegawa D, Takahashi M 2008 J. Appl. Phys. 103 07D526Google Scholar

    [23]

    Kim D, Lee N, Park M, Kim B H, An K, Hyeon T 2009 J. Am. Chem. Soc. 131 454Google Scholar

    [24]

    Zhao L, Duan L 2010 Eur. J. Inorg. Chem. 2010 5635Google Scholar

    [25]

    Zhang L H, Wu J J, Liao H B, Hou Y L, Gao S 2009 Chem. Commun. 29 4378

    [26]

    Li X, Liu D, Song S, Wang X, Ge X, Zhang H 2011 CrystEngComm 13 6017

    [27]

    Cheng X L, Jiang J S, Jiang D M, Zhao Z J 2014 J. Phys. Chem. C 118 12588Google Scholar

    [28]

    Zheng R K, Gu H, Xu B, Fung K K, Zhang X X, Ringer S P 2006 Adv. Mater. 18 2418Google Scholar

    [29]

    Zhao L J, Zhang H J, Xing Y, Song S Y, Yu S Y, Shi W D, Guo X M, Yang J H, Lei Y Q, Cao F 2008 Chem. Mat. 20 198Google Scholar

    [30]

    Woo K, Hong J, Choi S, Lee H W, Ahn J P, Kim C S, Lee S W 2004 Chem. Mat. 16 2814Google Scholar

    [31]

    Li Q, Kartikowati C W, Horie S, Ogi T, Iwaki T, Okuyama K 2017 Sci. Rep. 7 9894Google Scholar

    [32]

    Liu J, Bin Y, Matsuo M 2012 J. Phys. Chem. C 116 134Google Scholar

    [33]

    Ahghari M R, Amiri-khamakani Z, Maleki A 2023 Sci. Rep. 13 1007Google Scholar

    [34]

    Qi Z L, Joshi T P, Liu R P, Liu H J, Qu J H 2017 J. Hazard. Mater. 329 193Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Liu H, Di Valentin C 2017 J. Phys. Chem. C 121 25736Google Scholar

    [39]

    Dovesi R, Orlando R, Erba A, Zicovich-Wilson C M, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D'Arco P, Noël Y, Causà M, Rérat M, Kirtman B 2014 Int. J. Quantum Chem. 114 1287Google Scholar

    [40]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [41]

    Liu H, Di Valentin C 2018 Nanoscale 10 11021

    [42]

    Liu H, Di Valentin C 2019 Phys. Rev. Lett. 123 186101Google Scholar

    [43]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 299Google Scholar

    [44]

    Durand P, Barthelat J C 1975 Theor. Chim. Acta 38 283Google Scholar

  • 图 1  (a) 完美 Fe3O4, (b) Zn0.125Fe2.875O4, (c) V0.125Fe2.875O4和(d) Y0.125Fe2.875O4的优化结构(数据来源于CRYSTAL17的杂化泛函计算)

    Fig. 1.  Optimized structures of (a) perfect Fe3O4, (b) Zn0.125Fe2.875O4, (c) V0.125Fe2.875O4, and (d) Y0.125Fe2.875O4 (data is from HSE calculation with CRYSTAL17).

    图 2  掺杂不同过渡金属元素的Fe3O4的总磁矩(数据来源于CRYSTAL17的杂化泛函计算)

    Fig. 2.  Total magnetic moment of Fe3O4 doped with different transition metal elements (data is from HSE calculation with CRYSTAL17).

    图 3  本征和掺杂的 Fe3O4 的磁各向异性, 图中横坐标为不同的磁化方向, 磁化轴从[001]方向开始沿着(1, –1, 0)面旋转到[111]方向, 中间均匀取7个数据点, 再从[111]方向沿着(1, –1, 0)面旋转到[110]方向, 中间也均匀取7个数据点(数据来源于VASP的PBE + U计算)

    Fig. 3.  Magnetic anisotropy of Fe3O4 with and without doping. The abscissas in the figure represent different magnetization directions. The magnetization axis starts from the [001] direction and rotates along the (1, –1, 0) plane to the [111] direction. Seven data points are evenly taken in the middle, and then the magnetization axis rotates from the [111] direction along the (1, –1, 0) plane to the [110] direction, and 7data points are evenly taken in the middle (data is from PBE + U calculation with VASP).

    图 4  (a) 未掺杂的完美 Fe3O4, (b) Zn0.125Fe2.875O4, (c) Cd0.125Fe2.875O4 的投影态密度, 费米能级归零, 如黑色虚线所示(数据来源于CRYSTAL17的杂化泛函计算)

    Fig. 4.  Projected density of states of (a) perfect Fe3O4 without doping, (b) Zn0.125Fe2.875O4, (c) Cd0.125Fe2.875O4. The legend of colors is on the top, the Fermi level is scaled to zero as indicated by the dashed black lines (data is from HSE calculation with CRYSTAL17).

    表 1  过渡金属掺杂Fe3O4的能量差ΔE = ETEO, 其中ETEO分别表示掺杂剂取代四面体 Fe 和八面体 Fe 的掺杂 Fe3O4 的总能量(数据来源于CRYSTAL17的杂化泛函计算)

    Table 1.  Energy difference ΔE = ETEO for transition metal doped Fe3O4, where ET and EO represent the total energy of doped Fe3O4 with the dopant replacing tetrahedral Fe and octahedral Fe, respectively (data is from HSE calculation with CRYSTAL17).

    杂质 Sc Ti V Cr Mn Co Ni Cu Zn
    ΔE /eV 0.70 0.10 0.37 1.48 0.10 0.13 0.95 0.19 –0.14
    杂质 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
    ΔE /eV 4.23 0.13 0.01 0.72 2.14 2.27 1.31 0.96 –0.29 –0.32
    下载: 导出CSV

    表 2  过渡金属掺杂 Fe3O4 的形成能 Ef (数据来源于VASP的PBE + U计算)

    Table 2.  Formation energy Ef of transition metal doped Fe3O4 (data is from PBE + U calculation with VASP).

    杂质 Sc Ti V Cr Mn Co Ni Cu Zn
    Ef /eV –6.45 –5.75 –4.94 –4.97 –3.72 –2.09 –1.69 0.21 –1.93
    杂质 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
    Ef /eV –5.42 –6.09 –5.23 –2.60 –2.18 –1.00 –0.62 0.54 1.12 –0.61
    下载: 导出CSV

    表 3  Fe3O4掺杂时3d和4d过渡金属原子的原子磁矩(m)(数据来源于CRYSTAL17的杂化泛函计算)

    Table 3.  Atomic magnetic moment (m) of 3d and 4d transition metal atoms when doped in Fe3O4 (data is from HSE calculation with CRYSTAL17).

    杂质 Sc Ti V Cr Mn Co Ni Cu Zn
    mB–0.06–0.12–2.02–3.05–4.76–2.76–1.780.010.07
    杂质YZrNbMoTcRuRhPdAgCd
    mB–0.09–0.22–0.52–2.66–1.910.11–0.091.300.120.07
    下载: 导出CSV
  • [1]

    Perez J M, Josephson L, O'Loughlin T, Högemann D, Weissleder R 2002 Nat. Biotechnol. 20 816Google Scholar

    [2]

    Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D 2009 Angew. Chem. Int. Ed. 48 5875Google Scholar

    [3]

    Wu W, Wu Z, Yu T, Jiang C, Kim W S 2015 Sci. Technol. Adv. Mater. 16 023501Google Scholar

    [4]

    Martinkova P, Brtnicky M, Kynicky J, Pohanka M 2018 Adv. Healthc. Mater. 7 1700932Google Scholar

    [5]

    Pankhurst Q A, Thanh N T K, Jones S K, Dobson J 2009 J. Phys. D: Appl. Phys. 42 224001Google Scholar

    [6]

    Gupta A K, Gupta M 2005 Biomaterials 26 3995Google Scholar

    [7]

    Sun C, Lee J S H, Zhang M 2008 Adv. Drug. Deliv. Rev. 60 1252Google Scholar

    [8]

    Pankhurst Q A, Connolly J, Jones S K, Dobson J 2003 J. Phys. D: Appl. Phys. 36 R167Google Scholar

    [9]

    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N 2008 Chem. Rev. 108 2064Google Scholar

    [10]

    Colombo M, Carregal-Romero S, Casula M F, Gutiérrez L, Morales M P, Böhm I B, Heverhagen J T, Prosperi D, Parak W J 2012 Chem. Soc. Rev. 41 4306Google Scholar

    [11]

    Mitchell M J, Billingsley M M, Haley R M, Wechsler M E, Peppas N A, Langer R 2021 Nat. Rev. Drug Discov. 20 101Google Scholar

    [12]

    Dilnawaz F, Singh A, Mohanty C, Sahoo S K 2010 Biomaterials 31 3694Google Scholar

    [13]

    Wang Y, Zhao R B, Wang S B, Liu Z M, Tang R K 2016 Biomaterials 75 71Google Scholar

    [14]

    Liao S H, Liu C H, Bastakoti B P, Suzuki N, Chang Y, Yamauchi Y, Lin F H, Wu K C 2015 Int. J. Nanomed. 10 3315

    [15]

    Rajan A, Sharma M, Sahu N K 2020 Sci. Rep. 10 15045Google Scholar

    [16]

    Sun S, Zeng H 2002 J. Am. Chem. Soc. 124 8204Google Scholar

    [17]

    Hou Y, Yu J, Gao S 2003 J. Mater. Chem. 13 1983Google Scholar

    [18]

    Sun S, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G 2004 J. Am. Chem. Soc. 126 273Google Scholar

    [19]

    Park J, An K, Hwang Y, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T 2004 Nat. Mater. 3 891Google Scholar

    [20]

    Tian Y, Yu B B, Li X, Li K 2011 J. Mater. Chem. 21 2476Google Scholar

    [21]

    Kovalenko M V, Bodnarchuk M I, Lechner R T, Hesser G, Schäffler F, Heiss W 2007 J. Am. Chem. Soc. 129 6352Google Scholar

    [22]

    Yang H, Ogawa T, Hasegawa D, Takahashi M 2008 J. Appl. Phys. 103 07D526Google Scholar

    [23]

    Kim D, Lee N, Park M, Kim B H, An K, Hyeon T 2009 J. Am. Chem. Soc. 131 454Google Scholar

    [24]

    Zhao L, Duan L 2010 Eur. J. Inorg. Chem. 2010 5635Google Scholar

    [25]

    Zhang L H, Wu J J, Liao H B, Hou Y L, Gao S 2009 Chem. Commun. 29 4378

    [26]

    Li X, Liu D, Song S, Wang X, Ge X, Zhang H 2011 CrystEngComm 13 6017

    [27]

    Cheng X L, Jiang J S, Jiang D M, Zhao Z J 2014 J. Phys. Chem. C 118 12588Google Scholar

    [28]

    Zheng R K, Gu H, Xu B, Fung K K, Zhang X X, Ringer S P 2006 Adv. Mater. 18 2418Google Scholar

    [29]

    Zhao L J, Zhang H J, Xing Y, Song S Y, Yu S Y, Shi W D, Guo X M, Yang J H, Lei Y Q, Cao F 2008 Chem. Mat. 20 198Google Scholar

    [30]

    Woo K, Hong J, Choi S, Lee H W, Ahn J P, Kim C S, Lee S W 2004 Chem. Mat. 16 2814Google Scholar

    [31]

    Li Q, Kartikowati C W, Horie S, Ogi T, Iwaki T, Okuyama K 2017 Sci. Rep. 7 9894Google Scholar

    [32]

    Liu J, Bin Y, Matsuo M 2012 J. Phys. Chem. C 116 134Google Scholar

    [33]

    Ahghari M R, Amiri-khamakani Z, Maleki A 2023 Sci. Rep. 13 1007Google Scholar

    [34]

    Qi Z L, Joshi T P, Liu R P, Liu H J, Qu J H 2017 J. Hazard. Mater. 329 193Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [38]

    Liu H, Di Valentin C 2017 J. Phys. Chem. C 121 25736Google Scholar

    [39]

    Dovesi R, Orlando R, Erba A, Zicovich-Wilson C M, Civalleri B, Casassa S, Maschio L, Ferrabone M, De La Pierre M, D'Arco P, Noël Y, Causà M, Rérat M, Kirtman B 2014 Int. J. Quantum Chem. 114 1287Google Scholar

    [40]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [41]

    Liu H, Di Valentin C 2018 Nanoscale 10 11021

    [42]

    Liu H, Di Valentin C 2019 Phys. Rev. Lett. 123 186101Google Scholar

    [43]

    Hay P J, Wadt W R 1985 J. Chem. Phys. 82 299Google Scholar

    [44]

    Durand P, Barthelat J C 1975 Theor. Chim. Acta 38 283Google Scholar

  • [1] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转. 物理学报, 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [2] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [3] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 张陈俊, 王养丽, 陈朝康. InCn+(n=110)团簇的密度泛函理论研究. 物理学报, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [6] 李哲夫, 贾彦彦, 刘仁多, 徐玉海, 王光宏, 夏晓彬. Sm2Co17型永磁合金的辐照效应研究. 物理学报, 2017, 66(22): 226101. doi: 10.7498/aps.66.226101
    [7] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [8] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [9] 温俊青, 张建民, 姚攀, 周红, 王俊斐. PdnAl(n=18)二元团簇的密度泛函理论研究. 物理学报, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [10] 温俊青, 夏涛, 王俊斐. PtnAl (n=18)小团簇的密度泛函理论研究. 物理学报, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [11] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性. 物理学报, 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [12] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [13] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响. 物理学报, 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [14] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [15] 张辉, 曾德长. Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应. 物理学报, 2010, 59(4): 2808-2814. doi: 10.7498/aps.59.2808
    [16] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究. 物理学报, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [17] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性. 物理学报, 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [18] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [19] 叶贞成, 蔡 钧, 张书令, 刘洪来, 胡 英. 方阱链流体在固液界面分布的密度泛函理论研究. 物理学报, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [20] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性. 物理学报, 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
计量
  • 文章访问数:  672
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-02
  • 修回日期:  2023-12-28
  • 上网日期:  2024-02-02
  • 刊出日期:  2024-03-20

/

返回文章
返回