搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于低频外差干涉的光纤环形器重合度检测

戴玉 张文喜 孔新新 沈杨翊 徐豪 张晓强

引用本文:
Citation:

基于低频外差干涉的光纤环形器重合度检测

戴玉, 张文喜, 孔新新, 沈杨翊, 徐豪, 张晓强

Non-coincidence detection of fiber optic circulators based on Hertz-level frequency-shifting heterodyne interferometry

Dai Yu, Zhang Wen-Xi, Kong Xin-Xin, Shen Yang-Yi, Xu Hao, Zhang Xiao-Qiang
PDF
HTML
导出引用
  • 光纤点衍射环形器是激光相干多普勒测振系统中光纤光路和空间光光路耦合的关键器件, 其耦合效率等性能参数对测振系统测量准确度和测量距离的提升具有重要意义. 常规环形器重合度检测采用能量监测法和远场重合度监测法, 不能对光纤失配因素进行定量分析, 环形器耦合效率的一致性无法保障. 针对上述问题, 提出了一种基于低频外差干涉的相位检测技术, 利用干涉相位信息进行光纤相对姿态解算, 可有效解决光纤环形器重合度定量检测的问题. 对不同光纤相对姿态形成的干涉波前进行了仿真分析和实验验证, 给出了光纤相对横向位移、纵向位移和光轴偏离角度与干涉相位PV(peak-to-valley)值、Zernike系数和环形器耦合效率间的规律, 实现了干涉相位到光纤失配因素的分离解算, 解算结果可指导光纤相对姿态的调整. 最后通过实验验证了该技术的可行性, 结果表明该技术对于光纤横向位移的检测精度优于1 μm, 为提升光纤环形器重合度提供了新的检测途径.
    The fiber optic circulator in the form of point diffraction is a key component for coupling fiber optical path and spatial optical path in a laser Doppler vibration measurement system. The coupling efficiency and other performance parameters of fiber optic circulator are great significant for improving measurement accuracy and working distance of vibration measurement system. The conventional circulator coincidence detection methods include energy monitoring method and far-field coincidence monitoring method, which cannot be used to quantitatively analyze the fiber mismatch factors. Therefore, the consistency of the circulator coupling efficiency cannot be guaranteed. To solve these problems, a phase detection technology based on Hertz-level frequency-shifting heterodyne interferometry is proposed. The interferometry phase information is used to calculate the relative spatial positions of optical fibers, and this technology performs quantitative detection in the fiber alignment process. The interference wavefront formed by relative spatial positions of optical fibers is simulated and validated experimentally. The curves of coupling efficiency and wavefront PV value versus different kinds of alignment errors are simulated and analyzed. By fitting the interference wavefront with the Zernike polynomials, the correspondence between different kinds of alignment errors and Zernike coefficients is obtained. The value of Z2 (Zernike coefficient) can be used as the basis for judging whether there is transverse displacement in the Y direction. Similarly, Z3 corresponds to the transverse displacement in the X direction, Z4 corresponds to the longitudinal displacement in the Z direction and Z5 corresponds to the optical axis angle. Through this correspondence relationship, the quantitative separation and analysis of fiber mismatch factors are realized. The experimental results show that the accuracy of this method for measuring lateral displacement is better than 1μm. According to the phase diagram obtained from the experiment, Zernike coefficient fitting is performed. The lateral displacement deviation, longitudinal displacement deviation, and angular deviation are calculated by the coefficients of Z2 to Z5. The fiber adjustment mechanism corrects the transverse displacement deviation. It provides a new detection method for realizing fiber alignment and mismatch correction. Compared with the existing detection methods, the phase detection method based on Hertz-level frequency-shifting heterodyne interferometry solves the quantification problem of fiber coincidence adjustment. This method has the advantages of high measurement accuracy, compact detection structure and composition, and low detection cost. This method has great potential applications in the fields of optical fiber and spatial optical device alignment, optical system aberration detection, and planar wavefront detection.
      通信作者: 张文喜, zhangwx@aircas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFF0706300)和中国科学院青年创新促进会(批准号: 2020131)资助的课题.
      Corresponding author: Zhang Wen-Xi, zhangwx@aircas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFF0706300) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2020131).
    [1]

    张琦, 王洪斌, 姜睿, 杜传宇 2022 航空发动机 48 76

    Zhang Q, Wang H B, Jiang R, Du C Y 2022 Aeroengine 48 76

    [2]

    Fu X, Liu Y Q, Hu X D, Li D C, Hu X T 2004 J. Optoelectron. Laser 11 1357

    [3]

    Ebert R, Lutzmann P, Hebel M 2008 IEEE Photonics Global Singapore, 2008, p1

    [4]

    Zhu Z, Li W, Molina E, Wolberg G 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007 p1

    [5]

    张文 2016 博士学位论文(杭州: 浙江大学)

    Zhang W 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [6]

    刘爱东, 于梅 2015 振动与冲击 34 212

    Liu A D, Yu M 2015 J. Vib. Shock 34 212

    [7]

    吕韬 2019 博士学位论文(长春: 中国科学院长春光学精密机械与物理研究所)

    Lv T 2019 Ph. D. Dissertation (Changchun: Chinese Academy of Sciences Changchun Institute of Optics Fine Mechanics and Physics

    [8]

    Li R, Poulos N M, Zhu Z G, Xie L P 2012 Appl. Opt. 51 5011Google Scholar

    [9]

    Han X Y, Lv T, Wu S S, Li Y Y, He B 2019 Opt. Laser Technol. 111 575Google Scholar

    [10]

    He Q, Zhao Z G, Ye X D, Luo C, Zhang D C, Wang S F, Xu X P 2022 Micromachines 13 324Google Scholar

    [11]

    Alaruri S D 2015 Optik 126 5923Google Scholar

    [12]

    Liu X Y, Guo J, Li G N, Chen N, Shi K 2019 Results Phys. 12 1044Google Scholar

    [13]

    Zhang M Q, Zhi D, Chang Q, Ma P F, Ma Y X, Su R T, Wu J, Zhou P, Si L 2019 Laser Phys. 29 115101Google Scholar

    [14]

    Yan Y X, Zheng Y, Duan J A, Huang Z L 2020 Opt. Fiber Technol. 58 102301Google Scholar

    [15]

    Phattaraworamet T, Saktioto T, Ali J, Fadhali M, Yupapin P P, Zainal J, Mitatha S 2010 Optik 121 2240Google Scholar

    [16]

    丁莉, 刘代中, 高妍琦, 朱宝强, 朱俭, 彭增云, 朱健强, 俞立钧 2008 物理学报 57 5713Google Scholar

    Ding L, Liu D Z, Gao Y Q, Zhu B Q, Zhu J, Peng Z Y, Zhu J Q, Yu L J 2008 Acta Phys. Sin. 57 5713Google Scholar

    [17]

    陶嘉庆, 胡越, 项华中, 涂建坤, 郑刚 2021 电子科技 34 37Google Scholar

    Tao J Q, Hu Y, Xiang Z H, Tu J K, Zheng G 2021 Electron. Sci. Technol. 34 37Google Scholar

    [18]

    Zhu M X, Bai F Z, Gan S M, Huang K Z, Huang L H, Wang J X 2013 Optik 124 5624Google Scholar

    [19]

    Wallner O, Winzer P J, Leeb W R 2002 Appl. Opt. 41 637Google Scholar

    [20]

    Kang J M, Guo P, Zhang Y C, Chen H, Chen S Y, Ge X Y 2013 SPIE Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, June 25, 2013 p891417

  • 图 1  多普勒测振系统及光纤环形器示意图 (a)光纤M-Z式激光相干多普勒测振系统示意图; (b) 光纤环形器示意图

    Fig. 1.  Schematic diagrams of laser Doppler vibration measurement system and fiber circulator: (a) Schematic diagrams of fiber M-Z laser coherent Doppler vibration measurement system; (b) schematic diagram of fiber circulator.

    图 2  光纤相对姿态示意图 (a) 横向位移; (b) 纵向位移; (c) 光轴倾斜

    Fig. 2.  Schematic diagram of relative position of optical fibers: (a) Transverse displacement; (b) longitudinal displacement; (c) the optical axis tilts around the X-axis.

    图 3  检测系统原理图

    Fig. 3.  Schematic diagram of detection system.

    图 4  横向位移与耦合效率和波前PV值关系曲线 (a) X方向横向位移; (b) Y方向横向位移

    Fig. 4.  The curves of coupling efficiency and wavefront PV value versus transverse displacement: (a) X-direction transverse displacement; (b) Y-direction transverse displacement.

    图 5  纵向位移(Z方向)与耦合效率和波前PV值关系曲线

    Fig. 5.  The curves of coupling efficiency and wavefront PV value versus longitudinal displacement (Z-direction).

    图 6  光轴夹角(绕X轴旋转)与耦合效率和波前PV值关系曲线

    Fig. 6.  The curves of coupling efficiency and wavefront PV value versus optical axis angle (rotation about X-axis).

    图 7  光纤相对姿态不同因素同时存在时干涉图和相位图 (a) 干涉图; (b)相位图

    Fig. 7.  Interferogram and phase diagram of optical fibers with different kinds of alignment errors co-existing: (a) Interferogram; (b) phase diagram.

    图 8  横向位移(X方向)与Zernike系数关系曲线

    Fig. 8.  The curves of Zernike coefficiencts versus transverse displacement (X-direction).

    图 9  横向位移(Y方向)与Zernike系数关系曲线

    Fig. 9.  The curves of Zernike coefficiencts versus transverse displacement (Y-direction).

    图 11  光轴夹角(绕X轴旋转)与Zernike系数关系曲线 (a) Z2曲线; (b) Z3曲线; (c) Z4曲线; (d) Z5曲线

    Fig. 11.  The curves of Zernike coefficiencts versus optical axis angle (rotation about X-axis): (a) Z2 vs. angle; (b) Z3 vs. angle; (c) Z4 vs. angle; (d) Z5 vs. angle.

    图 10  纵向位移(Z方向)与Zernike系数关系曲线 (a) Z2和Z3曲线; (b) Z4和Z5曲线

    Fig. 10.  The curves of Zernike coefficiencts versus longitudinal displacement (Z-direction): (a) Z2 and Z3 vs. Z displacement; (b) Z4 and Z5 vs. Z displacement.

    图 12  实验装置图

    Fig. 12.  Diagram of the experimental setup.

    图 13  实验获得的干涉相位图及仿真图对比 (a)实验获得的干涉相位图; (b)根据实验结果拟合Zernike系数解算得到的相对位置信息获得的仿真干涉相位图

    Fig. 13.  The experimental phase diagram compared with the simulation diagram: (a) Phase diagram obtained by experiment; (b) simulated phase diagram obtained from calculated relative position information based on experimental results fitting Zernike coefficients.

    图 14  调节后的实验干涉相位图

    Fig. 14.  Experimental interference phase diagram after displacement correction adjustment.

    表 1  不同光纤相对姿态对应Zernike系数比较

    Table 1.  Comparison of Zernike coefficients corresponding to different kinds of alignment errors.

    光纤相对姿态 Z2 Z3 Z4 Z5
    δx/μm δy/μm δz/μm θ/(°)
    2 3 5 0.5 –1.67×10–5 –1.10×10–5 2.14×10–11 1.20×10–11
    2 0 0 0 –4.02×10–19 –1.10×10–5 1.85×10–22 1.08×10–21
    0 3 0 0 –1.65×10–5 1.03×10–18 –1.41×10–21 8.87×10–22
    0 0 5 0 –5.20×10–9 –5.20×10–9 9.38×10–12 –1.03×10–25
    0 0 0 0.5 –1.54×10–7 –3.30×10–9 1.19×10–11 1.19×10–11
    下载: 导出CSV

    表 2  不同光纤相对姿态对应耦合效率和波前PV值比较

    Table 2.  Comparison of coupling efficiency and wavefront PV value corresponding to different kinds of alignment errors.

    光纤相对姿态 耦合效率 波前PV/λ
    δx/μm δy/μm δz/μm θ/(°)
    2 3 5 0.5 0.9215 0.2359
    2 0 0 0 0.9792 0.0823
    0 3 0 0 0.9536 0.1234
    0 0 5 0 0.9999 0.0033
    0 0 0 0.5 0.9978 0.0302
    下载: 导出CSV

    表 3  实验结果与对应Zernike系数比较

    Table 3.  Comparison of experimental results and simulation Zernike coefficients.

    光纤相对姿态 Z2 Z3 Z4 Z5
    δx/μm δy/μm δz/μm θ/(°)
    实验值 9.01×10–6 –2.74×10–6 2.28×10–11 –5.75×10–11
    仿真值 0.5 –1.4 42 –1.1 9.31×10–6 –2.75×10–6 2.24×10–11 –5.65×10–11
    0.5 0 0 0 2.26×10–19 –2.75×10–6 –2.28×10–22 –3.60×10–22
    0 –1.4 0 0 7.71×10–6 –6.33×10–19 6.38×10–22 –1.01×10–21
    0 0 42 0 –4.37×10–8 –4.37×10–8 7.88×10–11 1.30×10–24
    0 0 0 –1.1 1.60×10–6 1.56×10–8 –5.64×10–11 –5.65×10–11
    下载: 导出CSV

    表 4  横向位移纠正后的实验结果与对应Zernike系数比较

    Table 4.  Comparison of experimental results after transverse displacement correction and simulation Zernike coefficients.

    光纤相对姿态 Z2 Z3 Z4 Z5
    δx/μm δy/μm δz/μm θ/(°)
    实验值 –9.62×10–8 4.96×10–7 6.45×10–12 –1.79×10–11
    仿真值 –0.09 0.02 –1.10×10–7 4.96×10–7
    –0.09 0 0 0 –4.07×10–20 4.96×10–7 4.10×10–23 6.47×10–23
    0 0.02 0 0 –1.10×10–7 9.04×10–21 –9.11×10–24 1.44×10–23
    下载: 导出CSV
  • [1]

    张琦, 王洪斌, 姜睿, 杜传宇 2022 航空发动机 48 76

    Zhang Q, Wang H B, Jiang R, Du C Y 2022 Aeroengine 48 76

    [2]

    Fu X, Liu Y Q, Hu X D, Li D C, Hu X T 2004 J. Optoelectron. Laser 11 1357

    [3]

    Ebert R, Lutzmann P, Hebel M 2008 IEEE Photonics Global Singapore, 2008, p1

    [4]

    Zhu Z, Li W, Molina E, Wolberg G 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 2007 p1

    [5]

    张文 2016 博士学位论文(杭州: 浙江大学)

    Zhang W 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [6]

    刘爱东, 于梅 2015 振动与冲击 34 212

    Liu A D, Yu M 2015 J. Vib. Shock 34 212

    [7]

    吕韬 2019 博士学位论文(长春: 中国科学院长春光学精密机械与物理研究所)

    Lv T 2019 Ph. D. Dissertation (Changchun: Chinese Academy of Sciences Changchun Institute of Optics Fine Mechanics and Physics

    [8]

    Li R, Poulos N M, Zhu Z G, Xie L P 2012 Appl. Opt. 51 5011Google Scholar

    [9]

    Han X Y, Lv T, Wu S S, Li Y Y, He B 2019 Opt. Laser Technol. 111 575Google Scholar

    [10]

    He Q, Zhao Z G, Ye X D, Luo C, Zhang D C, Wang S F, Xu X P 2022 Micromachines 13 324Google Scholar

    [11]

    Alaruri S D 2015 Optik 126 5923Google Scholar

    [12]

    Liu X Y, Guo J, Li G N, Chen N, Shi K 2019 Results Phys. 12 1044Google Scholar

    [13]

    Zhang M Q, Zhi D, Chang Q, Ma P F, Ma Y X, Su R T, Wu J, Zhou P, Si L 2019 Laser Phys. 29 115101Google Scholar

    [14]

    Yan Y X, Zheng Y, Duan J A, Huang Z L 2020 Opt. Fiber Technol. 58 102301Google Scholar

    [15]

    Phattaraworamet T, Saktioto T, Ali J, Fadhali M, Yupapin P P, Zainal J, Mitatha S 2010 Optik 121 2240Google Scholar

    [16]

    丁莉, 刘代中, 高妍琦, 朱宝强, 朱俭, 彭增云, 朱健强, 俞立钧 2008 物理学报 57 5713Google Scholar

    Ding L, Liu D Z, Gao Y Q, Zhu B Q, Zhu J, Peng Z Y, Zhu J Q, Yu L J 2008 Acta Phys. Sin. 57 5713Google Scholar

    [17]

    陶嘉庆, 胡越, 项华中, 涂建坤, 郑刚 2021 电子科技 34 37Google Scholar

    Tao J Q, Hu Y, Xiang Z H, Tu J K, Zheng G 2021 Electron. Sci. Technol. 34 37Google Scholar

    [18]

    Zhu M X, Bai F Z, Gan S M, Huang K Z, Huang L H, Wang J X 2013 Optik 124 5624Google Scholar

    [19]

    Wallner O, Winzer P J, Leeb W R 2002 Appl. Opt. 41 637Google Scholar

    [20]

    Kang J M, Guo P, Zhang Y C, Chen H, Chen S Y, Ge X Y 2013 SPIE Fifth International Symposium on Photoelectronic Detection and Imaging Beijing, China, June 25, 2013 p891417

  • [1] 李伟, 王逍, 洪义麟, 曾小明, 母杰, 胡必龙, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉和频域分割的超快激光时空耦合特性的单次测量方法. 物理学报, 2022, 71(3): 034203. doi: 10.7498/aps.71.20211665
    [2] 李伟, 王逍, 母杰, 胡必龙, 曾小明, 左言磊, 吴朝辉, 王晓东, 李钊历, 粟敬钦. 基于空谱干涉扫描法测量超宽带激光时空耦合特性. 物理学报, 2021, 70(23): 234201. doi: 10.7498/aps.70.20210996
    [3] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法. 物理学报, 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [4] 曹渊, 田兴, 程刚, 刘锟, 王贵师, 朱公栋, 高晓明. 基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究. 物理学报, 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [5] 成健, 冯晋霞, 李渊骥, 张宽收. 基于量子增强型光纤马赫-曾德尔干涉仪的低频信号测量. 物理学报, 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [6] 程君妮. 基于光纤锥和纤芯失配的Mach-Zehnder干涉湿度传感器. 物理学报, 2018, 67(2): 024212. doi: 10.7498/aps.67.20171677
    [7] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [8] 焦新泉, 陈家斌, 王晓丽, 薛晨阳, 任勇峰. 基于新型三环谐振器的诱导透明效应分析. 物理学报, 2015, 64(14): 144202. doi: 10.7498/aps.64.144202
    [9] 郭友明, 饶长辉, 鲍华, 张昂, 魏凯. 一种自适应光学系统响应矩阵的直接计算方法. 物理学报, 2014, 63(14): 149501. doi: 10.7498/aps.63.149501
    [10] 文峰, 武保剑, 李智, 李述标. 基于全光纤萨格纳克干涉仪的温度不敏感磁场测量. 物理学报, 2013, 62(13): 130701. doi: 10.7498/aps.62.130701
    [11] 李辉栋, 傅海威, 邵敏, 赵娜, 乔学光, 刘颖刚, 李岩, 闫旭. 基于光纤气泡和纤芯失配的Mach-Zehnder干涉液体折射率传感器. 物理学报, 2013, 62(21): 214209. doi: 10.7498/aps.62.214209
    [12] 杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德. 硅基光栅耦合器的研究进展. 物理学报, 2013, 62(18): 184214. doi: 10.7498/aps.62.184214
    [13] 延凤平, 刘鹏, 谭中伟, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇. 基于组合透镜与渐变折射率光纤改进激光器耦合效率的新方法. 物理学报, 2012, 61(16): 164202. doi: 10.7498/aps.61.164202
    [14] 徐航, 王安帮, 韩晓红, 马建议, 王云才. 混沌信号相关法测量电介质传输线的断点及阻抗失配. 物理学报, 2011, 60(9): 090503. doi: 10.7498/aps.60.090503
    [15] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [16] 延凤平, 卫延, 傅永军, 魏淮, 龚桃荣, 王琳, 李一凡, 刘鹏, 刘洋, 陶沛琳, 曲美霞, 简水生. 熊猫型保偏光纤中应力区失配对光纤性能影响的研究. 物理学报, 2009, 58(1): 321-327. doi: 10.7498/aps.58.321
    [17] 额尔敦朝鲁. 温度和极化子效应对准二维强耦合激子基态的影响. 物理学报, 2008, 57(1): 416-424. doi: 10.7498/aps.57.416
    [18] 王建根, 蔡建平, 马米花, 冯久超. 参数失配的受迫振动系统有误差界的同步判据. 物理学报, 2008, 57(6): 3367-3373. doi: 10.7498/aps.57.3367
    [19] 杨 华, 朱洪亮, 潘教青, 冯 文, 谢红云, 周 帆, 安 欣, 边 静, 赵玲娟, 陈娓兮, 王 圩. 采用单边大光腔结构改善电吸收调制器的光场分布. 物理学报, 2007, 56(5): 2751-2755. doi: 10.7498/aps.56.2751
    [20] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
计量
  • 文章访问数:  2427
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-09
  • 修回日期:  2024-01-31
  • 上网日期:  2024-02-02
  • 刊出日期:  2024-04-20

/

返回文章
返回