搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声黑洞设计理论的径向夹心式径-弯复合换能器

刘洋 陈诚 林书玉

引用本文:
Citation:

基于声黑洞设计理论的径向夹心式径-弯复合换能器

刘洋, 陈诚, 林书玉

Radial sandwich radial-bending composite transducer designed based on acoustic black hole theory

Liu Yang, Chen Cheng, Lin Shu-Yu
PDF
HTML
导出引用
  • 基于弯曲波在声黑洞(acoustic black hole, ABH)结构中振幅不断增大的特性, 提出了一种新型径向夹心式径-弯复合换能器, 该换能器由径向夹心式圆环换能器与外围的环形ABH结构组成. ABH结构的存在实现了换能器径向振动与弯曲振动之间的转换, 提高了换能器的声辐射性能. 利用几何声学的方法建立了ABH结构弯曲振动的解析模型, 给出了其弯曲振动的本征频率, 并结合有限元方法讨论了换能器机电转换性能随尺寸变化的关系. 通过有限元方法给出了该换能器在空气中的辐射声压场、辐射声强以及辐射指向性, 仿真结果表明, ABH结构的存在能够改善换能器弯曲振动的机电转换性能, 提高换能器的声辐射性能, 使换能器呈现出一定的辐射指向性. 最后通过实验对换能器样机的电阻抗特性以及振动模态进行测量, 实验结果与仿真相符合.
    A novel radial sandwich radial bending composite transducer is proposed based on the increasing amplitude of bending waves in the structure of an acoustic black hole (ABH). The transducer consists of a radial sandwich circular ring transducer and an outer acoustic black hole structure. The existence of the ABH structure realizes the conversion between radial vibration and bending vibration of the transducer, and improves the acoustic radiation performance of the transducer. Based on the one-dimensional acoustic black hole bending vibration theory, the bending vibration equation of the circular ABH structure is given. An analytical model of the ABH structure bending vibration is established by using the method of geometrical-acoustics, and the eigen frequency of its bending vibration is given. The relationship between the electromechanical conversion performance and the size of the transducer is discussed by using the finite element method, and the results show that when the eigen frequency of the bending vibration of the ABH structure is close to the resonant frequency of the transducer, the electromechanical coupling coefficient of the transducer reaches a maximum value. The radiation sound pressure field, radiation sound intensity, and radiation directionality of the transducer in the air are also analyzed by the finite element method. The results indicate that the presence of the ABH structure can improve the electromechanical conversion performance of the bending vibration of the transducer, enhance the acoustic radiation performance of the transducer, make the transducer exhibit radiation directionality and the lower order of the bending vibration mode of the ABH structure, the stronger radiation directionality of the transducer towards the left side and the right side. Finally, in order to verify the accuracy of the simulation and theory, we made a prototype transducer and carried out the experimental test of transducer electrical impedance and vibration mode. The measured results are in good agreement with the simulation results. The displacement distribution of the radiation surface of the transducer at resonance frequency is measured, which verifies the bending vibration mode of the ABH structure. This type of transducer is expected to be used as acoustic projector in the air or water.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12174240, 11674206, 11874253)资助的课题.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174240, 11674206, 11874253).
    [1]

    胡银丰 2017 声学与电子工程 39 25

    Hu Y F 2017 Acoust Electr Eng. 39 25

    [2]

    曹雪砷, 王易敏, 王申 2015 测井技术 39 160Google Scholar

    Cao X S, Wang Y M, Wang S 2015 Well Logging Technol. 39 160Google Scholar

    [3]

    刘世清, 麻磊磊 2020 陕西师范大学学报(自然科学版) 48 60

    Liu S Q, Ma L L 2020 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 48 60

    [4]

    Mironov M A 1988 Sov. Phys. Acoustics. 34 318

    [5]

    Krylov V V 1989 Sov. Phys. Acoustics. 35 176

    [6]

    Krylov V V 1990 Mosc. U. Phys. B+. 45 65

    [7]

    Krylov V V, Tilman F 2004 J. Sound Vib. 274 605Google Scholar

    [8]

    Remillieux M C, Anderson B E, Le Bas P Y, Ulrich T J 2014 Ultrasonics 54 1409Google Scholar

    [9]

    Anderson B E, Remillieux M C, Le Bas P Y, Ulrich T J, Pieczonka L 2015 Ultrasonics 63 141Google Scholar

    [10]

    Aronov B S 2013 J. Acoust. Soc. Am. 134 1021Google Scholar

    [11]

    Aronov B S 2013 J. Acoust. Soc. Am. 133 3875Google Scholar

    [12]

    吴德林, 戴郁郁, 陈浩, 张海澜, 王秀明 2020 声学学报 45 103Google Scholar

    Wu D L, Dai Y Y, Chen H, Zhang H L, Wang X M 2020 Acta Acustica. 45 103Google Scholar

    [13]

    林书玉, 鲜小军 2014 陕西师范大学学报(自然科学版) 42 31

    Lin S Y, Xian X J 2014 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 42 31

    [14]

    许龙, 林书玉 2012 声学学报 37 408Google Scholar

    Xu L, Lin S Y 2012 Acta Acustica. 37 408Google Scholar

    [15]

    李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学 力学 天文学 53 198

    Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 198

    [16]

    董宜雷, 陈诚, 林书玉 2023 物理学报 72 054304Google Scholar

    Dong Y L, Chen C, Lin S Y 2023 Acta Phys. Sin. 72 054304Google Scholar

    [17]

    高炳山, 林书玉 2010 应用声学 29 217Google Scholar

    Gao B S, Lin S Y 2010 J. Appl. Acoust. 29 217Google Scholar

    [18]

    胡静, 林书玉, 王成会, 莫润阳 2015 西北大学学报(自然科学版) 45 709

    Hu J, Lin S Y, Wang C H, Mo R Y 2015 J. Northwest Univ. (Nat. Sci. Ed.) 45 709

    [19]

    王帅军, 林书玉 2011 陕西师范大学学报(自然科学版) 39 23

    Wang S, Lin S 2011 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 39 23

    [20]

    Krylov V V 2020 J. Sound Vib. 468 115100Google Scholar

    [21]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第20页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) p20

  • 图 1  径向夹心式径-弯复合换能器示意图 (a) 换能器总体示意图; (b) 外围环1/4部分的示意图; (c) 换能器振动模态示意图

    Fig. 1.  The schematic diagram of a composite radial bending transducer: (a) The overall schematic diagram of the transducer; (b) a schematic diagram of the 1/4 part of the outer ring; (c) a schematic diagram of the vibration mode of the transducer.

    图 2  不同m下换能器的有效机电耦合系数、谐振频率以及ABH部分的弯曲振动本征频率 (a) a型号换能器; (b) b型号换能器; (c) c型号换能器

    Fig. 2.  Effective electro-mechanical coupling coefficient, resonant frequency of transducer and eigen frequency of bending vibration of ABH part with different m: (a) Model a transducer; (b) model b transducer; (c) model c transducer.

    图 3  四种不同换能器在空气中的辐射声压分布图 (a) a型号换能器, fm = 18.766 kHz; (b) b型号换能器, fm = 18.829 kHz; (c) c型号换能器, fm = 18.841 kHz; (d) d型号换能器, fm = 19.01 kHz

    Fig. 3.  The radiation sound pressure distribution of four different transducers in the air: (a) Model a transducer, fm = 18.766 kHz; (b) model b transducer, fm = 18.829 kHz; (c) model c transducer, fm = 18.841 kHz; (d) model d transducer, fm = 19.01 kHz.

    图 4  四种不同换能器在空气中的辐射声强分布图 (a) a型号换能器, fm = 18.766 kHz; (b) b型号换能器, fm = 18.829 kHz; (c) c型号换能器, fm = 18.841 kHz; (d) d型号换能器, fm = 19.01 kHz

    Fig. 4.  The radiation sound intensity distribution of four different transducers in the air: (a) Model a transducer, fm = 18.766 kHz; (b) model b transducer, fm = 18.829 kHz; (c) model c transducer, fm = 18.841 kHz; (d) model d transducer, fm = 19.01 kHz.

    图 5  四种换能器的声场指向性图 (a) a型号换能器, fm = 18.766 kHz; (b) b型号换能器, fm = 18.829 kHz; (c) c型号换能器, fm = 18.841 kHz; (d) d型号换能器, fm = 19.01 kHz

    Fig. 5.  Four types of transducer sound field directionality graphics: (a) Model a transducer, fm = 18.766 kHz; (b) model b transducer, fm = 18.829 kHz; (c) model c transducer, fm = 18.841 kHz; (d) model d transducer, fm = 19.01 kHz.

    图 6  换能器样机图片

    Fig. 6.  The picture of the prototype transducer.

    图 7  换能器阻抗仿真结果曲线

    Fig. 7.  Simulation result of the transducer electrical impedance curve.

    图 8  换能器阻抗分析实验装置以及阻抗测量结果 (a) WK6500B阻抗分析仪及换能器; (b) 换能器阻抗曲线

    Fig. 8.  Impedance analyzer experimental equipment of transducer and impedance measurement results: (a) WK6500B impedance analyzer and transducer; (b) impedance curves of the transducer.

    图 9  换能器振型仿真结果, 频率为23.682 kHz

    Fig. 9.  Simulation result of transducer vibration mode, the frequency is 23.682 kHz.

    图 10  PSV-400全场扫描式激光振动测量系统及换能器振幅分布测量结果 (a) 激光测振实验装置; (b) 换能器侧面振幅测量结果

    Fig. 10.  PSV-400 laser vibrometer measurement system and transducer displacement distribution measurement result: (a) Laser vibrometer experimental equipment; (b) the side displacement measurement result of the transducer.

    表 1  几种不同换能器的尺寸

    Table 1.  The sizes of several different transducers.

    换能器编号 $ {r}_{1}/{\mathrm{m}}{\mathrm{m}} $ $ {r}_{2}/{\mathrm{m}}{\mathrm{m}} $ $ {r}_{3}/{\mathrm{m}}{\mathrm{m}} $ $ {r}_{4}/{\mathrm{m}}{\mathrm{m}} $ p $ {h}_{1}/{\mathrm{m}}{\mathrm{m}} $ $ {h}_{0}/{\mathrm{m}}{\mathrm{m}} $
    a 30 35 40 45 3 5 1.0
    b 30 35 40 45 2 5 1.5
    c 30 35 40 45 2 5 2.0
    d 30 35 40 45
    下载: 导出CSV

    表 2  换能器尺寸参数

    Table 2.  Size parameters of the transducer.

    尺寸
    参数
    r1/mm r2/mm r3/mm r4/mm p h1/mm h0/mm m
    22 26 30 34 2 4 1 0.65
    下载: 导出CSV
  • [1]

    胡银丰 2017 声学与电子工程 39 25

    Hu Y F 2017 Acoust Electr Eng. 39 25

    [2]

    曹雪砷, 王易敏, 王申 2015 测井技术 39 160Google Scholar

    Cao X S, Wang Y M, Wang S 2015 Well Logging Technol. 39 160Google Scholar

    [3]

    刘世清, 麻磊磊 2020 陕西师范大学学报(自然科学版) 48 60

    Liu S Q, Ma L L 2020 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 48 60

    [4]

    Mironov M A 1988 Sov. Phys. Acoustics. 34 318

    [5]

    Krylov V V 1989 Sov. Phys. Acoustics. 35 176

    [6]

    Krylov V V 1990 Mosc. U. Phys. B+. 45 65

    [7]

    Krylov V V, Tilman F 2004 J. Sound Vib. 274 605Google Scholar

    [8]

    Remillieux M C, Anderson B E, Le Bas P Y, Ulrich T J 2014 Ultrasonics 54 1409Google Scholar

    [9]

    Anderson B E, Remillieux M C, Le Bas P Y, Ulrich T J, Pieczonka L 2015 Ultrasonics 63 141Google Scholar

    [10]

    Aronov B S 2013 J. Acoust. Soc. Am. 134 1021Google Scholar

    [11]

    Aronov B S 2013 J. Acoust. Soc. Am. 133 3875Google Scholar

    [12]

    吴德林, 戴郁郁, 陈浩, 张海澜, 王秀明 2020 声学学报 45 103Google Scholar

    Wu D L, Dai Y Y, Chen H, Zhang H L, Wang X M 2020 Acta Acustica. 45 103Google Scholar

    [13]

    林书玉, 鲜小军 2014 陕西师范大学学报(自然科学版) 42 31

    Lin S Y, Xian X J 2014 J. Shaanxi Normal Univ. (Nat. Sci. Ed. ). 42 31

    [14]

    许龙, 林书玉 2012 声学学报 37 408Google Scholar

    Xu L, Lin S Y 2012 Acta Acustica. 37 408Google Scholar

    [15]

    李凤鸣, 刘世清, 许龙, 张海岛, 曾小梅, 陈赵江 2023 中国科学: 物理学 力学 天文学 53 198

    Li F M, Liu S Q, Xu L, Zhang H D, Zeng X M, Chen Z J 2023 Sci. Sin. Phys. Mech. Astron. 53 198

    [16]

    董宜雷, 陈诚, 林书玉 2023 物理学报 72 054304Google Scholar

    Dong Y L, Chen C, Lin S Y 2023 Acta Phys. Sin. 72 054304Google Scholar

    [17]

    高炳山, 林书玉 2010 应用声学 29 217Google Scholar

    Gao B S, Lin S Y 2010 J. Appl. Acoust. 29 217Google Scholar

    [18]

    胡静, 林书玉, 王成会, 莫润阳 2015 西北大学学报(自然科学版) 45 709

    Hu J, Lin S Y, Wang C H, Mo R Y 2015 J. Northwest Univ. (Nat. Sci. Ed.) 45 709

    [19]

    王帅军, 林书玉 2011 陕西师范大学学报(自然科学版) 39 23

    Wang S, Lin S 2011 J. Shaanxi Normal Univ. (Nat. Sci. Ed.) 39 23

    [20]

    Krylov V V 2020 J. Sound Vib. 468 115100Google Scholar

    [21]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第20页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) p20

  • [1] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, 2025, 74(4): 044303. doi: 10.7498/aps.74.20241326
    [2] 张羿双, 桑永杰, 陈永耀, 吴帅. Janus-Helmholtz换能器的振动模态谐振频率理论分析研究. 物理学报, 2024, 73(3): 034303. doi: 10.7498/aps.73.20231251
    [3] 林基艳, 陈诚, 郭林伟, 李耀, 林书玉, 孙姣夏, 徐洁. 声表面和拓扑缺陷结构对换能器耦合振动系统的声波调控. 物理学报, 2024, 73(22): 224301. doi: 10.7498/aps.73.20241199
    [4] 潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤. 压电圆环径向弯曲振动与激励研究. 物理学报, 2024, 73(19): 194301. doi: 10.7498/aps.73.20240887
    [5] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器. 物理学报, 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [6] 赵丽霞, 王成会, 莫润阳. 多层膜磁性微泡的非线性声振动特性. 物理学报, 2021, 70(1): 014301. doi: 10.7498/aps.70.20200973
    [7] 张陶然, 莫润阳, 胡静, 陈时, 王成会, 郭建中. 黏弹介质包裹的液体腔中气泡的动力学分析. 物理学报, 2021, 70(12): 124301. doi: 10.7498/aps.70.20201876
    [8] 陈诚, 林书玉. 基于2-2型压电复合材料的新型宽频带径向振动超声换能器. 物理学报, 2021, 70(1): 017701. doi: 10.7498/aps.70.20201352
    [9] 刘珍黎, 宋亮华, 白亮, 许凯亮, 他得安. 长骨中振动声激发超声导波的方法. 物理学报, 2017, 66(15): 154303. doi: 10.7498/aps.66.154303
    [10] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [11] 代显智, 刘小亚, 陈蕾. 一种采用双换能器和摆式结构的宽频振动能量采集器. 物理学报, 2016, 65(13): 130701. doi: 10.7498/aps.65.130701
    [12] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [13] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [14] 马焕培, 贺西平, 兰正康, 阿卜力孜·阿卜来提. 弯曲振动矩形板辐射阻抗的计算. 物理学报, 2012, 61(19): 194302. doi: 10.7498/aps.61.194302
    [15] 贺西平. 弯曲振动阶梯圆盘辐射阻抗的计算方法. 物理学报, 2010, 59(5): 3290-3293. doi: 10.7498/aps.59.3290
    [16] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [17] 潘晓娟, 贺西平. 厚圆盘弯曲振动研究. 物理学报, 2010, 59(11): 7911-7916. doi: 10.7498/aps.59.7911
    [18] 沈惠杰, 温激鸿, 郁殿龙, 温熙森. 基于Timoshenko梁模型的周期充液管路弯曲振动带隙特性和传输特性. 物理学报, 2009, 58(12): 8357-8363. doi: 10.7498/aps.58.8357
    [19] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动. 物理学报, 2005, 54(11): 4989-4993. doi: 10.7498/aps.54.4989
    [20] 姚凯伦, 李占杰, 邢彪. 聚乙炔孤子的二维局域振动模及其键弯曲势的影响. 物理学报, 1992, 41(1): 87-96. doi: 10.7498/aps.41.87
计量
  • 文章访问数:  2419
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-01-31
  • 上网日期:  2024-02-06
  • 刊出日期:  2024-04-20

/

返回文章
返回