搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基超导体中的马约拉纳零能模及其阵列构筑

李更 丁洪 汪自强 高鸿钧

引用本文:
Citation:

铁基超导体中的马约拉纳零能模及其阵列构筑

李更, 丁洪, 汪自强, 高鸿钧

Majorana zero mode and its lattice construction in iron-based superconductors

Li Geng, Ding Hong, Wang Zi-Qiang, Gao Hong-Jun
PDF
HTML
导出引用
  • 马约拉纳零能模服从非阿贝尔统计, 其编织操作可用于构筑拓扑量子比特, 是拓扑量子计算的基本单元, 可从原理上解决量子计算中环境噪声带来的退相干问题. 现有的马约拉纳零能模平台包括复合异质结构, 如拓扑绝缘体/超导体、半导体纳米线/超导体或一维磁性原子链/超导体等, 以及单一材料, 如2M-WS2, 4Hb-TaS2和铁基超导体等. 铁基超导体中的马约拉纳零能模具有材料平台简单、零能模纯净以及存活温度较高等一系列优势, 引起了广泛关注. 最近, 大面积、有序和可调控的马约拉纳零能模晶格阵列在铁基超导体LiFeAs中被观测到, 为未来的拓扑量子计算提供了一个理想平台. 本综述首先回顾铁基超导体中马约拉纳零能模的实验观测, 其中将重点介绍FeTe0.55Se0.45, (Li0.84Fe0.16)OHFeSe, CaKFe4As4和LiFeAs等材料体系. 接着介绍给出铁基超导体中马约拉纳零能模关键性实验证据的一系列工作. 然后进一步详细介绍近期LiFeAs中观测到有序和可调马约拉纳零能模晶格阵列的工作. 最后给出总结和对未来马约拉纳领域研究的展望.
    Majorana zero modes (MZMs) obey non-Abelian braiding statistics. The braiding of MZMs can be used to construct the basic unit − topological qubit − of the topological quantum computation, which is immune to environmental noise and can achieve fault-tolerant quantum computation. The existing MZM platforms include hybrid structures such as topological insulator/superconductor, semiconducting nanowire/superconductor and 1d magnetic atomic chain/superconductor, and single materials such as 2M-WS2, 4Hb-TaS2, and iron-based superconductors (IBSs). The IBSs have advantages such as easy to fabricate, pure MZMs and high surviving temperatures of MZMs. Recently, a large-scale, ordered and tunable MZM lattice has been observed in LiFeAs, which provides a promising platform to future topological quantum computation. In this paper, first, we review the experimental observations of MZMs in IBSs, focusing on FeTe0.55Se0.45, (Li0.84Fe0.16)OHFeSe, CaKFe4As4 and LiFeAs. Next, we introduce the critical experimental evidences of the MZMs. We also review the recent research work on the ordered and tunable MZM lattice in LiFeAs. Finally, we give conclusion and perspective on future Majorana research.
      通信作者: 高鸿钧, hjgao@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0308500, 2018YFA0305700)、国家自然科学基金(批准号: 61888102, 51991340, 52072401)、科技创新2030-“量子通信与量子计算机”重大项目(批准号: 2021ZD0302700)和中国科学院稳定支持基础研究领域青年团队计划(批准号: YSBR-003)资助的课题.
      Corresponding author: Gao Hong-Jun, hjgao@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2019YFA0308500, 2018YFA0305700), the National Natural Science Foundation of China (Grant Nos. 61888102, 51991340, 52072401), the Innovation Program of Quantum Science and Technology, China (Grant No. 2021ZD0302700), and the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003).
    [1]

    Majorana E 1937 Nuovo Ciment 14 171Google Scholar

    [2]

    Avignone F T, Elliott S R, Engel J 2008 Rev. Mod. Phys. 80 481Google Scholar

    [3]

    Arnquist I J, Avignone III F T, Barabash A S, Barton C J, Barton P J, Bhimani K H, Blalock E, Bos B, Busch M, Buuck M, Caldwell T S, Chan Y D, Christofferson C D, Chu P H, Clark M L, Cuesta C, Detwiler J A, Efremenko Yu, Ejiri H, Elliott S R, Giovanetti G K, Green M P, Gruszko J, Guinn I S, Guiseppe V E, Haufe C 3Lopez A M, López-Castàno J M, Martin E L, Martin R D, Massarczyk R, Meijer S J, Mertens S, Oli T K, Othman G, Paudel L S, Pettus W, Poon A W P, Radford D C, Reine A L, Rielage K, Ruof N W, Schaper D C, Tedeschi D, Varner R L, Vasilyev S, Wilkerson J F, Wiseman C, Xu W, Yu C H, Zhu B X 2023 Phys. Rev. Lett. 130 062501Google Scholar

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [6]

    Kitaev A Y 2003 Ann. Phys-New. York. 303 2Google Scholar

    [7]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [8]

    Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, Alicea J 2016 Phys. Rev. X 6 031016Google Scholar

    [9]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [10]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [11]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [12]

    Kitaev A Y 2001 Phys. Uspekhi 44 131Google Scholar

    [13]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [14]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [15]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [16]

    Nadj-Perge S, Drozdov I K, Bernevig B A, Yazdani A 2013 Phys. Rev. B 88 020407Google Scholar

    [17]

    Braunecker B, Simon P 2013 Phys. Rev. Lett. 111 147202Google Scholar

    [18]

    Klinovaja J, Stano P, Yazdani A, Loss D 2013 Phys. Rev. Lett. 111 186805Google Scholar

    [19]

    Li J, Neupert T, Wang Z J, MacDonald A H, Yazdani A, Bernevig B A 2016 Nat. Commun. 7 12297Google Scholar

    [20]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532Google Scholar

    [21]

    Kallin C 2012 Rep. Prog. Phys. 75 042501Google Scholar

    [22]

    Hassinger E, Bourgeois-Hope P, Taniguchi H, de Cotret S R, Grissonnanche G, Anwar M S, Maeno Y, Doiron-Leyraud N, Taillefer L 2017 Phys. Rev. X 7 011032Google Scholar

    [23]

    Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu I L, Zic M, Kim H, Paglione J, Butch N P 2019 Science 365 684Google Scholar

    [24]

    Jiao L, Howard S, Ran S, Wang Z Y, Rodriguez J O, Sigrist M, Wang Z Q, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [25]

    Pustogow A, Luo Y K, Chronister A, Su Y S, Sokolov D A, Jerzembeck F, Mackenzie A P, Hicks C W, Kikugawa N, Raghu S, Bauer E D, Brown S E 2019 Nature 574 72Google Scholar

    [26]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [27]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [28]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [29]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [30]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [31]

    Ruby M, Pientka F, Peng Y, von Oppen F, Heinrich B W, Franke K J 2015 Phys. Rev. Lett. 115 197204Google Scholar

    [32]

    Kim H, Palacio-Morales A, Posske T, Rozsa L, Palotas K, Szunyogh L, Thorwart M, Wiesendanger R 2018 Sci. Adv. 4 eaar5251Google Scholar

    [33]

    Palacio-Morales A, Mascot E, Cocklin S, Kim H, Rachel S, Morr D K, Wiesendanger R 2019 Sci. Adv. 5 eaav6600Google Scholar

    [34]

    Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [35]

    Kezilebieke S, Silveira O J, Huda M N, Vano V, Aapro M, Ganguli S C, Lahtinen J, Mansell R, van Dijken S, Foster A S, Liljeroth P 2021 Adv. Mater. 33 2006850Google Scholar

    [36]

    Zheng H, Jia J F 2019 Chin. Phys. B 28 067403Google Scholar

    [37]

    Chen M Y, Chen X Y, Yang H, Du Z Y, Wen H H 2018 Sci. Adv. 4 eaat1084Google Scholar

    [38]

    Liang J, Zhang Y J, Yao X, Li H, Li Z X, Wang J N, Chen Y Z, Sou I K 2020 P. Natl. Acad. Sci. Usa. 117 221Google Scholar

    [39]

    Jack B, Xie Y L, Yazdani A 2021 Nat. Rev. Phys. 3 541Google Scholar

    [40]

    Yuan Y H, Pan J, Wang X T, Fang Y Q, Song C L, Wang L L, He K, Ma X C, Zhang H J, Huang F Q, Li W, Xue Q K 2019 Nat. Phys. 15 1046Google Scholar

    [41]

    Nayak A K, Steinbok A, Roet Y, Koo J, Margalit G, Feldman I, Almoalem A, Kanigel A, Fiete G A, Yan B H, Oreg Y, Avraham N, Beidenkopf H 2021 Nat. Phys. 17 1413Google Scholar

    [42]

    Lv Y F, Wang W L, Zhang Y M, Ding H, Li W, Wang L L, He K, Song C L, Ma X C, Xue Q K 2017 Sci. Bull. 62 852Google Scholar

    [43]

    Wray L A, Xu S Y, Xia Y Q, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J, Hasan M Z 2010 Nat. Phys. 6 855Google Scholar

    [44]

    Tao R, Yan Y J, Liu X, Wang Z W, Ando Y, Wang Q H, Zhang T, Feng D L 2018 Phys. Rev. X 8 041024Google Scholar

    [45]

    Tanaka Y, Nakayama K, Souma S, Sato T, Xu N, Zhang P, Richard P, Ding H, Suzuki Y, Das P, Kadowaki K, Takahashi T 2012 Phys. Rev. B 85 125111Google Scholar

    [46]

    Khim S, Landaeta J F, Banda J, Bannor N, Brando M, Brydon P M R, Hafner D, Kuchler R, Cardoso-Gil R, Stockert U, Mackenzie A P, Agterberg D F, Geibel C, Hassinger E 2021 Science 373 1012Google Scholar

    [47]

    Landaeta J F, Khanenko P, Cavanagh D C, Geibel C, Khim S, Mishra S, Sheikin I, Brydon P M R, Agterberg D F, Brando M, Hassinger E 2022 Phys. Rev. X 12 031001Google Scholar

    [48]

    Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, Wilson S D 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [49]

    Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q, Gao H J 2021 Nature 599 222Google Scholar

    [50]

    Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, Chen X H 2021 Phys. Rev. X 11 031026Google Scholar

    [51]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645Google Scholar

    [52]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [53]

    Wen H H, Li S L 2011 Annu. Rev. Condens. Matter Phys. 2 121Google Scholar

    [54]

    Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, Kotliar G 2022 Nature 601 35Google Scholar

    [55]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [56]

    Li G, Zhu S Y, Wang D F, Wang Y L, Gao H J 2021 Supercond. Sci. Tech. 34 073001Google Scholar

    [57]

    Li G, Zhu S Y, Fan P, Cao L, Gao H J 2022 Chin. Phys. B 31 080301Google Scholar

    [58]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar

    [59]

    Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J, Ding H 2020 Nat. Commun. 11 5688Google Scholar

    [60]

    Kong L Y, Cao L, Zhu S Y, Papaj M, Dai G Y, Li G, Fan P, Liu W Y, Yang F Z, Wang X C, Du S X, Jin C Q, Fu L, Gao H J, Ding H 2021 Nat. Commun. 12 4146Google Scholar

    [61]

    Li M, Li G, Cao L, Zhou X T, Wang X C, Jin C Q, Chiu C K, Pennycook S J, Wang Z Q, Gao H J 2022 Nature 606 890Google Scholar

    [62]

    Hao N N, Hu J P 2014 Phys. Rev. X 4 031053Google Scholar

    [63]

    Hao N, Hu J P 2019 Natl. Sci. Rev. 6 213Google Scholar

    [64]

    Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119Google Scholar

    [65]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503Google Scholar

    [66]

    Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L, Wang N L 2009 Phys. Rev. B 79 140509(RGoogle Scholar

    [67]

    Pourret A, Malone L, Antunes A B, Yadav C S, Paulose P L, Fauque B, Behnia K 2011 Phys. Rev. B 83 020504(RGoogle Scholar

    [68]

    Homes C C, Dai Y M, Wen J S, Xu Z J, Gu G D 2015 Phys. Rev. B 91 144503Google Scholar

    [69]

    Xu G, Lian B, Tang P Z, Qi X L, Zhang S C 2016 Phys. Rev. Lett. 117 047001Google Scholar

    [70]

    Zhang Z Y 2017 Sci. Bull. 62 671Google Scholar

    [71]

    Qin W, Gao J Q, Cui P, Zhang Z Y 2023 Sci. China-Phys. Mech. Astron. 66 267005Google Scholar

    [72]

    Yazdani A, von Oppen F, Halperin B I, Yacoby A 2023 Science 380 eade0850Google Scholar

    [73]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [74]

    Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811Google Scholar

    [75]

    Chiu C K, Machida T, Huang Y Y, Hanaguri T, Zhang F C 2020 Sci. Adv. 6 eaay0443Google Scholar

    [76]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325Google Scholar

    [77]

    Huang Y L, Feng Z P, Ni S L, Li J, Hu W, Liu S B, Mao Y Y, Zhou H X, Zhou F, Jin K, Wang H B, Yuan J, Dong X L, Zhao Z X 2017 Chin. Phys. Lett. 34 077404Google Scholar

    [78]

    Hayashi N, Isoshima T, Ichioka M, Machida K 1998 Phys. Rev. Lett. 80 2921Google Scholar

    [79]

    Khaymovich I M, Kopnin N B, Mel'nikov A S, Shereshevskii I A 2009 Phys. Rev. B 79 224506Google Scholar

    [80]

    Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar

    [81]

    Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, Ding H 2019 Nat. Phys. 15 1181Google Scholar

    [82]

    Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, Feng D L 2019 Chin. Phys. Lett. 36 057403Google Scholar

    [83]

    Cao L, Song Y, Liu Y B, Zheng Q, Han G Y, Liu W Y, Li M, Chen H, Xing Y Q, Cao G H, Ding H, Lin X, Du S X, Zhang Y Y, Li G, Wang Z Q, Gao H J 2021 Nano Res. 14 3921Google Scholar

    [84]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [85]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [86]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538Google Scholar

    [87]

    Yin J X, Zhang S S, Dai G Y, Zhao Y Y, Kreisel A, Macam G, Wu X X, Miao H, Huang Z Q, Martiny J H J, Andersen B M, Shumiya N, Multer D, Litskevich M, Cheng Z J, Yang X, Cochran T A, Chang G Q, Belopolski I, Xing L Y, Wang X C, Gao Y, Chuang F C, Lin H, Wang Z Q, Jin C Q, Bang Y, Hasan M Z 2019 Phys. Rev. Lett. 123 217004Google Scholar

    [88]

    Zhang P, Wang Z J, Wu X X, Yaji K, Ishida Y, Kohama Y, Dai G Y, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X C, Jin C Q, Hu J P, Thomale R, Sumida K, Wu S L, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M, Shin S 2019 Nat. Phys. 15 41Google Scholar

    [89]

    Hanaguri T, Kitagawa K, Matsubayashi K, Mazaki Y, Uwatoko Y, Takagi H 2012 Phys. Rev. B 85 214505Google Scholar

    [90]

    Hu L H, Wu X X, Liu C X, Zhang R X 2022 Phys. Rev. Lett. 129 277001Google Scholar

    [91]

    Konig E J, Coleman P 2019 Phys. Rev. Lett. 122 207001Google Scholar

    [92]

    Qin S S, Hu L H, Le C C, Zeng J F, Zhang F C, Fang C, Hu J P 2019 Phys. Rev. Lett. 123 027003Google Scholar

    [93]

    Chen C, Jiang K, Zhang Y, Liu C F, Liu Y, Wang Z Q, Wang J 2020 Nat. Phys. 16 536Google Scholar

    [94]

    Zhang Y, Jiang K, Zhang F C, Wang J, Wang Z Q 2021 Phys. Rev. X 11 011041Google Scholar

    [95]

    Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, Pan S H 2015 Nat. Phys. 11 543Google Scholar

    [96]

    Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, Gao H J 2021 Nat. Commun. 12 1348Google Scholar

    [97]

    Wang Z Y, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K, Madhavan V 2020 Science 367 104Google Scholar

    [98]

    Hu J P 2013 Phys. Rev. X 3 031004Google Scholar

    [99]

    Hao N N, Hu J P 2014 Phys. Rev. B 89 045144Google Scholar

    [100]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [101]

    Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H, Gao H J 2020 Science 367 189Google Scholar

    [102]

    Ge J F, Bastiaans K M, Chatzopoulos D, Cho D, Tromp W O, Benschop T, Niu J, Gu G, Allan M P 2022 arXiv: 2205.10346 [cond-mat.supr-con

    [103]

    于渌 1965 物理学报 21 75Google Scholar

    Yu L 1965 Acta Phys. Sin. 21 75Google Scholar

    [104]

    Shiba H 1968 Prog. Theor. Phys. 40 435Google Scholar

    [105]

    Rusinov A I 1969 JETP Lett. 9 1101

    [106]

    Caroli C, De Gennes P G, Matricon J 1964 Phys. Lett. 9 307Google Scholar

    [107]

    Jeon S, Xie Y L, Li J, Wang Z J, Bernevig B A, Yazdani A 2017 Science 358 772Google Scholar

    [108]

    Wang D F, Wiebe J, Zhong R D, Gu G D, Wiesendanger R 2021 Phys. Rev. Lett. 126 076802Google Scholar

    [109]

    Cao L, Liu W Y, Li G, Dai G Y, Zheng Q, Wang Y X, Jiang K, Zhu S Y, Huang L, Kong L Y, Yang F Z, Wang X C, Zhou W, Lin X, Hu J P, Jin C Q, Ding H, Gao H J 2021 Nat. Commun. 12 6312Google Scholar

    [110]

    Yim C M, Trainer C, Aluru R, Chi S, Hardy W N, Liang R X, Bonn D, Wahl P 2018 Nat. Commun. 9 2602Google Scholar

    [111]

    Bonderson P, Freedman M, Nayak C 2009 Ann. Phys-new. York. 324 787Google Scholar

    [112]

    Wang Y X, Lin M, Hughes T L 2018 Phys. Rev. B 98 165144Google Scholar

    [113]

    Wang Q Y, Liu C C, Lu Y M, Zhang F 2018 Phys. Rev. Lett. 121 186801Google Scholar

    [114]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [115]

    Li C, Luo X J, Chen L, Liu D E, Zhang F C, Liu X 2022 Natl. Sci. Rev. 9 nwac095Google Scholar

  • 图 1  (a) FeTe0.55Se0.45的高分辨扫描隧道显微镜(STM)图像; (b) 0.5 T下FeTe0.55Se0.45表面零偏压dI/dV map 图像; (c)单个磁通涡旋的零偏压dI/dV map 图像; (d)在磁通涡旋中心(红色)以及边界(黑色)处的dI/dV 谱线; (e)沿图(c)箭头方向的空间分辨dI/dV 谱线[55]

    Fig. 1.  (a) High-resolution scanning tunneling microscope (STM) topography of FeTe0.55Se0.45; (b) large-scale dI/dV map of FeTe0.55Se0.45 surface at 0 meV under 0.5 T; (c) dI/dV map of a typical vortex hosting MZM at 0 meV; (d) dI/dV curves taken at the center (red) and at the edge (black) of the vortex in panel (c); (e) a waterfall like plot of dI/dV line-cut along the dashed arrow in panel (c), the black curve corresponds to vortex center[55].

    图 2  (a) DFT+DMFT计算得到的CaKFe4As4能带结构; (b) ΓM方向的ARPES能谱图像; (c)对称化的EDC能谱曲线; (d) CaKFe4As4的STM形貌图; (e)一个涡旋附近的零偏压dI/dV map图像; (f)涡旋附近不同位置的dI/dV谱线比较; (g)不同涡旋束缚态的空间分布图案[59]

    Fig. 2.  (a) DFT+DMFT calculation results for the band structures of CaKFe4As4; (b) ARPES spectral intensity plots along the ΓM direction on CaKFe4As4; (c) symmetrized EDCs at the momentum points marked by the red arrows in panel (b), the superconducting gap values of 5.9 meV is attributed to the topological surface bands; (d) STM topography of CaKFe4As4; (e) zero-bias conductance map around a vortex core; (f) comparison of dI/dV spectra at vortex core (P1), middle (P2), edge (P3), and without magnetic field (SC gap); (g) spatial patterns of vortex-bound states at energies corresponding to L0 (MZM), L–1, L–2, and L–3[59].

    图 3  (a) Li(Fe, Co)As的晶格结构与布里渊区; (b) LiFeAs的能带结构示意图; (c) LiFeAs涡旋内部(红色)和外部(黑色)的大范围dI/dV 谱线; (d)跨越一个杂质辅助涡旋的大范围dI/dV谱线图, 显示出杂质的电子掺杂效应; (e)一个杂质辅助涡旋的零偏压dI/dV map图像; (f)图(e)中沿箭头方向的空间分辨dI/dV 谱线图[60]

    Fig. 3.  (a) Crystal structure and Brillouin zone of Li(Fe, Co)As; (b) LiFeAs band dispersion along ΓM and ΓZ; (c) wide range dI/dV spectra measured at an impurity assisted vortex (red curve) and on a clean surface region without impurities (black curve); (d) wide range line-cut intensity plot for an impurity assisted vortex, showing electron doping effect; (e) a zero bias conductance map around an impurity assisted vortex; (f) dI/dV intensity measured under 2.0 T along the white dashed line indicated in panel (e)[60].

    图 4  (a) Fe原子沉积在FeTe0.55Se0.45表面的STM图像; (b)跨过一个Fe原子的空间分辨dI/dV 谱线图; (c), (d)在一个Fe原子上的dI/dV 谱线图随隧穿势垒的变化; (e), (f)在外加2 T磁场下, 一个Fe原子上的dI/dV 谱线图随隧穿势垒的变化[96]

    Fig. 4.  (a) STM image of FeTe0.55Se0.45 after atomic Fe atom deposition; (b) intensity plot of a series of spectra detected across Fe adatom; (c), (d) tunnel-barrier conductance dependence of the dI/dV spectra on a Fe atom and its intensity plots; (e), (f) the same as panel (c) and (d), but measured under a magnetic field of 6 T[96].

    图 5  (a)跨越拓扑磁通涡旋的空间分辨dI/dV 谱线图; (b)跨越平庸磁通涡旋的空间分辨dI/dV 谱线图; (c) 35个拓扑磁通涡旋的涡旋束缚态能量统计图; (d) 26个平庸磁通涡旋的涡旋束缚态能量统计图[81]

    Fig. 5.  (a) Intensity plot and waterfall plot of a dI/dV linecut through a topological vortex core, showing the integer quantized vortex bond states; (b) the intensity plot and waterfall plot of a dI/dV linecut through an trivial vortex core, showing the half-odd-integer quantized vortex bond states; (c) a histogram of averaged level energies for 35 topological vortices; (d) a histogram of averaged level energies for 26 ordinary vortices[81].

    图 6  (a)利用隧穿势垒调节耦合强度实验的示意图; (b)在不同的隧穿电导GN下磁通涡旋中心的dI/dV谱线图; (c)不同能量下微分电导随隧穿势垒的变化的三维视觉图像; (d), (e)不同能量下微分电导随隧穿势垒变化的轮廓曲线[101]

    Fig. 6.  (a) Schematic of tunnel-coupling tunable experiment; Inset: dI/dV spectrum measured at vortex center under 2 T; (b) an overlapping plot of dI/dV spectra at vortex center under different GN; (c) a three-dimensional schematic diagram depicting the variation in differential conductance values with respect to changes in energy and tunnel junction; (d) line profile of panel (c) along the dashed line at zero bias; (e) line profile of panel (c) along the dashed lines at high bias values[101].

    图 7  (a)第一类褶皱的STM图像和高度曲线; (b)第二类褶皱的STM图像和高度曲线; (c)两类褶皱与正常区域处dI/dV谱线的比较; (d)—(f)两类褶皱与正常区域处LiFeAs的能带结构示意图[109]

    Fig. 7.  (a) STM topography (top) and height profile (bottom) of the first type of wrinkle; (b) STM torphology (top) and height profile (bottom) of the second type of wrinkle; (c) comparison of dI/dV spectra between the two wrinkles and the normal region; (d)–(f) schematic diagram of tuning of LiFeAs band structures by strain[109].

    图 8  (a)双轴电荷密度波区域的STM图像; (b)图(a)的傅里叶变换: (c)不同区域的dI/dV谱线的比较; (d)图(a)中沿不同方向箭头的空间分辨dI/dV谱线图; (e) 0.5 T下, 双轴电荷密度波区域的0偏压dI/dV map图像; (f)图(e)中红色箭头方向的空间分辨dI/dV谱线图[61]

    Fig. 8.  (a) STM topography of large area biaxial charge density wave region; (b) corresponding Fourier transform of panel (a); (c) comparison of dI/dV spectra in different regions; (d) dI/dV intensity spectra along the arrows marked in panel (a); (e) zero bias dI/dV map of the biaxial CDW region under 0.5 T magnetic field; (f) intensity plot of the dI/dV spectra along the red arrow in panel (e)[61].

    图 9  大面积、有序可调马约拉纳零能模阵列的形成, (上半部分)不同磁场下的马约拉纳零能模阵列, (下半部分) 6 T下微米尺度有序的马约拉纳零能模阵列[61]

    Fig. 9.  Formation of large-scale, ordered and tunable MZM lattice. Upper panel: Series of zero energy dI/dV maps of the MZM vortices in the biaxial CDW region under magnetic fields of 0.5, 2, 4, 5, and 6 T. Lower panel: Micrometer-sized ordered MZM lattice under 6 T[61].

    图 10  (a)磁通涡旋的数量和间距随磁场的变化; (b)不同磁场下的平均dI/dV谱线[61]

    Fig. 10.  (a) Number (black) and the spacing of neighboring vortices (red) under different magnetic fields, the scanning area is 240 nm × 240 nm; (b) averaged dI/dV spectra under different magnetic fields[61].

    图 11  基于马约拉纳零能模阵列的可能编织方案, 包括利用STM针尖物理上移动涡旋和只通过测量实现编织的方案

    Fig. 11.  Schematic of possible braiding approaches based on the MZM lattice. Upper panel: Physically move the vortices around each other using a STM tip. Lower panel: Measurement-only approach without physically moving the vortices.

  • [1]

    Majorana E 1937 Nuovo Ciment 14 171Google Scholar

    [2]

    Avignone F T, Elliott S R, Engel J 2008 Rev. Mod. Phys. 80 481Google Scholar

    [3]

    Arnquist I J, Avignone III F T, Barabash A S, Barton C J, Barton P J, Bhimani K H, Blalock E, Bos B, Busch M, Buuck M, Caldwell T S, Chan Y D, Christofferson C D, Chu P H, Clark M L, Cuesta C, Detwiler J A, Efremenko Yu, Ejiri H, Elliott S R, Giovanetti G K, Green M P, Gruszko J, Guinn I S, Guiseppe V E, Haufe C 3Lopez A M, López-Castàno J M, Martin E L, Martin R D, Massarczyk R, Meijer S J, Mertens S, Oli T K, Othman G, Paudel L S, Pettus W, Poon A W P, Radford D C, Reine A L, Rielage K, Ruof N W, Schaper D C, Tedeschi D, Varner R L, Vasilyev S, Wilkerson J F, Wiseman C, Xu W, Yu C H, Zhu B X 2023 Phys. Rev. Lett. 130 062501Google Scholar

    [4]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [5]

    Alicea J 2012 Rep. Prog. Phys. 75 076501Google Scholar

    [6]

    Kitaev A Y 2003 Ann. Phys-New. York. 303 2Google Scholar

    [7]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [8]

    Aasen D, Hell M, Mishmash R V, Higginbotham A, Danon J, Leijnse M, Jespersen T S, Folk J A, Marcus C M, Flensberg K, Alicea J 2016 Phys. Rev. X 6 031016Google Scholar

    [9]

    Moore G, Read N 1991 Nucl. Phys. B 360 362Google Scholar

    [10]

    Read N, Green D 2000 Phys. Rev. B 61 10267Google Scholar

    [11]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268Google Scholar

    [12]

    Kitaev A Y 2001 Phys. Uspekhi 44 131Google Scholar

    [13]

    Fu L, Kane C L 2008 Phys. Rev. Lett. 100 096407Google Scholar

    [14]

    Lutchyn R M, Sau J D, Das Sarma S 2010 Phys. Rev. Lett. 105 077001Google Scholar

    [15]

    Sau J D, Lutchyn R M, Tewari S, Das Sarma S 2010 Phys. Rev. Lett. 104 040502Google Scholar

    [16]

    Nadj-Perge S, Drozdov I K, Bernevig B A, Yazdani A 2013 Phys. Rev. B 88 020407Google Scholar

    [17]

    Braunecker B, Simon P 2013 Phys. Rev. Lett. 111 147202Google Scholar

    [18]

    Klinovaja J, Stano P, Yazdani A, Loss D 2013 Phys. Rev. Lett. 111 186805Google Scholar

    [19]

    Li J, Neupert T, Wang Z J, MacDonald A H, Yazdani A, Bernevig B A 2016 Nat. Commun. 7 12297Google Scholar

    [20]

    Maeno Y, Hashimoto H, Yoshida K, Nishizaki S, Fujita T, Bednorz J G, Lichtenberg F 1994 Nature 372 532Google Scholar

    [21]

    Kallin C 2012 Rep. Prog. Phys. 75 042501Google Scholar

    [22]

    Hassinger E, Bourgeois-Hope P, Taniguchi H, de Cotret S R, Grissonnanche G, Anwar M S, Maeno Y, Doiron-Leyraud N, Taillefer L 2017 Phys. Rev. X 7 011032Google Scholar

    [23]

    Ran S, Eckberg C, Ding Q P, Furukawa Y, Metz T, Saha S R, Liu I L, Zic M, Kim H, Paglione J, Butch N P 2019 Science 365 684Google Scholar

    [24]

    Jiao L, Howard S, Ran S, Wang Z Y, Rodriguez J O, Sigrist M, Wang Z Q, Butch N P, Madhavan V 2020 Nature 579 523Google Scholar

    [25]

    Pustogow A, Luo Y K, Chronister A, Su Y S, Sokolov D A, Jerzembeck F, Mackenzie A P, Hicks C W, Kikugawa N, Raghu S, Bauer E D, Brown S E 2019 Nature 574 72Google Scholar

    [26]

    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001Google Scholar

    [27]

    Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003Google Scholar

    [28]

    Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M, Kouwenhoven L P 2012 Science 336 1003Google Scholar

    [29]

    Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P, Xu H Q 2012 Nano Lett. 12 6414Google Scholar

    [30]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [31]

    Ruby M, Pientka F, Peng Y, von Oppen F, Heinrich B W, Franke K J 2015 Phys. Rev. Lett. 115 197204Google Scholar

    [32]

    Kim H, Palacio-Morales A, Posske T, Rozsa L, Palotas K, Szunyogh L, Thorwart M, Wiesendanger R 2018 Sci. Adv. 4 eaar5251Google Scholar

    [33]

    Palacio-Morales A, Mascot E, Cocklin S, Kim H, Rachel S, Morr D K, Wiesendanger R 2019 Sci. Adv. 5 eaav6600Google Scholar

    [34]

    Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [35]

    Kezilebieke S, Silveira O J, Huda M N, Vano V, Aapro M, Ganguli S C, Lahtinen J, Mansell R, van Dijken S, Foster A S, Liljeroth P 2021 Adv. Mater. 33 2006850Google Scholar

    [36]

    Zheng H, Jia J F 2019 Chin. Phys. B 28 067403Google Scholar

    [37]

    Chen M Y, Chen X Y, Yang H, Du Z Y, Wen H H 2018 Sci. Adv. 4 eaat1084Google Scholar

    [38]

    Liang J, Zhang Y J, Yao X, Li H, Li Z X, Wang J N, Chen Y Z, Sou I K 2020 P. Natl. Acad. Sci. Usa. 117 221Google Scholar

    [39]

    Jack B, Xie Y L, Yazdani A 2021 Nat. Rev. Phys. 3 541Google Scholar

    [40]

    Yuan Y H, Pan J, Wang X T, Fang Y Q, Song C L, Wang L L, He K, Ma X C, Zhang H J, Huang F Q, Li W, Xue Q K 2019 Nat. Phys. 15 1046Google Scholar

    [41]

    Nayak A K, Steinbok A, Roet Y, Koo J, Margalit G, Feldman I, Almoalem A, Kanigel A, Fiete G A, Yan B H, Oreg Y, Avraham N, Beidenkopf H 2021 Nat. Phys. 17 1413Google Scholar

    [42]

    Lv Y F, Wang W L, Zhang Y M, Ding H, Li W, Wang L L, He K, Song C L, Ma X C, Xue Q K 2017 Sci. Bull. 62 852Google Scholar

    [43]

    Wray L A, Xu S Y, Xia Y Q, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J, Hasan M Z 2010 Nat. Phys. 6 855Google Scholar

    [44]

    Tao R, Yan Y J, Liu X, Wang Z W, Ando Y, Wang Q H, Zhang T, Feng D L 2018 Phys. Rev. X 8 041024Google Scholar

    [45]

    Tanaka Y, Nakayama K, Souma S, Sato T, Xu N, Zhang P, Richard P, Ding H, Suzuki Y, Das P, Kadowaki K, Takahashi T 2012 Phys. Rev. B 85 125111Google Scholar

    [46]

    Khim S, Landaeta J F, Banda J, Bannor N, Brando M, Brydon P M R, Hafner D, Kuchler R, Cardoso-Gil R, Stockert U, Mackenzie A P, Agterberg D F, Geibel C, Hassinger E 2021 Science 373 1012Google Scholar

    [47]

    Landaeta J F, Khanenko P, Cavanagh D C, Geibel C, Khim S, Mishra S, Sheikin I, Brydon P M R, Agterberg D F, Brando M, Hassinger E 2022 Phys. Rev. X 12 031001Google Scholar

    [48]

    Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, Wilson S D 2020 Phys. Rev. Lett. 125 247002Google Scholar

    [49]

    Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Ma S, Ni S L, Zhang H, Yin Q W, Gong C S, Tu Z J, Lei H C, Tan H X, Zhou S, Shen C M, Dong X L, Yan B H, Wang Z Q, Gao H J 2021 Nature 599 222Google Scholar

    [50]

    Liang Z W, Hou X Y, Zhang F, Ma W R, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, Chen X H 2021 Phys. Rev. X 11 031026Google Scholar

    [51]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645Google Scholar

    [52]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589Google Scholar

    [53]

    Wen H H, Li S L 2011 Annu. Rev. Condens. Matter Phys. 2 121Google Scholar

    [54]

    Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, Kotliar G 2022 Nature 601 35Google Scholar

    [55]

    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H, Gao H J 2018 Science 362 333Google Scholar

    [56]

    Li G, Zhu S Y, Wang D F, Wang Y L, Gao H J 2021 Supercond. Sci. Tech. 34 073001Google Scholar

    [57]

    Li G, Zhu S Y, Fan P, Cao L, Gao H J 2022 Chin. Phys. B 31 080301Google Scholar

    [58]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 Phys. Rev. X 8 041056Google Scholar

    [59]

    Liu W Y, Cao L, Zhu S Y, Kong L Y, Wang G W, Papaj M, Zhang P, Liu Y B, Chen H, Li G, Yang F Z, Kondo T, Du S X, Cao G H, Shin S, Fu L, Yin Z P, Gao H J, Ding H 2020 Nat. Commun. 11 5688Google Scholar

    [60]

    Kong L Y, Cao L, Zhu S Y, Papaj M, Dai G Y, Li G, Fan P, Liu W Y, Yang F Z, Wang X C, Du S X, Jin C Q, Fu L, Gao H J, Ding H 2021 Nat. Commun. 12 4146Google Scholar

    [61]

    Li M, Li G, Cao L, Zhou X T, Wang X C, Jin C Q, Chiu C K, Pennycook S J, Wang Z Q, Gao H J 2022 Nature 606 890Google Scholar

    [62]

    Hao N N, Hu J P 2014 Phys. Rev. X 4 031053Google Scholar

    [63]

    Hao N, Hu J P 2019 Natl. Sci. Rev. 6 213Google Scholar

    [64]

    Wang Z J, Zhang P, Xu G, Zeng L K, Miao H, Xu X Y, Qian T, Weng H M, Richard P, Fedorov A V, Ding H, Dai X, Fang Z 2015 Phys. Rev. B 92 115119Google Scholar

    [65]

    Fang M H, Pham H M, Qian B, Liu T J, Vehstedt E K, Liu Y, Spinu L, Mao Z Q 2008 Phys. Rev. B 78 224503Google Scholar

    [66]

    Chen G F, Chen Z G, Dong J, Hu W Z, Li G, Zhang X D, Zheng P, Luo J L, Wang N L 2009 Phys. Rev. B 79 140509(RGoogle Scholar

    [67]

    Pourret A, Malone L, Antunes A B, Yadav C S, Paulose P L, Fauque B, Behnia K 2011 Phys. Rev. B 83 020504(RGoogle Scholar

    [68]

    Homes C C, Dai Y M, Wen J S, Xu Z J, Gu G D 2015 Phys. Rev. B 91 144503Google Scholar

    [69]

    Xu G, Lian B, Tang P Z, Qi X L, Zhang S C 2016 Phys. Rev. Lett. 117 047001Google Scholar

    [70]

    Zhang Z Y 2017 Sci. Bull. 62 671Google Scholar

    [71]

    Qin W, Gao J Q, Cui P, Zhang Z Y 2023 Sci. China-Phys. Mech. Astron. 66 267005Google Scholar

    [72]

    Yazdani A, von Oppen F, Halperin B I, Yacoby A 2023 Science 380 eade0850Google Scholar

    [73]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182Google Scholar

    [74]

    Machida T, Sun Y, Pyon S, Takeda S, Kohsaka Y, Hanaguri T, Sasagawa T, Tamegai T 2019 Nat. Mater. 18 811Google Scholar

    [75]

    Chiu C K, Machida T, Huang Y Y, Hanaguri T, Zhang F C 2020 Sci. Adv. 6 eaay0443Google Scholar

    [76]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2015 Nat. Mater. 14 325Google Scholar

    [77]

    Huang Y L, Feng Z P, Ni S L, Li J, Hu W, Liu S B, Mao Y Y, Zhou H X, Zhou F, Jin K, Wang H B, Yuan J, Dong X L, Zhao Z X 2017 Chin. Phys. Lett. 34 077404Google Scholar

    [78]

    Hayashi N, Isoshima T, Ichioka M, Machida K 1998 Phys. Rev. Lett. 80 2921Google Scholar

    [79]

    Khaymovich I M, Kopnin N B, Mel'nikov A S, Shereshevskii I A 2009 Phys. Rev. B 79 224506Google Scholar

    [80]

    Hu L H, Li C, Xu D H, Zhou Y, Zhang F C 2016 Phys. Rev. B 94 224501Google Scholar

    [81]

    Kong L, Zhu S, Papaj M, Chen H, Cao L, Isobe H, Xing Y, Liu W, Wang D, Fan P, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Gao H J, Ding H 2019 Nat. Phys. 15 1181Google Scholar

    [82]

    Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, Feng D L 2019 Chin. Phys. Lett. 36 057403Google Scholar

    [83]

    Cao L, Song Y, Liu Y B, Zheng Q, Han G Y, Liu W Y, Li M, Chen H, Xing Y Q, Cao G H, Ding H, Lin X, Du S X, Zhang Y Y, Li G, Wang Z Q, Gao H J 2021 Nano Res. 14 3921Google Scholar

    [84]

    Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H, Yoshida Y 2016 J. Am. Chem. Soc. 138 3410Google Scholar

    [85]

    Kawakami T, Hu X 2015 Phys. Rev. Lett. 115 177001Google Scholar

    [86]

    Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y, Jin C Q 2008 Solid State Commun. 148 538Google Scholar

    [87]

    Yin J X, Zhang S S, Dai G Y, Zhao Y Y, Kreisel A, Macam G, Wu X X, Miao H, Huang Z Q, Martiny J H J, Andersen B M, Shumiya N, Multer D, Litskevich M, Cheng Z J, Yang X, Cochran T A, Chang G Q, Belopolski I, Xing L Y, Wang X C, Gao Y, Chuang F C, Lin H, Wang Z Q, Jin C Q, Bang Y, Hasan M Z 2019 Phys. Rev. Lett. 123 217004Google Scholar

    [88]

    Zhang P, Wang Z J, Wu X X, Yaji K, Ishida Y, Kohama Y, Dai G Y, Sun Y, Bareille C, Kuroda K, Kondo T, Okazaki K, Kindo K, Wang X C, Jin C Q, Hu J P, Thomale R, Sumida K, Wu S L, Miyamoto K, Okuda T, Ding H, Gu G D, Tamegai T, Kawakami T, Sato M, Shin S 2019 Nat. Phys. 15 41Google Scholar

    [89]

    Hanaguri T, Kitagawa K, Matsubayashi K, Mazaki Y, Uwatoko Y, Takagi H 2012 Phys. Rev. B 85 214505Google Scholar

    [90]

    Hu L H, Wu X X, Liu C X, Zhang R X 2022 Phys. Rev. Lett. 129 277001Google Scholar

    [91]

    Konig E J, Coleman P 2019 Phys. Rev. Lett. 122 207001Google Scholar

    [92]

    Qin S S, Hu L H, Le C C, Zeng J F, Zhang F C, Fang C, Hu J P 2019 Phys. Rev. Lett. 123 027003Google Scholar

    [93]

    Chen C, Jiang K, Zhang Y, Liu C F, Liu Y, Wang Z Q, Wang J 2020 Nat. Phys. 16 536Google Scholar

    [94]

    Zhang Y, Jiang K, Zhang F C, Wang J, Wang Z Q 2021 Phys. Rev. X 11 011041Google Scholar

    [95]

    Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, Pan S H 2015 Nat. Phys. 11 543Google Scholar

    [96]

    Fan P, Yang F Z, Qian G J, Chen H, Zhang Y Y, Li G, Huang Z H, Xing Y Q, Kong L Y, Liu W Y, Jiang K, Shen C M, Du S X, Schneeloch J, Zhong R D, Gu G D, Wang Z Q, Ding H, Gao H J 2021 Nat. Commun. 12 1348Google Scholar

    [97]

    Wang Z Y, Rodriguez J O, Jiao L, Howard S, Graham M, Gu G D, Hughes T L, Morr D K, Madhavan V 2020 Science 367 104Google Scholar

    [98]

    Hu J P 2013 Phys. Rev. X 3 031004Google Scholar

    [99]

    Hao N N, Hu J P 2014 Phys. Rev. B 89 045144Google Scholar

    [100]

    Law K T, Lee P A, Ng T K 2009 Phys. Rev. Lett. 103 237001Google Scholar

    [101]

    Zhu S, Kong L, Cao L, Chen H, Papaj M, Du S, Xing Y, Liu W, Wang D, Shen C, Yang F, Schneeloch J, Zhong R, Gu G, Fu L, Zhang Y Y, Ding H, Gao H J 2020 Science 367 189Google Scholar

    [102]

    Ge J F, Bastiaans K M, Chatzopoulos D, Cho D, Tromp W O, Benschop T, Niu J, Gu G, Allan M P 2022 arXiv: 2205.10346 [cond-mat.supr-con

    [103]

    于渌 1965 物理学报 21 75Google Scholar

    Yu L 1965 Acta Phys. Sin. 21 75Google Scholar

    [104]

    Shiba H 1968 Prog. Theor. Phys. 40 435Google Scholar

    [105]

    Rusinov A I 1969 JETP Lett. 9 1101

    [106]

    Caroli C, De Gennes P G, Matricon J 1964 Phys. Lett. 9 307Google Scholar

    [107]

    Jeon S, Xie Y L, Li J, Wang Z J, Bernevig B A, Yazdani A 2017 Science 358 772Google Scholar

    [108]

    Wang D F, Wiebe J, Zhong R D, Gu G D, Wiesendanger R 2021 Phys. Rev. Lett. 126 076802Google Scholar

    [109]

    Cao L, Liu W Y, Li G, Dai G Y, Zheng Q, Wang Y X, Jiang K, Zhu S Y, Huang L, Kong L Y, Yang F Z, Wang X C, Zhou W, Lin X, Hu J P, Jin C Q, Ding H, Gao H J 2021 Nat. Commun. 12 6312Google Scholar

    [110]

    Yim C M, Trainer C, Aluru R, Chi S, Hardy W N, Liang R X, Bonn D, Wahl P 2018 Nat. Commun. 9 2602Google Scholar

    [111]

    Bonderson P, Freedman M, Nayak C 2009 Ann. Phys-new. York. 324 787Google Scholar

    [112]

    Wang Y X, Lin M, Hughes T L 2018 Phys. Rev. B 98 165144Google Scholar

    [113]

    Wang Q Y, Liu C C, Lu Y M, Zhang F 2018 Phys. Rev. Lett. 121 186801Google Scholar

    [114]

    Hsu C H, Stano P, Klinovaja J, Loss D 2018 Phys. Rev. Lett. 121 196801Google Scholar

    [115]

    Li C, Luo X J, Chen L, Liu D E, Zhang F C, Liu X 2022 Natl. Sci. Rev. 9 nwac095Google Scholar

  • [1] 李泽众, 洪文山, 谢涛, 刘畅, 罗会仟. 铁砷化物超导体的自旋激发谱. 物理学报, 2025, 74(1): 017401. doi: 10.7498/aps.74.20241534
    [2] 胡江平. 探索非常规高温超导体. 物理学报, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [3] 李妙聪, 陶前, 许祝安. 铁基超导体的输运性质. 物理学报, 2021, 70(1): 017404. doi: 10.7498/aps.70.20201836
    [4] 郗翔, 叶康平, 伍瑞新. 偏置磁场方向对磁性光子晶体能带结构的影响及其在构建拓扑边界态中的作用. 物理学报, 2020, 69(15): 154102. doi: 10.7498/aps.69.20200198
    [5] 于春霖, 张浩. Majorana准粒子与超导体-半导体异质纳米线. 物理学报, 2020, 69(7): 077303. doi: 10.7498/aps.69.20200177
    [6] 孔令元, 丁洪. 铁基超导涡旋演生马约拉纳零能模. 物理学报, 2020, 69(11): 110301. doi: 10.7498/aps.69.20200717
    [7] 李世亮, 刘曌玉, 谷延红. 利用单轴压强下的电阻变化研究铁基超导体中的向列涨落. 物理学报, 2018, 67(12): 127401. doi: 10.7498/aps.67.20180627
    [8] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [9] 林桐, 胡蝶, 时立宇, 张思捷, 刘妍琦, 吕佳林, 董涛, 赵俊, 王楠林. 铁基超导体Li0.8Fe0.2ODFeSe的红外光谱研究. 物理学报, 2018, 67(20): 207102. doi: 10.7498/aps.67.20181401
    [10] 王乃舟, 石孟竹, 雷彬, 陈仙辉. FeSe基超导体的探索与物性研究. 物理学报, 2018, 67(20): 207408. doi: 10.7498/aps.67.20181496
    [11] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [12] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [13] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [14] 王志成, 曹光旱. 新型交生结构自掺杂铁基超导体. 物理学报, 2018, 67(20): 207406. doi: 10.7498/aps.67.20181355
    [15] 杜增义, 方德龙, 王震宇, 杜冠, 杨雄, 杨欢, 顾根大, 闻海虎. 铁基超导体FeSe0.5Te0.5表面隧道谱的研究. 物理学报, 2015, 64(9): 097401. doi: 10.7498/aps.64.097401
    [16] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择. 物理学报, 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [17] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究. 物理学报, 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [18] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [19] 李斌, 邢钟文, 刘楣. LiFeAs超导体中磁性与声子软化. 物理学报, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [20] 刘甦, 李斌, 王玮, 汪军, 刘楣. 铁基化合物 SrFeAsF以及 Co掺杂超导体SrFe0.875Co0.125AsF的电子结构和磁性. 物理学报, 2010, 59(6): 4245-4252. doi: 10.7498/aps.59.4245
计量
  • 文章访问数:  3431
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 修回日期:  2024-01-24
  • 上网日期:  2024-01-24
  • 刊出日期:  2024-02-05

/

返回文章
返回