搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速条件下凸曲率壁面混合层的流动演化

张震 易仕和 刘小林 陈世康 张臻

引用本文:
Citation:

高超声速条件下凸曲率壁面混合层的流动演化

张震, 易仕和, 刘小林, 陈世康, 张臻

Flow evolution of mixed layer on convex curvature wall under hypersonic conditions

Zhang Zhen, Yi Shi-He, Liu Xiao-Lin, Chen Shi-Kang, Zhang Zhen
PDF
HTML
导出引用
  • 随着高超声速飞行器的不断更新换代, 对成像窗口提出了新的设计要求, 即共形窗口以提高气动特性, 这要求在超声速气膜和光学窗口需要与飞行器机身保持相同的曲率外形. 在马赫数Ma = 6高超声速静风洞中开展了凸曲率壁面(CV)混合层稳定性研究. 采用基于纳米粒子的平面激光散射技术捕获到混合层流场结构, 结合分形维数对混合层失稳规律进行研究. 使用数值模拟技术得到了压力、压缩冲量(Ip)沿流向演化结果. 结果表明: 随着来流总压(P0)的增大, 静压比(RSP)减小, 混合层失稳位置延迟, 典型涡结构移动速度增大. CV壁面由于顺压梯度的存在使得压力沿流向下降, 沿壁面切向的超声速气膜处于工作状态时, 可以提升壁面压力, 随着P0增大, RSP随之降低, 提升效果下降; 流动受到CV的膨胀效应影响, Ip沿流向下降, 超声速气膜可以削弱CV上的膨胀效应从而抑制Ip的下降; 压缩冲量的变化率ΔIpP0影响显著, 在弯曲冲量|IΦ| = 0.191—3.624内, 当P0 = 0.5 MPa, ΔIp从178.67%降至12.02%; 当P0 = 1.0 MPa, ΔIp从40.38%降至5.64%. ΔIp随|IΦ|增大而降低, 随着P0增大, 降低幅度减小. 结果揭示凸曲率影响下的高超声速混合层流动演化规律, 对高超声速飞行器实现气动减阻与防热特性的外形设计提供一定参考.
    With the continuous upgrading of hypersonic vehicles, a new requirement for designing imaging window i.e. conformal window for improving aerodynamic characteristics, is put forward, in which the supersonic cooling film and optical window are required to maintain the same curvature shape as the aircraft body. In this work, the mixed-layer flow evolution on a convex wall (CV) is investigated. A nanoparticle-based planar laser scattering technique is used to design the flow field structure of the mixed layer in Ma = 6 hypersonic static wind tunnel, and the location of the mixed-layer instability is studied by combing fractal dimension. The results of pressure, and impulse of compression (Ip) evolution along the flow direction are obtained by numerical simulation, showing that the total incoming pressure (P0) has a significant effect on the flow evolution of the mixed layer: as P0 increases, the ratio of static pressure (RSP) decreases, that the position of the mixed-layer instability is delayed, and that the flow velocity of the typical vortex structure increases. The favorable gradient existing at the CV wallleads the pressure to drop along the flow direction, and the pressure is enhanced when the supersonic air film along the tangential direction of the wall is under the operating condition. However, as P0 increases, the RSP decreases, and the lifting effect of the pressure on the CV decreases. The flow field is affected by the expansion effect of the CV, and Ip decreases along the flow direction. The supersonic air film can weaken the expansion effect on the CV and thus suppressing the decrease of Ip. The change rate of IpIp) is significantly affected by P0, in a range of bending impulse |IΦ| = 0.191–3.62, ΔIp decreases from 178.67% to 12.02% when P0 = 0.5 MPa, and ΔIp decreases from 40.38% to 5.64% when P0 = 1.0 MPa. ΔIp decreases as |IΦ| increases, but the decrease becomes less as P0 increases. The results reveal the flow evolution law of hypersonic mixed layer under the influence of convex curvature, and provide a certain reference for designing the shape of hypersonic vehicle to achieve aerodynamic drag reduction and thermal protection characteristics.
      通信作者: 易仕和, yishihe@nudt.edu.cn ; 刘小林, liuxiaolin09@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 92271203)资助的课题.
      Corresponding author: Yi Shi-He, yishihe@nudt.edu.cn ; Liu Xiao-Lin, liuxiaolin09@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 92271203).
    [1]

    Ko S Y, Xu J Z, Yao Y Q, Tsou F K 1984 Int. J. Heat Mass Transfer 27 1551Google Scholar

    [2]

    Gibson M M, Verriopoulos C A 1984 Exp. Fluids 2 73Google Scholar

    [3]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103Google Scholar

    [4]

    Mayle R E, Kopper F C, Blair M F, Bailey D A 1977 J. Eng. Power 99 77Google Scholar

    [5]

    Wang Q C, Wang Z G, Zhao Y X 2017 Phys. Fluids 29 116106Google Scholar

    [6]

    Thara-Reshma I V, Vinoth P, Rajesh G, Ben-Dor G 2021 J. Fluid Mech. 924 A37Google Scholar

    [7]

    Kokkinakis I W, Drikakis D, Spottswood S M, Brouwer K R, Riley Z B 2023 Phys. Fluids 35 106109Google Scholar

    [8]

    Zhang T, Pu J, Zhou W L, Wang J H, Wu W L, Chen Y 2021 Int. J. Heat Mass Transfer 175 121384Google Scholar

    [9]

    Pu J, Zhang T, Wang J H 2022 Int. Commun. Heat Mass Transfer 130 105834Google Scholar

    [10]

    Su C H 2019 AIAA J 57 2840Google Scholar

    [11]

    Zhao X H, Yi S H, Mi Q, Ding H L, He L 2022 AIAA J. 60 1262Google Scholar

    [12]

    Sun X B, Ding H L, Liu M X, Yi S H, Zhao Y X 2023 Aerosp. Sci. Technol. 140 108488Google Scholar

    [13]

    Lin J X, Wang Q C, Zhao Y X, Lu X G 2023 Phys. Fluids 35 056107Google Scholar

    [14]

    Marquardt P, Klaas M, Schröder W 2020 Exp. Fluids 61 160Google Scholar

    [15]

    Sun X K, Ni H, Peng W, Jiang P X, Zhu Y H 2021 Chin. J. Aeronaut. 34 452Google Scholar

    [16]

    Ifti H S, Hermann T, Ewenz Rocher M, Doherty L, Hambidge C, McGilvray M, Vandeperre L 2022 Exp. Fluids 63 102Google Scholar

    [17]

    Singh K, Udayraj 2022 Appl. Therm. Eng. 208 118224Google Scholar

    [18]

    Qin Y M, Li X Y, Ren J, Jiang H D 2015 Int. J. Heat Mass Transfer 86 482Google Scholar

    [19]

    Peter J M F, Kloker M J 2022 Phys. Fluids 34 025125Google Scholar

    [20]

    Zhao X H, Yi S H, Mi Q, Ding H L, Niu H B 2022 Aerosp. Sci. Technol. 123 107457Google Scholar

    [21]

    Zhao Y X, Yi S H, Tian L F, Cheng Z 2009 Sci. China, Ser. E: Technol. Sci. 52 3640Google Scholar

    [22]

    郑文鹏, 易仕和, 牛海波, 霍俊杰 2021 物理学报 70 244702Google Scholar

    Zheng W P, Yi S H, Niu H B, Huo J J 2021 Acta Phys. Sin. 70 244702Google Scholar

    [23]

    牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿 2021 物理学报 70 134701Google Scholar

    Niu H B, Yi S H, Liu X L, Huo J J, Gang D D 2021 Acta Phys. Sin. 70 134701Google Scholar

    [24]

    刘小林, 易仕和, 牛海波, 陆小革 2018 物理学报 67 214701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G 2018 Acta Phys. Sin. 67 214701Google Scholar

    [25]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [26]

    Tichenor N R, Humble R A, Bowersox R D W 2013 J. Fluid Mech. 722 187Google Scholar

    [27]

    Wang Q C, Wang Z G 2016 Appl. Phys. Lett. 108 114102Google Scholar

    [28]

    Zhang Z, Yi S, Liu X L, Hu Y F, Chen S K 2024 Phys. Fluids 36 036127Google Scholar

    [29]

    Bradshaw P 2006 J. Fluid Mech. 52 113Google Scholar

    [30]

    Bradshaw P 1974 J. Fluid Mech. 63 449Google Scholar

  • 图 1  高超声速静风洞

    Fig. 1.  Hypersonic static wind tunnel.

    图 2  实验模型示意图

    Fig. 2.  Experimental model diagram.

    图 3  超声速气膜喷管马赫数校准结果

    Fig. 3.  Mach number calibration results for supersonic air-film nozzles.

    图 4  不同P0下的流场NPLS图像 (a) 0.3 MPa; (b) 0.5 MPa; (c) 0.6 MPa; (d) 0.65 MPa; (e) 1.0 MPa

    Fig. 4.  NPLS images of the flow field at different P0: (a) 0.3 MPa; (b) 0.5 MPa; (c) 0.6 MPa; (d) 0.65 MPa; (e) 1.0 MPa.

    图 5  边缘检测结果 (a) P0 = 0.3 MPa; (b) P0 = 0.5 MPa; (c) P0 = 0.6 MPa; (d) P0 = 0.65 MPa; (e) P0 = 1.0 MPa

    Fig. 5.  Edge detection result: (a) P0 = 0.3 MPa; (b) P0 = 0.5 MPa; (c) P0 = 0.6 MPa; (d) P0 = 0.65 MPa; (e) P0 = 1.0 MPa.

    图 6  分形分析结果

    Fig. 6.  Results of fractal analysis.

    图 7  不同P0下时序间隔5 μs的NPLS结果 (a) P0 = 0.3 MPa, t1; (b) P0 = 0.3 MPa, t1+5 μs; (c) P0 = 0.5 MPa, t2; (d) P0 = 0.5 MPa, t2+5 μs; (e) P0 = 0.6 MPa, t3; (f) P0 = 0.6 MPa, t3+5 μs; (g) P0 = 0.65 MPa, t4; (h) P0 = 0.65 MPa, t4+5 μs; (i) P0 = 1.0 MPa, t5; (j) P0 = 1.0 MPa, t5+5 μs.

    Fig. 7.  NPLS results for timing intervals of 5 μs at different P0: (a) P0 = 0.3 MPa, t1; (b) P0 = 0.3 MPa, t1+5 μs; (c) P0 = 0.5 MPa, t2; (d) P0 = 0.5 MPa, t2+5 μs; (e) P0 = 0.6 MPa, t3; (f) P0 = 0.6 MPa, t3+5 μs; (g) P0 = 0.65 MPa, t4; (h) P0 = 0.65 MPa, t4+5 μs; (i) P0 = 1.0 MPa, t5; (j) P0 = 1.0 MPa, t5+5 μs.

    图 8  不同来流总压下超声速气膜对P/Pin的影响 (a) P0 = 0.3 MPa; (b) P0 = 0.5 MPa; (c) P0 = 0.6 MPa; (d) P0 = 0.65 MPa; (e) P0 = 1.0 MPa; (f) 不同P0下, Pj = 10 kPa

    Fig. 8.  Effect of supersonic air film on P/Pin at different incoming total pressures: (a) P0 = 0.3 MPa; (b) P0 = 0.5 MPa; (c) P0 = 0.6 MPa; (d) P0 = 0.65 MPa; (e) P0 = 1.0 MPa; (f) Pj = 10 kPa with different P0.

    图 9  不同来流总压下超声速气膜对Ip的影响 (a) P0 = 0.3 MPa; (b) P0 = 0.5 MPa; (c) P0 = 0.6 MPa; (d) P0 = 0.65 MPa; (e) P0 = 1.0 MPa; (f)不同P0下, Pj = 10 kPa

    Fig. 9.  Effect of supersonic air film on Ip at different incoming total pressures: (a) P0 = 0.3 MPa; (b) P0 = 0.5 MPa; (c) P0 = 0.6 MPa; (d) P0 = 0.65 MPa; (e) P0 = 1.0 MPa; (f) Pj = 10 kPa with different P0.

    图 10  不同P0下超声速气膜对Ip的增长作用

    Fig. 10.  Effect of supersonic air film on the growth of Ip at different P0.

  • [1]

    Ko S Y, Xu J Z, Yao Y Q, Tsou F K 1984 Int. J. Heat Mass Transfer 27 1551Google Scholar

    [2]

    Gibson M M, Verriopoulos C A 1984 Exp. Fluids 2 73Google Scholar

    [3]

    Humble R A, Peltier S J, Bowersox R D W 2012 Phys. Fluids 24 106103Google Scholar

    [4]

    Mayle R E, Kopper F C, Blair M F, Bailey D A 1977 J. Eng. Power 99 77Google Scholar

    [5]

    Wang Q C, Wang Z G, Zhao Y X 2017 Phys. Fluids 29 116106Google Scholar

    [6]

    Thara-Reshma I V, Vinoth P, Rajesh G, Ben-Dor G 2021 J. Fluid Mech. 924 A37Google Scholar

    [7]

    Kokkinakis I W, Drikakis D, Spottswood S M, Brouwer K R, Riley Z B 2023 Phys. Fluids 35 106109Google Scholar

    [8]

    Zhang T, Pu J, Zhou W L, Wang J H, Wu W L, Chen Y 2021 Int. J. Heat Mass Transfer 175 121384Google Scholar

    [9]

    Pu J, Zhang T, Wang J H 2022 Int. Commun. Heat Mass Transfer 130 105834Google Scholar

    [10]

    Su C H 2019 AIAA J 57 2840Google Scholar

    [11]

    Zhao X H, Yi S H, Mi Q, Ding H L, He L 2022 AIAA J. 60 1262Google Scholar

    [12]

    Sun X B, Ding H L, Liu M X, Yi S H, Zhao Y X 2023 Aerosp. Sci. Technol. 140 108488Google Scholar

    [13]

    Lin J X, Wang Q C, Zhao Y X, Lu X G 2023 Phys. Fluids 35 056107Google Scholar

    [14]

    Marquardt P, Klaas M, Schröder W 2020 Exp. Fluids 61 160Google Scholar

    [15]

    Sun X K, Ni H, Peng W, Jiang P X, Zhu Y H 2021 Chin. J. Aeronaut. 34 452Google Scholar

    [16]

    Ifti H S, Hermann T, Ewenz Rocher M, Doherty L, Hambidge C, McGilvray M, Vandeperre L 2022 Exp. Fluids 63 102Google Scholar

    [17]

    Singh K, Udayraj 2022 Appl. Therm. Eng. 208 118224Google Scholar

    [18]

    Qin Y M, Li X Y, Ren J, Jiang H D 2015 Int. J. Heat Mass Transfer 86 482Google Scholar

    [19]

    Peter J M F, Kloker M J 2022 Phys. Fluids 34 025125Google Scholar

    [20]

    Zhao X H, Yi S H, Mi Q, Ding H L, Niu H B 2022 Aerosp. Sci. Technol. 123 107457Google Scholar

    [21]

    Zhao Y X, Yi S H, Tian L F, Cheng Z 2009 Sci. China, Ser. E: Technol. Sci. 52 3640Google Scholar

    [22]

    郑文鹏, 易仕和, 牛海波, 霍俊杰 2021 物理学报 70 244702Google Scholar

    Zheng W P, Yi S H, Niu H B, Huo J J 2021 Acta Phys. Sin. 70 244702Google Scholar

    [23]

    牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿 2021 物理学报 70 134701Google Scholar

    Niu H B, Yi S H, Liu X L, Huo J J, Gang D D 2021 Acta Phys. Sin. 70 134701Google Scholar

    [24]

    刘小林, 易仕和, 牛海波, 陆小革 2018 物理学报 67 214701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G 2018 Acta Phys. Sin. 67 214701Google Scholar

    [25]

    刘小林, 易仕和, 牛海波, 陆小革, 赵鑫海 2018 物理学报 67 174701Google Scholar

    Liu X L, Yi S H, Niu H B, Lu X G, Zhao X H 2018 Acta Phys. Sin. 67 174701Google Scholar

    [26]

    Tichenor N R, Humble R A, Bowersox R D W 2013 J. Fluid Mech. 722 187Google Scholar

    [27]

    Wang Q C, Wang Z G 2016 Appl. Phys. Lett. 108 114102Google Scholar

    [28]

    Zhang Z, Yi S, Liu X L, Hu Y F, Chen S K 2024 Phys. Fluids 36 036127Google Scholar

    [29]

    Bradshaw P 2006 J. Fluid Mech. 52 113Google Scholar

    [30]

    Bradshaw P 1974 J. Fluid Mech. 63 449Google Scholar

  • [1] 邵茁凯, 孙志, 刘坤, 王宸, 周盈旭, 孙伟峰. 基于分形理论的亚毫米间隙正负极性流注放电特性. 物理学报, 2023, 72(19): 194702. doi: 10.7498/aps.72.20230937
    [2] 何新, 江涛, 张振福, 杨俊波. 束缚态特征温度方法及应用. 物理学报, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [3] 刘勇, 涂国华, 向星皓, 李晓虎, 郭启龙, 万兵兵. 横向矩形微槽抑制高超声速第二模态扰动波的参数化研究. 物理学报, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [4] 马平, 韩一平, 张宁, 田得阳, 石安华, 宋强. 高超声速类HTV2模型全目标电磁散射特性实验研究. 物理学报, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [5] 郑文鹏, 易仕和, 牛海波, 霍俊杰. 高超声速4∶1椭圆锥横流不稳定性实验研究. 物理学报, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [6] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究. 物理学报, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [7] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵. 混合层流场中涡结构对流速度的特性. 物理学报, 2016, 65(7): 074702. doi: 10.7498/aps.65.074702
    [8] 陈书赢, 王海斗, 马国政, 康嘉杰, 徐滨士. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [9] 张延惠, 沈志朋, 蔡祥吉, 徐秀兰, 高嵩. 二维Hénon-Heiles势及其变形势体系逃逸率与分形维数的研究. 物理学报, 2015, 64(23): 230501. doi: 10.7498/aps.64.230501
    [10] 付佳, 易仕和, 王小虎, 张庆虎, 何霖. 高超声速平板边界层流动显示的试验研究. 物理学报, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [11] 王小虎, 易仕和, 付佳, 陆小革, 何霖. 二维高超声速后台阶表面传热特性实验研究. 物理学报, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [12] 杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究. 物理学报, 2013, 62(8): 080505. doi: 10.7498/aps.62.080505
    [13] 火元莲, 张广庶, 吕世华, 袁萍. 闪电的分形特征研究及其在自动识别中的应用. 物理学报, 2013, 62(5): 059201. doi: 10.7498/aps.62.059201
    [14] 陆海波, 刘伟强. 迎风凹腔与逆向喷流组合热防护系统冷却效果研究. 物理学报, 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [15] 罗哲贤, 余晖, 平凡, 马革兰. 涡旋轴对称化的分形维数表征. 物理学报, 2012, 61(24): 244702. doi: 10.7498/aps.61.244702
    [16] 王辉赞, 张韧. 基于Argo资料和混合层模式的淡水通量产品重构. 物理学报, 2012, 61(3): 039202. doi: 10.7498/aps.61.039202
    [17] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究. 物理学报, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [18] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数. 物理学报, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [19] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率. 物理学报, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [20] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述. 物理学报, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
计量
  • 文章访问数:  1579
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-03-12
  • 上网日期:  2024-04-07
  • 刊出日期:  2024-05-20

/

返回文章
返回