搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二值振幅型远场超分辨消色差聚焦器件研究

武志翔 李新羽 黄字文 邹依洋 熊亮 邓琥 尚丽平

引用本文:
Citation:

二值振幅型远场超分辨消色差聚焦器件研究

武志翔, 李新羽, 黄字文, 邹依洋, 熊亮, 邓琥, 尚丽平

Study on binary-amplitude far-field super-resolution achromatic focusing devices

Wu Zhi-Xiang, Li Xin-Yu, Huang Zi-Wen, Zou Yi-Yang, Xiong Liang, Deng Hu, Shang Li-Ping
PDF
HTML
导出引用
  • 具有远场超分辨聚焦特性、消色差、小尺寸和易加工的光学聚焦器件在光学成像、光学显微和光刻等领域具有巨大应用潜力. 本文提出了一种基于光学超振荡基本原理, 结合角谱衍射理论和二进制粒子群算法的二值振幅型远场超分辨消色差聚焦器件设计方法. 为了验证所提出设计方法, 首先针对波长λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm的径向偏振光对二值振幅型远场超分辨聚焦器件振幅进行优化设计, 再对三者振幅分布进行逻辑“与”操作, 使其同时含有3个工作波长远场超分辨聚焦的振幅分布信息. 仿真结果表明: 在3个波长入射条件下相应的峰值半高全宽分别为0.441λ1 (0.179 μm), 0.469λ2 (0.249 μm)和0.427λ3 (0.270 μm), 低于阿贝衍射极限, 实现了远场超分辨消色差聚焦, 且同时聚焦较小的旁瓣比率(<15%). 此类器件具有易加工、消色差和超分辨等优点, 适用于光学系统微型化、集成化. 所提出的设计方法可拓展至其他光学波段, 并为相关光学研究领域提供核心聚焦器件.
    The far-field super-resolution focusing devices possess characteristics such as super-resolution focusing, achromatic, small size and easy machining, which make them highly promising in optical imaging, optical microscopy and lithography. In this work, we propose a binary-amplitude modulation-based method for generating far-field super-resolution achromatic focusing. By using the principles of optical super-oscillation, combined with angular spectral diffraction theory and binary particle swarm optimization (BPSO), we optimize the binary amplitude-type far-field super-resolution focusing devices, which have an identical radius of 100λ but different focal lengths: λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm, respectively. Additionally, an achromatic metalens is integrated by using Boolean AND operation. To assess the feasibility of our proposed approach, numerical simulations are conducted via COMSOL Multiphysics employing FEM analysis. The simulation results demonstrate that the generated spots are located at 25.105λ, 25.106λ, and 25.105λ, respectively. The corresponding full width at half maximum (FWHM) values are 0.441λ1 (0.179 μm), 0.469λ2 (0.249 μm) and 0.427λ3 (0.270 μm), which are smaller than the Abbe diffraction limit, and the far-field super-resolution achromatic focusing is realized. The sidelobe ratios are at low levels, i.e. 12.5%, 12.6%, and 14.2%. The binary amplitude-type far-field super-resolution achromatic devices have the advantages of easy machining, achromatism and super-resolution, and are suitable for miniaturization and integration of optical systems.
      通信作者: 武志翔, zxwu@swust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62105271)、四川省科技厅支撑计划(批准号: 2020YJ0160)、西安近代化工研究所开放基金(批准号: SYJJ20210411)和西南科技大学博士基金项目(批准号: 19zx7160)资助的课题.
      Corresponding author: Wu Zhi-Xiang, zxwu@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62105271), the Science and Technology Program of Sichuan Province, China (Grant No. 2020YJ0160), the Open Fund Xi’an Institute of Modern Chemical Technology, China (Grant No. SYJJ20210411), and the Natural Science Foundation of Southwest University of Science and Technology, China (Grant No. 19zx7160).
    [1]

    Abbe E 1873 SPIE Milestone Series 178 413Google Scholar

    [2]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [3]

    Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566Google Scholar

    [4]

    Gu M, Zheng P L, Hu Z W, Ma S D, Xu F, Pu D L, Wang Q H 2022 Chin. Phys. B 31 74210Google Scholar

    [5]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [6]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar

    [7]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2017 Optica 4 625Google Scholar

    [8]

    Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [9]

    Sales T R M, Morris G M 1997 J. Opt. Soc. Am. A 14 1637Google Scholar

    [10]

    Xu Y S, Singh J, Sheppard C J R, Chen N G 2007 Opt. Express 15 6409Google Scholar

    [11]

    Huang T J, Liu J Y, Yin L Z, Han F Y, Liu P K 2018 Opt. Express 26 22722Google Scholar

    [12]

    Yang C, Shen Y, Xie Y Q, Zhou Q, Deng X H, Cao J C 2019 Phys. Lett. A 383 789Google Scholar

    [13]

    Wang S M, Xu J, Zhong Y, Ren R, Lu Y Q, Wan H D, Wang J, Ding J P 2016 Opt. Commun. 372 245Google Scholar

    [14]

    Davis B J, Karl W C, Swan A K, Ünlü M S, Goldberg B B 2004 Opt. Express 12 4150Google Scholar

    [15]

    Berry M V 2016 J. Phys. A Math. Theor. 50 025003Google Scholar

    [16]

    Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622Google Scholar

    [17]

    Berry M V, Dennis M R 2009 J. Phys. A 42 022003Google Scholar

    [18]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965Google Scholar

    [19]

    Qian Z H, Tian S N, Zhou W, Wang J W, Guo H M 2022 Opt. Express 30 11203Google Scholar

    [20]

    Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar

    [21]

    Kim H, Rogers E T F 2020 Sci. Rep. 10 1328Google Scholar

    [22]

    Wu Z X, Zhu J X, Zou Y Y, Deng H, Xiong L, Liu Q C, Shang L P 2022 Opt. Mater. 123 111924Google Scholar

    [23]

    Tang D L, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar

    [24]

    Chen L, Liu J, Zhang X H, Tang D L 2020 Opt. Lett. 45 5772Google Scholar

    [25]

    Yuan G, Rogers E T F, Zheludev N I 2017 Light-Sci. Appl. 6 e17036Google Scholar

    [26]

    Tang D L, Chen L, Liu J J 2019 Opt. Express 27 12308Google Scholar

    [27]

    Wu Z X, Deng H, Li X X, Liu Q C, Shang L P 2020 Appl. Opt. 59 7841Google Scholar

    [28]

    Goodman J 1996 Introduction to Fourier Optics (2nd Ed.) (McGrw-Hill Compnaies, Inc

    [29]

    Huang K, Ye H, Teng J, Yeo S P, Lukyanchuk B, Qiu C 2014 Laser Photonics Rev. 8 152Google Scholar

    [30]

    Malitson I H 1965 J. Opt. Soc. Am 55 1205Google Scholar

    [31]

    Rakić A D, Djurišić A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [32]

    Liang Y Y, Liu H Z, Wang F Q, Meng H Y, Guo J P, Li J F, Wei Z C 2018 Nanomaterials 8 288Google Scholar

    [33]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069Google Scholar

    [34]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar

    [35]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008Google Scholar

  • 图 1  二值振幅型远场超分辨消色差聚焦示意图

    Fig. 1.  Schematic diagram of the binary-amplitude achromatic super-oscillatory lens (A-SOL).

    图 2  径向偏振光光场强度、相位分布 (a)—(c) 405, 532和632.8 nm的光场强度分布; (d)—(f)沿半径方向上的光场强度和相位分布

    Fig. 2.  Intensity and phase distribution of radially polarized beam: (a)–(c) Optical field intensity distributions of 405, 532 and 632.8 nm, respectively; (d)–(f) the corresponding optical field intensity and phase distributions along the radial direction through the center of the optical field.

    图 3  二值振幅型远场超分辨消色差聚焦器件设计方法

    Fig. 3.  Design method of binary-amplitude achromatic super-oscillatory lens (BP-ASOL).

    图 4  二值振幅型远场超分辨消色差聚焦器件振幅分布 (a)—(c) 单波长超振荡透镜振幅分布; (d) 消色差超振荡透镜振幅分布

    Fig. 4.  Optimized amplitude distributions of super-oscillatory lens (SOLs): (a)–(c) Amplitude distributions of S-SOL1, S-SOL2和S-SOL3; (d) amplitude distribution of A-SOL.

    图 5  (a) λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm入射条件下传播平面上的光场强度分布; (b)—(d) 沿传播方向上峰值强度、半高全宽和旁瓣比率分布

    Fig. 5.  (a) Distribution of optical field intensity on the propagation plane at λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm incidence; (b)–(d) distribution of peak intensity, FWHM and sidelobe ratio along the propagation direction.

    图 6  (a) λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm入射条件下传播平面上和焦平面上的归一化光场强度分布仿真结果; (b) 通过焦斑中心沿半径方向上的光场强度分布

    Fig. 6.  (a) Normalized distributions of optical field intensity on the propagation plane and the focal plane at λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm incidence; (b) intensity profiles along the radial direction across the center of the focal spot.

    图 7  (a)—(c) λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm入射条件下焦平面上的光场强度分布仿真结果; (d)—(f)沿半径方向上不同分量的光场强度分布和相位分布

    Fig. 7.  (a)–(c) Distributions of optical field intensity on the propagation plane and the focal plane at λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm incidence; (d)–(f) intensity profiles and phase profiles along the radial direction.

    表 1  二值振幅型远场超分辨消色差聚焦器件理论计算和数值仿真对比结果

    Table 1.  Comparison of theoretical calculation and numerical simulation results of binary amplitude-type achromatic SOLs.

    关键参数λ1 = 405 nmλ2 = 532 nmλ3 = 632.8 nm
    理论仿真理论仿真理论仿真
    焦距/λ24.89425.10524.94825.10625.21125.105
    数值孔径0.9700.9700.9700.9700.9700.970
    峰值半高全宽0.462λ10.441λ10.468λ20.469λ20.429λ30.427λ3
    旁瓣比率10.3%12.5%11.6%12.6%13.4%14.2%
    阿贝衍射极限0.515λ10.516λ10.515λ20.516λ20.516λ30.516λ3
    下载: 导出CSV
  • [1]

    Abbe E 1873 SPIE Milestone Series 178 413Google Scholar

    [2]

    Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar

    [3]

    Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566Google Scholar

    [4]

    Gu M, Zheng P L, Hu Z W, Ma S D, Xu F, Pu D L, Wang Q H 2022 Chin. Phys. B 31 74210Google Scholar

    [5]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [6]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar

    [7]

    Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2017 Optica 4 625Google Scholar

    [8]

    Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N, Tsai D P 2017 Nat. Commun. 8 187Google Scholar

    [9]

    Sales T R M, Morris G M 1997 J. Opt. Soc. Am. A 14 1637Google Scholar

    [10]

    Xu Y S, Singh J, Sheppard C J R, Chen N G 2007 Opt. Express 15 6409Google Scholar

    [11]

    Huang T J, Liu J Y, Yin L Z, Han F Y, Liu P K 2018 Opt. Express 26 22722Google Scholar

    [12]

    Yang C, Shen Y, Xie Y Q, Zhou Q, Deng X H, Cao J C 2019 Phys. Lett. A 383 789Google Scholar

    [13]

    Wang S M, Xu J, Zhong Y, Ren R, Lu Y Q, Wan H D, Wang J, Ding J P 2016 Opt. Commun. 372 245Google Scholar

    [14]

    Davis B J, Karl W C, Swan A K, Ünlü M S, Goldberg B B 2004 Opt. Express 12 4150Google Scholar

    [15]

    Berry M V 2016 J. Phys. A Math. Theor. 50 025003Google Scholar

    [16]

    Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622Google Scholar

    [17]

    Berry M V, Dennis M R 2009 J. Phys. A 42 022003Google Scholar

    [18]

    Berry M V, Popescu S 2006 J. Phys. A 39 6965Google Scholar

    [19]

    Qian Z H, Tian S N, Zhou W, Wang J W, Guo H M 2022 Opt. Express 30 11203Google Scholar

    [20]

    Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar

    [21]

    Kim H, Rogers E T F 2020 Sci. Rep. 10 1328Google Scholar

    [22]

    Wu Z X, Zhu J X, Zou Y Y, Deng H, Xiong L, Liu Q C, Shang L P 2022 Opt. Mater. 123 111924Google Scholar

    [23]

    Tang D L, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar

    [24]

    Chen L, Liu J, Zhang X H, Tang D L 2020 Opt. Lett. 45 5772Google Scholar

    [25]

    Yuan G, Rogers E T F, Zheludev N I 2017 Light-Sci. Appl. 6 e17036Google Scholar

    [26]

    Tang D L, Chen L, Liu J J 2019 Opt. Express 27 12308Google Scholar

    [27]

    Wu Z X, Deng H, Li X X, Liu Q C, Shang L P 2020 Appl. Opt. 59 7841Google Scholar

    [28]

    Goodman J 1996 Introduction to Fourier Optics (2nd Ed.) (McGrw-Hill Compnaies, Inc

    [29]

    Huang K, Ye H, Teng J, Yeo S P, Lukyanchuk B, Qiu C 2014 Laser Photonics Rev. 8 152Google Scholar

    [30]

    Malitson I H 1965 J. Opt. Soc. Am 55 1205Google Scholar

    [31]

    Rakić A D, Djurišić A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar

    [32]

    Liang Y Y, Liu H Z, Wang F Q, Meng H Y, Guo J P, Li J F, Wei Z C 2018 Nanomaterials 8 288Google Scholar

    [33]

    Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069Google Scholar

    [34]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar

    [35]

    Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008Google Scholar

  • [1] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [2] 葛阳阳, 何灼奋, 黄黎琳, 林丹樱, 曹慧群, 屈军乐, 于斌. 平场复用多焦点结构光照明超分辨显微成像. 物理学报, 2022, 71(4): 048704. doi: 10.7498/aps.71.20211712
    [3] 李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉. 基于粒子群算法的超振荡超分辨聚焦声场设计. 物理学报, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [4] 葛阳阳, 于斌. 平场复用多焦点结构光照明超分辨显微成像研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211712
    [5] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像. 物理学报, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [6] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [7] 周锐, 吴梦雪, 沈飞, 洪明辉. 基于近场光学的微球超分辨显微效应. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [8] 胡睿璇, 潘冰洋, 杨玉龙, 张伟华. 基于线性成像系统的光学超分辨显微术回顾. 物理学报, 2017, 66(14): 144209. doi: 10.7498/aps.66.144209
    [9] 陈刚, 温中泉, 武志翔. 光学超振荡与超振荡光学器件. 物理学报, 2017, 66(14): 144205. doi: 10.7498/aps.66.144205
    [10] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展. 物理学报, 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [11] 蒋忠君, 刘建军. 超振荡及其远场聚焦成像研究进展. 物理学报, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [12] 代海山, 张淳民, 穆廷魁. 宽场、消色差、温度补偿风成像干涉仪中次级条纹研究. 物理学报, 2012, 61(22): 224201. doi: 10.7498/aps.61.224201
    [13] 冯秀琴, 姚治海, 田作林, 韩秀宇. 简并光学参量振荡器的超混沌控制与周期态同步. 物理学报, 2010, 59(12): 8414-8419. doi: 10.7498/aps.59.8414
    [14] 朱化春, 张淳民, 简小华. 新型风成像干涉仪温度补偿理论研究. 物理学报, 2010, 59(2): 893-898. doi: 10.7498/aps.59.893
    [15] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
    [16] 梁文锡, 朱鹏飞, 王瑄, 聂守华, 张忠超, 曹建明, 盛政明, 张杰. 超快电子衍射系统的时间空间分辨能力研究及其优化. 物理学报, 2009, 58(8): 5539-5545. doi: 10.7498/aps.58.5539
    [17] 步志超, 张淳民, 赵葆常, 朱化春. 大视场消色差温度补偿型风成像干涉仪调制度的分析与计算. 物理学报, 2009, 58(4): 2415-2422. doi: 10.7498/aps.58.2415
    [18] 宋岩峰, 邵晓鹏, 徐 军. 实现复消色差的超常温混合红外光学系统. 物理学报, 2008, 57(10): 6298-6303. doi: 10.7498/aps.57.6298
    [19] 赵培涛, 李国华, 吴福全, 彭捍东, 张寅超, 赵曰峰, 王 莲, 刘玉丽. 高精度消色差相位延迟器性能测试研究. 物理学报, 2006, 55(9): 4582-4587. doi: 10.7498/aps.55.4582
    [20] 许掌龙, 刘古, 季振国, 周小霞. V(001)表面上(4×1)-O,(2×2)-S两超结构的角分辨光电子谱. 物理学报, 1988, 37(2): 311-317. doi: 10.7498/aps.37.311
计量
  • 文章访问数:  1721
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-26
  • 修回日期:  2024-02-26
  • 上网日期:  2024-03-27
  • 刊出日期:  2024-05-20

/

返回文章
返回