-
具有远场超分辨聚焦特性、消色差、小尺寸和易加工的光学聚焦器件在光学成像、光学显微和光刻等领域具有巨大应用潜力. 本文提出了一种基于光学超振荡基本原理, 结合角谱衍射理论和二进制粒子群算法的二值振幅型远场超分辨消色差聚焦器件设计方法. 为了验证所提出设计方法, 首先针对波长λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm的径向偏振光对二值振幅型远场超分辨聚焦器件振幅进行优化设计, 再对三者振幅分布进行逻辑“与”操作, 使其同时含有3个工作波长远场超分辨聚焦的振幅分布信息. 仿真结果表明: 在3个波长入射条件下相应的峰值半高全宽分别为0.441λ1 (0.179 μm), 0.469λ2 (0.249 μm)和0.427λ3 (0.270 μm), 低于阿贝衍射极限, 实现了远场超分辨消色差聚焦, 且同时聚焦较小的旁瓣比率(<15%). 此类器件具有易加工、消色差和超分辨等优点, 适用于光学系统微型化、集成化. 所提出的设计方法可拓展至其他光学波段, 并为相关光学研究领域提供核心聚焦器件.The far-field super-resolution focusing devices possess characteristics such as super-resolution focusing, achromatic, small size and easy machining, which make them highly promising in optical imaging, optical microscopy and lithography. In this work, we propose a binary-amplitude modulation-based method for generating far-field super-resolution achromatic focusing. By using the principles of optical super-oscillation, combined with angular spectral diffraction theory and binary particle swarm optimization (BPSO), we optimize the binary amplitude-type far-field super-resolution focusing devices, which have an identical radius of 100λ but different focal lengths: λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm, respectively. Additionally, an achromatic metalens is integrated by using Boolean AND operation. To assess the feasibility of our proposed approach, numerical simulations are conducted via COMSOL Multiphysics employing FEM analysis. The simulation results demonstrate that the generated spots are located at 25.105λ, 25.106λ, and 25.105λ, respectively. The corresponding full width at half maximum (FWHM) values are 0.441λ1 (0.179 μm), 0.469λ2 (0.249 μm) and 0.427λ3 (0.270 μm), which are smaller than the Abbe diffraction limit, and the far-field super-resolution achromatic focusing is realized. The sidelobe ratios are at low levels, i.e. 12.5%, 12.6%, and 14.2%. The binary amplitude-type far-field super-resolution achromatic devices have the advantages of easy machining, achromatism and super-resolution, and are suitable for miniaturization and integration of optical systems.
-
Keywords:
- optical superoscillation /
- achromatic /
- far-field super-resolution /
- angular spectral diffraction
[1] Abbe E 1873 SPIE Milestone Series 178 413Google Scholar
[2] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar
[3] Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566Google Scholar
[4] Gu M, Zheng P L, Hu Z W, Ma S D, Xu F, Pu D L, Wang Q H 2022 Chin. Phys. B 31 74210Google Scholar
[5] Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar
[6] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar
[7] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2017 Optica 4 625Google Scholar
[8] Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N, Tsai D P 2017 Nat. Commun. 8 187Google Scholar
[9] Sales T R M, Morris G M 1997 J. Opt. Soc. Am. A 14 1637Google Scholar
[10] Xu Y S, Singh J, Sheppard C J R, Chen N G 2007 Opt. Express 15 6409Google Scholar
[11] Huang T J, Liu J Y, Yin L Z, Han F Y, Liu P K 2018 Opt. Express 26 22722Google Scholar
[12] Yang C, Shen Y, Xie Y Q, Zhou Q, Deng X H, Cao J C 2019 Phys. Lett. A 383 789Google Scholar
[13] Wang S M, Xu J, Zhong Y, Ren R, Lu Y Q, Wan H D, Wang J, Ding J P 2016 Opt. Commun. 372 245Google Scholar
[14] Davis B J, Karl W C, Swan A K, Ünlü M S, Goldberg B B 2004 Opt. Express 12 4150Google Scholar
[15] Berry M V 2016 J. Phys. A Math. Theor. 50 025003Google Scholar
[16] Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622Google Scholar
[17] Berry M V, Dennis M R 2009 J. Phys. A 42 022003Google Scholar
[18] Berry M V, Popescu S 2006 J. Phys. A 39 6965Google Scholar
[19] Qian Z H, Tian S N, Zhou W, Wang J W, Guo H M 2022 Opt. Express 30 11203Google Scholar
[20] Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar
[21] Kim H, Rogers E T F 2020 Sci. Rep. 10 1328Google Scholar
[22] Wu Z X, Zhu J X, Zou Y Y, Deng H, Xiong L, Liu Q C, Shang L P 2022 Opt. Mater. 123 111924Google Scholar
[23] Tang D L, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar
[24] Chen L, Liu J, Zhang X H, Tang D L 2020 Opt. Lett. 45 5772Google Scholar
[25] Yuan G, Rogers E T F, Zheludev N I 2017 Light-Sci. Appl. 6 e17036Google Scholar
[26] Tang D L, Chen L, Liu J J 2019 Opt. Express 27 12308Google Scholar
[27] Wu Z X, Deng H, Li X X, Liu Q C, Shang L P 2020 Appl. Opt. 59 7841Google Scholar
[28] Goodman J 1996 Introduction to Fourier Optics (2nd Ed.) (McGrw-Hill Compnaies, Inc
[29] Huang K, Ye H, Teng J, Yeo S P, Lukyanchuk B, Qiu C 2014 Laser Photonics Rev. 8 152Google Scholar
[30] Malitson I H 1965 J. Opt. Soc. Am 55 1205Google Scholar
[31] Rakić A D, Djurišić A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar
[32] Liang Y Y, Liu H Z, Wang F Q, Meng H Y, Guo J P, Li J F, Wei Z C 2018 Nanomaterials 8 288Google Scholar
[33] Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069Google Scholar
[34] Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar
[35] Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008Google Scholar
-
图 2 径向偏振光光场强度、相位分布 (a)—(c) 405, 532和632.8 nm的光场强度分布; (d)—(f)沿半径方向上的光场强度和相位分布
Fig. 2. Intensity and phase distribution of radially polarized beam: (a)–(c) Optical field intensity distributions of 405, 532 and 632.8 nm, respectively; (d)–(f) the corresponding optical field intensity and phase distributions along the radial direction through the center of the optical field.
图 5 (a) λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm入射条件下传播平面上的光场强度分布; (b)—(d) 沿传播方向上峰值强度、半高全宽和旁瓣比率分布
Fig. 5. (a) Distribution of optical field intensity on the propagation plane at λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm incidence; (b)–(d) distribution of peak intensity, FWHM and sidelobe ratio along the propagation direction.
图 6 (a) λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm入射条件下传播平面上和焦平面上的归一化光场强度分布仿真结果; (b) 通过焦斑中心沿半径方向上的光场强度分布
Fig. 6. (a) Normalized distributions of optical field intensity on the propagation plane and the focal plane at λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm incidence; (b) intensity profiles along the radial direction across the center of the focal spot.
图 7 (a)—(c) λ1 = 405 nm, λ2 = 532 nm和λ3 = 632.8 nm入射条件下焦平面上的光场强度分布仿真结果; (d)—(f)沿半径方向上不同分量的光场强度分布和相位分布
Fig. 7. (a)–(c) Distributions of optical field intensity on the propagation plane and the focal plane at λ1 = 405 nm, λ2 = 532 nm and λ3 = 632.8 nm incidence; (d)–(f) intensity profiles and phase profiles along the radial direction.
表 1 二值振幅型远场超分辨消色差聚焦器件理论计算和数值仿真对比结果
Table 1. Comparison of theoretical calculation and numerical simulation results of binary amplitude-type achromatic SOLs.
关键参数 λ1 = 405 nm λ2 = 532 nm λ3 = 632.8 nm 理论 仿真 理论 仿真 理论 仿真 焦距/λ 24.894 25.105 24.948 25.106 25.211 25.105 数值孔径 0.970 0.970 0.970 0.970 0.970 0.970 峰值半高全宽 0.462λ1 0.441λ1 0.468λ2 0.469λ2 0.429λ3 0.427λ3 旁瓣比率 10.3% 12.5% 11.6% 12.6% 13.4% 14.2% 阿贝衍射极限 0.515λ1 0.516λ1 0.515λ2 0.516λ2 0.516λ3 0.516λ3 -
[1] Abbe E 1873 SPIE Milestone Series 178 413Google Scholar
[2] Brabec T, Krausz F 2000 Rev. Mod. Phys. 72 545Google Scholar
[3] Gruner-Nielsen L, Wandel M, Kristensen P, Jorgensen C, Jorgensen L V, Edvold B, Palsdottir B, Jakobsen D 2005 J. Lightwave Technol. 23 3566Google Scholar
[4] Gu M, Zheng P L, Hu Z W, Ma S D, Xu F, Pu D L, Wang Q H 2022 Chin. Phys. B 31 74210Google Scholar
[5] Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar
[6] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nat. Nanotechnol. 13 220Google Scholar
[7] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraon A 2017 Optica 4 625Google Scholar
[8] Wang S M, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B B, Kuan C H, Li T, Zhu S N, Tsai D P 2017 Nat. Commun. 8 187Google Scholar
[9] Sales T R M, Morris G M 1997 J. Opt. Soc. Am. A 14 1637Google Scholar
[10] Xu Y S, Singh J, Sheppard C J R, Chen N G 2007 Opt. Express 15 6409Google Scholar
[11] Huang T J, Liu J Y, Yin L Z, Han F Y, Liu P K 2018 Opt. Express 26 22722Google Scholar
[12] Yang C, Shen Y, Xie Y Q, Zhou Q, Deng X H, Cao J C 2019 Phys. Lett. A 383 789Google Scholar
[13] Wang S M, Xu J, Zhong Y, Ren R, Lu Y Q, Wan H D, Wang J, Ding J P 2016 Opt. Commun. 372 245Google Scholar
[14] Davis B J, Karl W C, Swan A K, Ünlü M S, Goldberg B B 2004 Opt. Express 12 4150Google Scholar
[15] Berry M V 2016 J. Phys. A Math. Theor. 50 025003Google Scholar
[16] Berry C W, Wang N, Hashemi M R, Unlu M, Jarrahi M 2013 Nat. Commun. 4 1622Google Scholar
[17] Berry M V, Dennis M R 2009 J. Phys. A 42 022003Google Scholar
[18] Berry M V, Popescu S 2006 J. Phys. A 39 6965Google Scholar
[19] Qian Z H, Tian S N, Zhou W, Wang J W, Guo H M 2022 Opt. Express 30 11203Google Scholar
[20] Zhuang Z P, Chen R, Fan Z B, Pang X N, Dong J W 2019 Nanophotonics 8 1279Google Scholar
[21] Kim H, Rogers E T F 2020 Sci. Rep. 10 1328Google Scholar
[22] Wu Z X, Zhu J X, Zou Y Y, Deng H, Xiong L, Liu Q C, Shang L P 2022 Opt. Mater. 123 111924Google Scholar
[23] Tang D L, Wang C, Zhao Z, Wang Y, Pu M, Li X, Gao P, Luo X 2015 Laser Photonics Rev. 9 713Google Scholar
[24] Chen L, Liu J, Zhang X H, Tang D L 2020 Opt. Lett. 45 5772Google Scholar
[25] Yuan G, Rogers E T F, Zheludev N I 2017 Light-Sci. Appl. 6 e17036Google Scholar
[26] Tang D L, Chen L, Liu J J 2019 Opt. Express 27 12308Google Scholar
[27] Wu Z X, Deng H, Li X X, Liu Q C, Shang L P 2020 Appl. Opt. 59 7841Google Scholar
[28] Goodman J 1996 Introduction to Fourier Optics (2nd Ed.) (McGrw-Hill Compnaies, Inc
[29] Huang K, Ye H, Teng J, Yeo S P, Lukyanchuk B, Qiu C 2014 Laser Photonics Rev. 8 152Google Scholar
[30] Malitson I H 1965 J. Opt. Soc. Am 55 1205Google Scholar
[31] Rakić A D, Djurišić A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271Google Scholar
[32] Liang Y Y, Liu H Z, Wang F Q, Meng H Y, Guo J P, Li J F, Wei Z C 2018 Nanomaterials 8 288Google Scholar
[33] Arbabi A, Horie Y, Ball A J, Bagheri M, Faraon A 2015 Nat. Commun. 6 7069Google Scholar
[34] Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901Google Scholar
[35] Rogers E T F, Zheludev N I 2013 J. Opt. 15 094008Google Scholar
计量
- 文章访问数: 1721
- PDF下载量: 44
- 被引次数: 0