搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁感应透明条件下里德伯原子系统的亚稳动力学

夏刚 张亚鹏 汤婧雯 李春燕 吴春旺 张杰 周艳丽

引用本文:
Citation:

电磁感应透明条件下里德伯原子系统的亚稳动力学

夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽

Metastable dynamics of Rydberg atomic system under electromagnetically induced transparency

Xia Gang, Zhang Ya-Peng, Tang Jing-Wen, Li Chun-Yan, Wu Chun-Wang, Zhang Jie, Zhou Yan-Li
PDF
HTML
导出引用
  • 开放量子系统是新兴量子科技不可或缺的量子平台, 也是量子物理中非常重要的研究领域, 其中丰富的动力学现象引起了人们广泛的关注. 例如, 某些情况下系统在弛豫至稳态之前一般会经历漫长的动力学过程, 即亚稳动力学过程. 完整描述这种复杂而又缓慢的动力学过程往往非常困难. 针对该问题, 本文研究了如何在刘维尔的慢变本征模式子空间中对亚稳动力学过程进行低维度的近似描述, 从而简化计算难度. 然后, 针对电磁感应透明条件下的里德伯原子系统, 研究了其亚稳动力学过程的有效描述, 并讨论了该有效描述和真实动力学之间的误差. 本文的研究为建立开放多体系统动力学过程的有效简化描述提供了一种可行的思路和方法.
    Open quantum system, coupled with an external bath is a key research field of quantum physics. Steady state is the state in which any initial state converges after a long time and is usually of the most interest. However, relatively speaking, the nonequilibrium dynamical processes of quantum many-body systems have been rarely studied. This is mainly due to the fact that quantum many-body systems generally have interactions, and the Hilbert space required for a complete description of their dynamical processes will grow exponentially with the number of particles increasing, and the computational difficulty will increase dramatically as well. Hence, it is a difficult problem to completely describe their dynamical processes completely. With the development of quantum technologies, the interest in the nonequilibrium dynamics of open quantum many-body systems is aroused. A common phenomenon is the metastable state, where the system initially relaxes into a long-lived state and then converges to the final stationary state for a longer time. In this paper, we establish a low-dimensional approximation to describe the metastability dynamics in Markovian open quantum system, based on the spectra of the Liouvillian super-operator. The separation of time scales implies a splitting in the spectrum, and this spectral division allows us to eliminate the fast decay modes by using the perturbation method, and then we establish the effective description in the low-lying eigenmodes subspace. Furthermore, we study the dynamics process of the Rydberg atomic system under electromagnetically induced transparency (EIT) conditions and find that the system can handle metastable dynamics if the atomic interactions are considered. We compare the effective dynamics in the subspace with the actual dynamics in the full space, and the results show that the effective dynamics works well on condition that the perturbation approximation holds. Our work provides a feasible idea and method for establishing an effective and simplified description of the dynamical process of open quantum many-body systems.
      通信作者: 周艳丽, ylzhou@nudt.edu.cn
    • 基金项目: 湖南省自然科学基金(批准号: 2023JJ30626, 2022RC1194, 2023JJ10052)和国家自然科学基金(批准号: 12174448, 12004430)资助的课题.
      Corresponding author: Zhou Yan-Li, ylzhou@nudt.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant Nos. 2023JJ30626, 2022RC1194, 2023JJ10052) and the National Nature Science Foundation of China (Grant Nos. 12174448, 12004430).
    [1]

    翟荟 2023 物理学报 72 230701Google Scholar

    Zhai H 2023 Acta Phys. Sin. 72 230701Google Scholar

    [2]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Phys. Rev. Lett. 116 240404Google Scholar

    [3]

    Defenu N 2021 Proc. Natl. Acad. Sci. 118 e2101785118Google Scholar

    [4]

    Macieszczak K, Rose D C, Lesanovsky I, Garrahan J P 2021 Phys. Rev. Res. 3 033047Google Scholar

    [5]

    Mori T 2021 Phys. Rev. Res. 3 043137Google Scholar

    [6]

    Li J L, Rose D C, Garrahan J P, Luitz D J 2022 Phys. Rev. B 105 L180201Google Scholar

    [7]

    Jäger S B, Schmit T, Morigi G, Holland M J, Betzholz R 2022 Phys. Rev. Lett. 129 063601Google Scholar

    [8]

    Gangat A A, Te I, Kao Y J 2017 Phys. Rev. Lett. 119 010501Google Scholar

    [9]

    Berthier L, Ediger M D 2016 Phys. Today 69 40Google Scholar

    [10]

    Macieszczak K, Zhou Y L, Hofferberth S, Garrahan J P, Li W B, Lesanovsky I 2017 Phys. Rev. A 96 043860Google Scholar

    [11]

    Brown C A, Macieszczak K, Jack R L 2024 Phys. Rev. A 109 022244Google Scholar

    [12]

    Letscher F, Thomas O, Niederprüm T, Fleischhauer M, Ott H 2017 Phys. Rev. X 7 021020Google Scholar

    [13]

    Cabot A, Carollo F, Lesanovsky I 2022 Phys. Rev. B 106 134311Google Scholar

    [14]

    Landa H, Schiró M, Misguich G 2020 Phys. Rev. Lett. 124 043601Google Scholar

    [15]

    Žnidarič M 2015 Phys. Rev. E 92 042143Google Scholar

    [16]

    Sciolla B, Poletti D, Kollath C 2015 Phys. Rev. Lett. 114 170401Google Scholar

    [17]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Phys. Rev. A 98 042118Google Scholar

    [18]

    Zhou Y L, Yu X D, Wu C W, Li X Q, Zhang J, Li W, Chen P X 2023 Phys. Rev. Res. 5 043036Google Scholar

    [19]

    Kielpinski D, Meyer V, Rowe M A, Sackett C A, Itano W M, Monroe C, Wineland D J 2001 Science 291 1013Google Scholar

    [20]

    Viola L, Fortunato E M, Pravia M A, Knill E, Laflamme R, Cory D G 2001 Science 293 2059Google Scholar

    [21]

    Lindblad G 1976 Commun. Math. Phys. 48 119Google Scholar

    [22]

    Gorini V, Kossakowski A, Sudarshan E C G 1976 J. Math. Phys. 17 821Google Scholar

    [23]

    Minganti F, Miranowicz A, Chhajlany R W, Nori F 2019 Phys. Rev. A 100 062131Google Scholar

    [24]

    Carollo F, Lasanta A, Lesanovsky I 2021 Phys. Rev. Lett. 127 060401Google Scholar

    [25]

    Huybrechts D, Minganti F, Nori F, Wouters M, Shammah N 2020 Phys. Rev. B 101 214302Google Scholar

    [26]

    Albert V V, Jiang L 2014 Phys. Rev. A 89 022118Google Scholar

    [27]

    Zhang J, Xia G, Wu C W, Chen T, Zhang Q, Xie Y, Su W B, Wu W, Qiu C W, Chen P X, Li W B, Jing H, Zhou Y L 2024 arxiv: 2401.15951 [quant-ph]

    [28]

    Zanardi P, Venuti L C 2015 Phys. Rev. A 91 052324Google Scholar

    [29]

    Marcuzzi M, Schick J, Olmos B, Lesanovsky I 2014 J. Phys. A 47 482001Google Scholar

    [30]

    Gutiérrez R, Garrahan J P, Lesanovsky I 2016 New J. Phys. 18 093054Google Scholar

    [31]

    Li W, Viscor D, Hofferberth S, Lesanovsky I 2014 Phys. Rev. Lett. 112 243601Google Scholar

    [32]

    Zhou Y L 2021 Opt. Express 29 15300Google Scholar

  • 图 1  双原子系统的亚稳态动力学过程示意图 (a)四能级原子的能级结构与光场激发构型图; (b)系统的动力学过程, 其中红色曲线对应图(c)中的参数条件, 蓝色曲线对应图(d)中的参数条件; (c), (d)刘维尔超算子的能谱, 红色点表示稳态所对应的本征值($ \lambda_0=0 $), 绿色点表示衰减模式所对应的本征值($ \lambda_{i > 0} $), 其中图(c)中无相互作用$ V/\gamma=0 $, 图(d)中相互作用$ V/\gamma=0.6 $, 其他参数均为$ \varOmega_{\mathrm{c}}/\gamma=2.0 $, $ \varOmega_{\mathrm{p}}/\gamma=0.1 $, $ \delta/\gamma=0 $

    Fig. 1.  Metastable dynamics of two-atom system: (a) Energy levels and transitions of four-levels atom; (b) the dynamic process of the system, where the red and blue curves correspond to the parameters in panels (c) and (d) respectively; (c), (d) the spectrum of the Liouvillian superoperator, the red points indicate the eigenvalue $ \lambda_0= 0 $ corresponding to the steady state, and the green points are the eigenvalues ($ \lambda_{i > 0} $) corresponding to the decaying mode, note that there is no interaction in panel (c) and $ V/\gamma=0 $, while the interaction in panel (d) with parameter $ V/\gamma=0.6 $, other parameters are $ \varOmega_{\mathrm{c}}/\gamma=2.0 $, $ \varOmega_{\mathrm{p}}/\gamma=0.1 $, $ \delta/\gamma=0 $.

    图 2  刘维尔能谱随相互作用 $ V/\gamma $ 的变化. 参数 $ \varOmega_{\mathrm{c}}/\gamma=2.0 $, $ \varOmega_{\mathrm{p}}/\gamma=0.1 $, $ \delta/\gamma=0 $

    Fig. 2.  Spectrum of the Liouvillian as a function of $ V/\gamma $. Parameters are $ \varOmega_{\mathrm{c}}/\gamma=2.0 $, $ \varOmega_{\mathrm{p}}/\gamma=0.1 $, $ \delta/\gamma=0 $.

    图 3  50种随机初始态情况下保真度$ F(t) = {{\rm{Tr}}}[\sqrt{\rho(t)\rho_ {\rm{eff}}(t)}] $随时间的变化. 横轴上的红色空心圆、红色实心圆和黑色方块所标注的时间分别对应于文中所定义的时间尺度$ \tau'', $$ \tau', \tau $ (a) $ \varOmega_{\mathrm{p}}/\gamma=0.2 $; (b) $ \varOmega_{\mathrm{p}}/\gamma=0.5 $. 其他参数为$ \varOmega_{\mathrm{c}}/\gamma=2.0 $, $ \delta/\gamma=0 $, $ V/\gamma=0.6 $

    Fig. 3.  Fidelity $ F(t) = {{\rm{Tr}}}[\sqrt{\rho(t)\rho_ {\rm{eff}}(t)}] $ in 50 random initial states. Red open circles, red filled circles and black squares on the x axis correspond the time scales $ \tau'', \tau', \tau $ respectively: (a) $ \varOmega_{\mathrm{p}}/\gamma=0.2 $; (b) $ \varOmega_{\mathrm{p}}/\gamma= 0.5 $. Other parameters are $ \varOmega_{\mathrm{c}}/\gamma=2.0 $, $ \delta/\gamma=0 $, $ V/\gamma=0.6 $.

    图 4  有效动力学的稳态与真实稳态的差异, $ ||\delta \rho_{{\mathrm{ss}}}|| = $$ ||\rho_{{\mathrm{ss}}}-\rho_{{\mathrm{ss}}}^ {\rm{eff}}|| $随$ \varOmega_{\mathrm{p}}/\gamma $和δ/γ的变化, 其他参数同图3

    Fig. 4.  Difference between the steady state of the effective dynamics and the real steady state, $ ||\delta \rho_{{\mathrm{ss}}}|| = ||\rho_{{\mathrm{ss}}}-\rho_{{\mathrm{ss}}}^ {\rm{eff}}|| $ as a function of parameters $ \varOmega_{\mathrm{p}} /\gamma$ and δ/γ, other parameters are the same as Fig.3.

    图 5  不同初始态在慢变子空间的动力学演化 (a) $ \varOmega_{\mathrm{p}}/\gamma= $$ 0.1$; (b) $ \varOmega_{\mathrm{p}}/\gamma=0.6$. 其他参数同图3. 图中黑色的小点表示子空间中的任意纯态, 绿色圆点表示系统最终的稳态, 红色、蓝色、橙色和绿色曲线表示从几种不同的初始态开始的动力学过程

    Fig. 5.  Dynamical evolution of different initial states in the metastabel subspace: (a) $ \varOmega_{\mathrm{p}}/\gamma=0.1 $; (b) $ \varOmega_{\mathrm{p}}/\gamma=0.6$. Otherparamet-ers are the same as Fig.3. Black dots indicate arbitrary pure states in the subspace, the green dot indicates the steady state of the system, and the red, blue, orange and green curves indicate the dynamical processes starting from several different initial states.

  • [1]

    翟荟 2023 物理学报 72 230701Google Scholar

    Zhai H 2023 Acta Phys. Sin. 72 230701Google Scholar

    [2]

    Macieszczak K, Guţă M, Lesanovsky I, Garrahan J P 2016 Phys. Rev. Lett. 116 240404Google Scholar

    [3]

    Defenu N 2021 Proc. Natl. Acad. Sci. 118 e2101785118Google Scholar

    [4]

    Macieszczak K, Rose D C, Lesanovsky I, Garrahan J P 2021 Phys. Rev. Res. 3 033047Google Scholar

    [5]

    Mori T 2021 Phys. Rev. Res. 3 043137Google Scholar

    [6]

    Li J L, Rose D C, Garrahan J P, Luitz D J 2022 Phys. Rev. B 105 L180201Google Scholar

    [7]

    Jäger S B, Schmit T, Morigi G, Holland M J, Betzholz R 2022 Phys. Rev. Lett. 129 063601Google Scholar

    [8]

    Gangat A A, Te I, Kao Y J 2017 Phys. Rev. Lett. 119 010501Google Scholar

    [9]

    Berthier L, Ediger M D 2016 Phys. Today 69 40Google Scholar

    [10]

    Macieszczak K, Zhou Y L, Hofferberth S, Garrahan J P, Li W B, Lesanovsky I 2017 Phys. Rev. A 96 043860Google Scholar

    [11]

    Brown C A, Macieszczak K, Jack R L 2024 Phys. Rev. A 109 022244Google Scholar

    [12]

    Letscher F, Thomas O, Niederprüm T, Fleischhauer M, Ott H 2017 Phys. Rev. X 7 021020Google Scholar

    [13]

    Cabot A, Carollo F, Lesanovsky I 2022 Phys. Rev. B 106 134311Google Scholar

    [14]

    Landa H, Schiró M, Misguich G 2020 Phys. Rev. Lett. 124 043601Google Scholar

    [15]

    Žnidarič M 2015 Phys. Rev. E 92 042143Google Scholar

    [16]

    Sciolla B, Poletti D, Kollath C 2015 Phys. Rev. Lett. 114 170401Google Scholar

    [17]

    Minganti F, Biella A, Bartolo N, Ciuti C 2018 Phys. Rev. A 98 042118Google Scholar

    [18]

    Zhou Y L, Yu X D, Wu C W, Li X Q, Zhang J, Li W, Chen P X 2023 Phys. Rev. Res. 5 043036Google Scholar

    [19]

    Kielpinski D, Meyer V, Rowe M A, Sackett C A, Itano W M, Monroe C, Wineland D J 2001 Science 291 1013Google Scholar

    [20]

    Viola L, Fortunato E M, Pravia M A, Knill E, Laflamme R, Cory D G 2001 Science 293 2059Google Scholar

    [21]

    Lindblad G 1976 Commun. Math. Phys. 48 119Google Scholar

    [22]

    Gorini V, Kossakowski A, Sudarshan E C G 1976 J. Math. Phys. 17 821Google Scholar

    [23]

    Minganti F, Miranowicz A, Chhajlany R W, Nori F 2019 Phys. Rev. A 100 062131Google Scholar

    [24]

    Carollo F, Lasanta A, Lesanovsky I 2021 Phys. Rev. Lett. 127 060401Google Scholar

    [25]

    Huybrechts D, Minganti F, Nori F, Wouters M, Shammah N 2020 Phys. Rev. B 101 214302Google Scholar

    [26]

    Albert V V, Jiang L 2014 Phys. Rev. A 89 022118Google Scholar

    [27]

    Zhang J, Xia G, Wu C W, Chen T, Zhang Q, Xie Y, Su W B, Wu W, Qiu C W, Chen P X, Li W B, Jing H, Zhou Y L 2024 arxiv: 2401.15951 [quant-ph]

    [28]

    Zanardi P, Venuti L C 2015 Phys. Rev. A 91 052324Google Scholar

    [29]

    Marcuzzi M, Schick J, Olmos B, Lesanovsky I 2014 J. Phys. A 47 482001Google Scholar

    [30]

    Gutiérrez R, Garrahan J P, Lesanovsky I 2016 New J. Phys. 18 093054Google Scholar

    [31]

    Li W, Viscor D, Hofferberth S, Lesanovsky I 2014 Phys. Rev. Lett. 112 243601Google Scholar

    [32]

    Zhou Y L 2021 Opt. Express 29 15300Google Scholar

  • [1] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [2] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [3] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [4] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [5] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [6] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [7] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真. 物理学报, 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [8] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [9] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [10] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [11] 张岩, 刘一谋, 韩明, 王刚成, 崔淬砺, 郑泰玉. 二维电磁感应光子带隙的动态生成与调控. 物理学报, 2014, 63(22): 224203. doi: 10.7498/aps.63.224203
    [12] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [13] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [14] 杨保东, 高静, 王杰, 张天才, 王军民. 铯6S1/2 -6P3/2 -8S1/2阶梯型系统中超精细能级的多重电磁感应透明. 物理学报, 2011, 60(11): 114207. doi: 10.7498/aps.60.114207
    [15] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [16] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [19] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
    [20] 李永放, 孙建锋. 梯型四能级系统中超窄电磁感应透明与无反转增益. 物理学报, 2003, 52(3): 547-555. doi: 10.7498/aps.52.547
计量
  • 文章访问数:  1476
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-03-07
  • 上网日期:  2024-03-30
  • 刊出日期:  2024-05-20

/

返回文章
返回