搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

简便合成相可调的CsPbBr3-Cs4PbBr6复合纳米晶及相转变过程的原位研究

陈雪莲 申岩冰 袁芝聪 李恺瑞 潘喜强

引用本文:
Citation:

简便合成相可调的CsPbBr3-Cs4PbBr6复合纳米晶及相转变过程的原位研究

陈雪莲, 申岩冰, 袁芝聪, 李恺瑞, 潘喜强

Facile synthesis of phase-adjustable CsPbBr3-Cs4PbBr6 composite nanocrystals and in-situ study of phase transformation process

Chen Xue-Lian, Shen Yan-Bing, Yuan Zhi-Cong, Li Kai-Rui, Pan Xi-Qiang
PDF
HTML
导出引用
  • 通过改变四正辛基溴化铵(TOABr)用量和Cs/Pb摩尔比, 在室温下采用一步单溶剂法成功制备出单斜相CsPbBr3和六方相Cs4PbBr6两种相结构可调的钙钛矿纳米晶. 研究发现, 当TOABr浓度较低时(Cs/Pb/Br = 1∶1∶4), 体系中主要生成了单斜相的CsPbBr3纳米立方块, 该立方块主要经历了快速成核、尺寸分布聚焦生长和Ostwald熟化生长3个阶段, 最终尺寸为(11.8 ± 1.6) nm. 随着TOABr用量的增加, Br与Pb2+结合形成[PbBr3]和少量的[PbBr4]2–络合物, 两种络合物相互竞争. 在成核期和生长早期体系中[PbBr3]占主导, 因而形成大量的CsPbBr3纳米晶, 随着反应的进行, 体系中过量的Br会与纳米晶中的Pb相互作用, 导致CsPbBr3纳米晶部分转变为具有六边形形状的Cs4PbBr6纳米晶, 同时[PbBr4]2–络合物的存在使得Cs4PbBr6纳米晶继续长大, 最终形成以CsPbBr3为发光中心的CsPbBr3-Cs4PbBr6复合纳米晶. 只有当TOABr用量为0.32 mmol时所得的CsPbBr3-Cs4PbBr6 复合纳米晶其光学性能和稳定性表现最佳. 在此浓度下改变Cs/Pb摩尔比只影响CsPbBr3纳米晶和Cs4PbBr6纳米晶在体系中的相对含量, 当Cs4PbBr6纳米晶含量较高时其荧光强度和稳定性相对较差. 该工作对低温可控合成高效稳定的铯铅卤钙钛矿纳米晶提供一定思路.
    All-inorganic cesium lead halide perovskites have shown great potential applications in optoelectronic field due to their fascinating optical properties. Although perovskite materials have achieved great success in various fields, their inherent ionic properties and high dynamic surface properties have led to their poor stability, hindering their applications. The preparation of CsPbBr3-Cs4PbBr6 nanocrystals has proven to be an effective strategy to enhance their photoluminescence properties and stability. Herein, we report an easy synthesis of CsPbBr3-Cs4PbBr6 nanocrystals with a diphase structure at room temperature by using Cs-OA, Pb-OA and TOABr as precursors in toluene. It is found that the phase transformation and the relative composition between CsPbBr3 and Cs4PbBr6 are dependent on the concentration of TOABr and the ratio of Cs/Pb. The in-situ PL experiments reveal that the formation of ~12 nm CsPbBr3 nanocubes experiences the fast nucleation, the focusing growth of size-distribution in early growth stage and Ostwald ripening growth in the later stage at a TOABr concentration of 0.16 mmol. With the increase of concentration of TOABr or molar ratio of Cs/Pb > 1 (Cs/Pb < 1), [PbBr4]2– complex and [PbBr3] complex can coexist and compete with each other in toluene, and the CsPbBr3 nucleations dominate in the early stage, then CsPbBr3-Cs4PbBr6 nanocomposites are gradually formed on CsPbBr3 nucleations as photoluminescence centers due to the continuous generation of [PbBr4]2– complex between TOABr and Pb2+. The relative composition of Cs4PbBr6 in CsPbBr3-Cs4PbBr6 nanocomposites can be improved from 4% to 85% with the concentration of TOABr increasing or Cs/Pb < 1. The optimized CsPbBr3-Cs4PbBr6 composite nanocrystals possess high PLQY and stability. Our work provides an understanding of the mechanism of phase transformation in cesium lead halide perovskite materials.
      通信作者: 陈雪莲, chenxl@xsyu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104191)和西安石油大学研究生创新与实践能力培养计划(批准号: YCS23113077)资助的课题.
      Corresponding author: Chen Xue-Lian, chenxl@xsyu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104191) and the Postgraduate Innovation and Practical Ability Training Program of Xi’an Shiyou University, China (Grant No. YCS23113077).
    [1]

    Peng C, Zhang R, Chen H, Liu Y, Zhang S L, Fang T, Guo R, Zhang J, Shan Q, Jin Y, Wang L, Hou L, Zeng H B 2023 Adv. Mater. 35 2206969Google Scholar

    [2]

    Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar

    [3]

    Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar

    [4]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [5]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [6]

    Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar

    [7]

    Ng C K, Yin W, Li H, Jasieniak J J 2020 Nanoscale 12 4859Google Scholar

    [8]

    Chen M, Zou Y T, Wu L Z, Pan Q, Yang D, Hu H C, Tan Y S, Zhong Q X, Xu Y, Liu H Y, Sun B Q, Zhang Q 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [9]

    Long Z, Ren H, Sun J H, Ouyang J, Na N 2017 Chem. Commun. 53 9914Google Scholar

    [10]

    Liu W, Zheng J, Cao S, Wang L, Gao F, Chou K C, Hou X, Yang W 2018 Inorg. Chem. 57 1598Google Scholar

    [11]

    Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [12]

    Tong Y, Yao E P, Manzi A, Bladt E, Wang K, Döblinger M, Bals S, Müller-Buschbaum P, Urban A S, Polavarapu L, Feldmann J 2018 Adv. Mater. 30 1801117Google Scholar

    [13]

    De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [14]

    Wang Y, Yuan J Y, Zhang X L, Ling X F, Larson B W, Zhao Q, Yang Y G, Shi Y, Luther J M, Ma W L 2020 Adv. Mater. 32 2000449Google Scholar

    [15]

    Shankar H, Ghosh S, Kar P 2022 J. Mater. Chem. C 10 11532Google Scholar

    [16]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2023 物理学报 72 097801Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2023 Acta Phys. Sin. 72 097801Google Scholar

    [17]

    Scharf E, Krieg F, Elimelech O, Oded M, Levi A, Dirin D N, Kovalenko M V, Banin U 2022 Nano Lett. 22 4340Google Scholar

    [18]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [19]

    Grisorio R, Fasulo F, Muñoz-García A B, Pavone M, Conelli D, Fanizza E, Striccoli M, Allegretta I, Terzano R, Margiotta N, Vivo P, Suranna G P 2022 Nano Lett. 22 4437Google Scholar

    [20]

    Song S, Lv Y C, Cao B Q, Wang W Z 2023 Adv. Funct. Mater. 33 2300493Google Scholar

    [21]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2022 物理学报 71 096802Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2022 Acta Phys. Sin. 71 096802Google Scholar

    [22]

    Su Y C, Jing Q, Xu Y, Xing X, Lu Z D 2019 ACS Omega 4 22209Google Scholar

    [23]

    Li X W, Cai W S, Guan H L, Zhao S Y, Cao S L, Chen C, Liu M, Zang Z G 2021 Chem. Eng. J. 419 129551Google Scholar

    [24]

    Zhang J B, Jiang P F, Wang Y, Liu X F, Ma J M, Tu G L 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [25]

    Cho H B, Min J W, Kim H J, Viswanath N S M, Samanta T, Han J H, Park Y M, Jang S W, Im W B 2023 ACS Appl. Electron. Mater. 5 66Google Scholar

    [26]

    Kim H, Park J H, Kim K, Lee D, Song M H, Park J 2022 Adv. Sci. 9 2104660Google Scholar

    [27]

    Bao Z, Chiu H D, Wang W G, Su Q, Yamada T, Chang Y C, Chen S M, Kanemitsu Y, Chung R J, Liu R S 2020 J. Phys. Chem. Lett. 11 10196Google Scholar

    [28]

    Xu L M, Li J H, Fang T, Zhao Y L, Yuan S C, Dong Y H, Song J Z 2019 Nanoscale Adv. 1 980Google Scholar

    [29]

    Zhao X, Shen S L, Gan L, Zhang J L, Zhou W L, Yu L P, Lian S X 2023 J. Lumin. 261 119909Google Scholar

    [30]

    Wang C F, Zhang C Y, Wang F C, Chen J, Ren E L, Kong J F, Li L, Xu J Y, Zhang Y 2022 Opt. Mater. 128 112444Google Scholar

    [31]

    Wang X J, Liu Y Q, Liu N Q, Sun R J, Zheng W, Liu H, Zhang Y H 2021 J. Mater. Chem. A 9 4658Google Scholar

    [32]

    Balakrishnan S K, Kamat P V 2018 Chem. Mater. 30 74Google Scholar

    [33]

    Qiao Z, Wang X, Zhai Y F, Yu R Z, Fang Z, Chen G 2023 Nano Lett. 23 10788Google Scholar

    [34]

    Yoon S J, Stamplecoskie K G, Kamat P V 2016 J. Phys. Chem. C 7 1368Google Scholar

    [35]

    Hui J, Jiang Y N, Gökçinar Ö Ö, Tang J B, Yu Q Y, Zhang M, Yu K 2020 Chem. Mater. 32 4574Google Scholar

    [36]

    Montanarella F, Akkerman Q A, Bonatz D, van der Sluijs M M, van der Bok J C, Prins P T, Aebli M, Mews A, Vanmaekelbergh D, Kovalenko M V 2023 Nano Lett. 23 667Google Scholar

    [37]

    Xu Z S, Yang Y J, Wang P, Liu X F, Qiu J R 2024 Ceram. Int. 50 8952Google Scholar

    [38]

    Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar

  • 图 1  不同TOABr用量下所得铯铅溴纳米晶溶液的PL光谱(a)和UV-vis吸收光谱(b)

    Fig. 1.  (a) PL spectra (a) and UV-vis absorption spectra (b) of cesium lead bromide nanocrystal suspension at different dosages of TOABr.

    图 2  (a)—(d)不同TOABr用量下所得铯铅溴纳米晶的TEM表征和晶粒尺寸统计结果, 其中(a) Br 0.16 mmol; (b) Br 0.24 mmol; (c) Br 0.32 mmol; (d) Br 0.4 mmol; (e)为图(c)中选择的任意样品区域的HRTEM图(黄色线圈为出现小黑点区域), (f)为小黑点晶粒的尺寸分布图

    Fig. 2.  TEM images and the corresponding histograms of cesium lead bromide nanocrystals synthesized at different dosages of TOABr: (a) Br 0.16 mmol, (b) Br 0.24 mmol, (c) Br 0.32 mmol, and (d) Br 0.4 mmol. (e) HRTEM image of sample in panel (c) (the yellow circles represent the small black dots); (f) size distribution of the small black dots from panel (e).

    图 3  不同TOABr用量下所得铯铅溴钙钛矿纳米晶的XRD图谱

    Fig. 3.  X-ray diffraction patterns of cesium lead bromide nanocrystals synthesized at different dosages of TOABr.

    图 4  不同浓度的TOABr前驱体与Pb-OA前驱体混合所得溶液的UV-vis图

    Fig. 4.  UV-vis absorption spectra of the solution obtained by mixing Pb-OA precursor and different concentration of TOABr precursor.

    图 5  不同Cs/Pb摩尔比下所得铯铅溴纳米晶溶液的(a) PL光谱和(b) UV-vis吸收光谱

    Fig. 5.  (a) PL spectra and (b) UV-vis absorption spectra of cesium lead bromide nanocrystal suspension at different molar ratio of Cs/Pb.

    图 6  不同Cs/Pb摩尔比下所得铯铅溴纳米晶的XRD图

    Fig. 6.  X-ray diffraction patterns of cesium lead bromide nanocrystals synthesized at different molar ratio of Cs/Pb.

    图 7  不同Cs/Pb摩尔比下所得铯铅溴纳米晶的TEM表征结果和尺寸分布图 (a) 2∶1; (b) 2∶2; (c) 2∶3

    Fig. 7.  TEM images and the corresponding histograms of cesium lead bromide nanocrystals synthesized at different molar ratio of Cs/Pb: (a) 2∶1; (b) 2∶2; (c) 2∶3.

    图 8  不同溴用量下所得铯铅溴纳米晶在80 s内的原位PL光谱图, 插图为纳米晶在80 s后的离线PL光谱图

    Fig. 8.  In-situ PL spectra of cesium lead bromide nanocrystals synthesized at different dosages of bromide ions within 80 s. The inset shows the ex-situ PL spectra of nanocrystals at reaction time after 80 s.

    图 9  不同溴用量下所得铯铅溴纳米晶的PL峰峰位(a)、半峰宽(b)及峰强(c)随反应时间的变化规律图

    Fig. 9.  Changes in PL peak position (a), FWHM (b), peak intensity (c) of cesium lead bromide nanocrystals synthesized at different dosages of Br as a function of reaction time.

    图 10  不同Cs/Pb摩尔比下所得铯铅溴纳米晶的PL峰峰位(a)、半峰宽(b)及峰强(c)随反应时间的变化规律图

    Fig. 10.  Changes in PL peak position (a), FWHM (b), peak intensity (c) of cesium lead bromide nanocrystals synthesized at different molar ratio of Cs/Pb as a function of reaction time.

    图 11  CsPbBr3纳米晶和CsPbBr3-Cs4PbBr6复合纳米晶的生长机理图

    Fig. 11.  Schematic presentation of growth mechanisms of CsPbBr3 NCs and CsPbBr3-Cs4PbBr6 composite NCs.

    表 1  不同TOABr用量下所得纳米晶中单斜相CsPbBr3和六方相Cs4PbBr6的相占比

    Table 1.  Proportion of CsPbBr3 and Cs4PbBr6 in nanocrystals synthesized at different dosages of TOABr.

    溴用量/mmol
    0.160.240.320.4
    CsPbBr3相占比/%96895817
    Cs4PbBr6相占比/%4114283
    下载: 导出CSV

    表 2  不同Cs/Pb摩尔比下所得纳米晶中CsPbBr3相和Cs4PbBr6相的占比情况

    Table 2.  Proportion of CsPbBr3 and Cs4PbBr6 in nanocrystals synthesized at different molar ratio of Cs/Pb.

    Cs/Pb摩尔比
    2∶12∶22∶3
    CsPbBr3相占比/%155828
    Cs4PbBr6相占比/%854272
    下载: 导出CSV
  • [1]

    Peng C, Zhang R, Chen H, Liu Y, Zhang S L, Fang T, Guo R, Zhang J, Shan Q, Jin Y, Wang L, Hou L, Zeng H B 2023 Adv. Mater. 35 2206969Google Scholar

    [2]

    Kim Y H, Kim S, Kakekhani A, et al. 2021 Nat. Photonics 15 148Google Scholar

    [3]

    Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar

    [4]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [5]

    Li X M, Wu Y, Zhang S L, Cai B, Gu Y, Song J Z, Zeng H B 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [6]

    Ng C K, Wang C, Jasieniak J J 2019 Langmuir 35 11609Google Scholar

    [7]

    Ng C K, Yin W, Li H, Jasieniak J J 2020 Nanoscale 12 4859Google Scholar

    [8]

    Chen M, Zou Y T, Wu L Z, Pan Q, Yang D, Hu H C, Tan Y S, Zhong Q X, Xu Y, Liu H Y, Sun B Q, Zhang Q 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [9]

    Long Z, Ren H, Sun J H, Ouyang J, Na N 2017 Chem. Commun. 53 9914Google Scholar

    [10]

    Liu W, Zheng J, Cao S, Wang L, Gao F, Chou K C, Hou X, Yang W 2018 Inorg. Chem. 57 1598Google Scholar

    [11]

    Tong Y, Bladt E, Aygüler M F, Manzi A, Milowska K Z, Hintermayr V A, Docampo P, Bals S, Urban A S, Polavarapu L, Feldmann J 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [12]

    Tong Y, Yao E P, Manzi A, Bladt E, Wang K, Döblinger M, Bals S, Müller-Buschbaum P, Urban A S, Polavarapu L, Feldmann J 2018 Adv. Mater. 30 1801117Google Scholar

    [13]

    De Roo J, Ibáñez M, Geiregat P, Nedelcu G, Walravens W, Maes J, Martins J C, Van Driessche I, Kovalenko M V, Hens Z 2016 ACS Nano 10 2071Google Scholar

    [14]

    Wang Y, Yuan J Y, Zhang X L, Ling X F, Larson B W, Zhao Q, Yang Y G, Shi Y, Luther J M, Ma W L 2020 Adv. Mater. 32 2000449Google Scholar

    [15]

    Shankar H, Ghosh S, Kar P 2022 J. Mater. Chem. C 10 11532Google Scholar

    [16]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2023 物理学报 72 097801Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2023 Acta Phys. Sin. 72 097801Google Scholar

    [17]

    Scharf E, Krieg F, Elimelech O, Oded M, Levi A, Dirin D N, Kovalenko M V, Banin U 2022 Nano Lett. 22 4340Google Scholar

    [18]

    Zhang C, Lian L Y, Zhang J B, Su X M, Liu S S, Gao Y L, Lian Z Y, Sun D Z, Luo W, Zheng H M, Zhang D L 2022 J. Phys. Chem. C 126 4172Google Scholar

    [19]

    Grisorio R, Fasulo F, Muñoz-García A B, Pavone M, Conelli D, Fanizza E, Striccoli M, Allegretta I, Terzano R, Margiotta N, Vivo P, Suranna G P 2022 Nano Lett. 22 4437Google Scholar

    [20]

    Song S, Lv Y C, Cao B Q, Wang W Z 2023 Adv. Funct. Mater. 33 2300493Google Scholar

    [21]

    陈雪莲, 焦琥珀, 申岩冰, 潘喜强 2022 物理学报 71 096802Google Scholar

    Chen X L, Jiao H P, Shen Y B, Pan X Q 2022 Acta Phys. Sin. 71 096802Google Scholar

    [22]

    Su Y C, Jing Q, Xu Y, Xing X, Lu Z D 2019 ACS Omega 4 22209Google Scholar

    [23]

    Li X W, Cai W S, Guan H L, Zhao S Y, Cao S L, Chen C, Liu M, Zang Z G 2021 Chem. Eng. J. 419 129551Google Scholar

    [24]

    Zhang J B, Jiang P F, Wang Y, Liu X F, Ma J M, Tu G L 2020 ACS Appl. Mater. Interfaces 12 3080Google Scholar

    [25]

    Cho H B, Min J W, Kim H J, Viswanath N S M, Samanta T, Han J H, Park Y M, Jang S W, Im W B 2023 ACS Appl. Electron. Mater. 5 66Google Scholar

    [26]

    Kim H, Park J H, Kim K, Lee D, Song M H, Park J 2022 Adv. Sci. 9 2104660Google Scholar

    [27]

    Bao Z, Chiu H D, Wang W G, Su Q, Yamada T, Chang Y C, Chen S M, Kanemitsu Y, Chung R J, Liu R S 2020 J. Phys. Chem. Lett. 11 10196Google Scholar

    [28]

    Xu L M, Li J H, Fang T, Zhao Y L, Yuan S C, Dong Y H, Song J Z 2019 Nanoscale Adv. 1 980Google Scholar

    [29]

    Zhao X, Shen S L, Gan L, Zhang J L, Zhou W L, Yu L P, Lian S X 2023 J. Lumin. 261 119909Google Scholar

    [30]

    Wang C F, Zhang C Y, Wang F C, Chen J, Ren E L, Kong J F, Li L, Xu J Y, Zhang Y 2022 Opt. Mater. 128 112444Google Scholar

    [31]

    Wang X J, Liu Y Q, Liu N Q, Sun R J, Zheng W, Liu H, Zhang Y H 2021 J. Mater. Chem. A 9 4658Google Scholar

    [32]

    Balakrishnan S K, Kamat P V 2018 Chem. Mater. 30 74Google Scholar

    [33]

    Qiao Z, Wang X, Zhai Y F, Yu R Z, Fang Z, Chen G 2023 Nano Lett. 23 10788Google Scholar

    [34]

    Yoon S J, Stamplecoskie K G, Kamat P V 2016 J. Phys. Chem. C 7 1368Google Scholar

    [35]

    Hui J, Jiang Y N, Gökçinar Ö Ö, Tang J B, Yu Q Y, Zhang M, Yu K 2020 Chem. Mater. 32 4574Google Scholar

    [36]

    Montanarella F, Akkerman Q A, Bonatz D, van der Sluijs M M, van der Bok J C, Prins P T, Aebli M, Mews A, Vanmaekelbergh D, Kovalenko M V 2023 Nano Lett. 23 667Google Scholar

    [37]

    Xu Z S, Yang Y J, Wang P, Liu X F, Qiu J R 2024 Ceram. Int. 50 8952Google Scholar

    [38]

    Kovalenko M V, Protesescu L, Bodnarchuk M I 2017 Science 358 745Google Scholar

  • [1] 陈雪莲, 焦琥珀, 申岩冰, 潘喜强. 高效稳定的CsPbBr3-Cs4PbBr6混合相钙钛矿纳米晶的制备及形成过程. 物理学报, 2023, 72(9): 097801. doi: 10.7498/aps.72.20230066
    [2] 方成, 汪洪, 施思齐. 基于多面体畸变的高性能钙钛矿及衍生物的合成研究进展. 物理学报, 2023, 72(18): 186101. doi: 10.7498/aps.72.20230947
    [3] 陈雪莲, 巨博, 焦琥珀, 李燕, 钟玉洁. 形貌可控的CsPbBr3钙钛矿纳米晶的制备及其形成动力学的原位光致发光研究. 物理学报, 2022, 71(9): 096802. doi: 10.7498/aps.71.20212228
    [4] 植超虎, 刘波, 任丁, 杨斌, 林黎蔚. 调幅W(Mo)/Cu纳米多层膜He+离子辐照响应行为. 物理学报, 2013, 62(15): 156801. doi: 10.7498/aps.62.156801
    [5] 王玲, 王河锦, 李婷. 锐钛矿金红石的高温原位X射线衍射研究. 物理学报, 2013, 62(14): 146402. doi: 10.7498/aps.62.146402
    [6] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究. 物理学报, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [7] 孙光爱, 王虹, 汪小琳, 陈波, 常丽丽, 刘耀光, 盛六四, Woo W, Kang MY. 原位中子衍射研究两相NiTi合金的微力学相互作用和相变机理. 物理学报, 2012, 61(22): 226102. doi: 10.7498/aps.61.226102
    [8] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究. 物理学报, 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [9] 闫冠云, 田强, 黄朝强, 顾小敏, 孙光爱, 陈波, 黄明, 聂福德, 柳义, 李秀宏. 热损伤奥克托金(HMX) 缺陷的X射线小角散射研究. 物理学报, 2012, 61(13): 136101. doi: 10.7498/aps.61.136101
    [10] 丁航晨, 施思齐, 姜平, 唐为华. BiFeO3 结构性质与相转变的第一性原理研究. 物理学报, 2010, 59(12): 8789-8793. doi: 10.7498/aps.59.8789
    [11] 周耐根, 周 浪. 采用纳米晶柱阵列衬底抑制失配位错形成的分子动力学模拟研究. 物理学报, 2008, 57(5): 3064-3070. doi: 10.7498/aps.57.3064
    [12] 白锁柱, 姚 斌, 郑大方, 邢国忠, 苏文辉. 新型BCN化合物的结构表征和相转变. 物理学报, 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [13] 劳技军, 胡晓萍, 虞晓江, 李戈扬, 顾明元. AlN在AlN/VN纳米多层膜中的相转变及其对薄膜力学性能的影响. 物理学报, 2003, 52(9): 2259-2263. doi: 10.7498/aps.52.2259
    [14] 赵晓鹏, 高秀敏, 高向阳, 郜丹军. 固液双相电流变系统流动过程的相转变特性. 物理学报, 2003, 52(2): 405-410. doi: 10.7498/aps.52.405
    [15] 李洁, 高孝恢, 蒋淑芬, 汪浩, 王小刚, 高德. Bi系超导相形成的化学动力学研究. 物理学报, 1995, 44(6): 949-957. doi: 10.7498/aps.44.949
    [16] 张留琬, 蔡培新, 陈廷国. BPSCCO(2223)中类Ca2PbO4杂相析出的动力学研究. 物理学报, 1995, 44(7): 1148-1157. doi: 10.7498/aps.44.1148
    [17] 胡金元. (Ba1-x,Pbx )TiO3固溶体形成动力学的研究. 物理学报, 1991, 40(4): 588-595. doi: 10.7498/aps.40.588
    [18] 胡金元. 第二相Ba6Ti17O40形成动力学的研究. 物理学报, 1991, 40(9): 1485-1491. doi: 10.7498/aps.40.1485
    [19] 许应凡, 王文魁. Pd-Ni-P大块金属玻璃的形成及其转变动力学. 物理学报, 1990, 39(4): 555-560. doi: 10.7498/aps.39.555
    [20] 赵宗源, 陈立泉. AgI(α-Fe2O3)复合离子导体相转变温度相互影响的研究. 物理学报, 1986, 35(9): 1158-1163. doi: 10.7498/aps.35.1158
计量
  • 文章访问数:  2409
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-04
  • 修回日期:  2024-03-05
  • 上网日期:  2024-03-08
  • 刊出日期:  2024-05-05

/

返回文章
返回