搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各向异性界面动力学对深胞晶生长形态稳定性的影响

孙思杰 蒋晗

引用本文:
Citation:

各向异性界面动力学对深胞晶生长形态稳定性的影响

孙思杰, 蒋晗

Effects of anisotropic interfacial kinetics on morphology stability of deep cellular crystal growth

Sun Si-Jie, Jiang Han
PDF
HTML
导出引用
  • 本文采用匹配渐近法和多重变量法, 基于深胞晶生长的定常解, 在考虑了各向异性界面动力学后, 导出胞晶界面扰动振幅变化率满足的色散关系式及界面形态满足的量子化条件, 研究在各向异性界面动力学的影响下定向凝固过程中深胞晶生长界面形态的稳定性. 结果表明, 考虑了各向异性界面动力学的深胞晶体生长的定向凝固系统包含两种整体不稳定机制: 整体振荡不稳定机制和低频不稳定机制. 通过稳定性分析发现, 低阶近似下各向异性界面动力学对整体振荡不稳定机制有着显著影响, 随着各向异性界面动力学参数的增大, 中性模式产生强振荡的枝晶结构的整体振荡不稳定区域减小. 同时, 界面动力学各向异性参数对系统整体波动不稳定性的影响随着界面动力学参数的增大而增大.
    In this paper, based on the steady solution of deep cellular crystal growth, the matching asymptotic method and multiple variable method are used to obtain the dispersion relation and the quantization condition of the interfacial morphology in directional solidification process when the interfacial dynamics is anisotropic. The stability of interfacial morphology of deep cell growth during directional solidification under the influence of anisotropic interfacial dynamics is studied.The mathematical model of the oriented solidification system is established, and the overall ground state solution of the constant cellular growth is taken as the ground state, and the unsteady state solution of the deep cellular growth is expressed as the superposition of the ground state solution and the perturbation dynamics solution when the stability analysis is carried out. The thermodynamic conditions in the mathematical model of the problem constitute a regenerative problem together with the boundary conditions. The asymptotic solution of the cellular crystal growth when $\varepsilon \to 0$ can be found by dividing the cellular crystal growth region into an outer region far from the root and a region near the root, with an asymptotic solution found in the external region and the root region, respectively, and then matching them to obtain a consistent and effective asymptotic solution in the whole region. The asymptotic solution of the model in the external region is derived to obtain a first-order approximation of the eigenvalues. The inner solutions are matched with the outer solutions based on the vicinity of the singularity to obtain the global solutions and quantization conditions of the system, and finally the stability analysis is conducted. The results show that the directional solidification system of deep cellular crystal growth considering anisotropic interfacial kinetics contains two global instability mechanisms: global oscillation instability and low-frequency instability. The stability analysis shows that the anisotropic interfacial kinetics has a significant effect on the global oscillatory instability mechanism in the low order approximation. With the increase of the anisotropic interfacial kinetics parameter ${\beta _4}$, the global oscillatory instability region $\left( {{\text{Os}}{\text{.U}}} \right)$of the dendrite structure with strong oscillation in neutral mode decreases. At the same time, the influence of interfacial dynamic anisotropy parameters on the overall oscillation instability of the system increases with interfacial dynamic parameters increasing.
      通信作者: 蒋晗, jiangh1986@163.com
      Corresponding author: Jiang Han, jiangh1986@163.com
    [1]

    McFadden G B, Coriell S R 1984 Physica D 12 253Google Scholar

    [2]

    Hurle D 1993 Handbook of Crystal Growth (Vol. 1) (New York: Elsevier Science Publishers) pp899–1073

    [3]

    Mullins W W, Sekerka R F 1963 Appl. Phys. 34 323Google Scholar

    [4]

    Mullins W W, Sekerka R F 1964 Appl. Phys. 35 444

    [5]

    Langer J S 1980 Rev. Mod. Phys. 52 1Google Scholar

    [6]

    Pelcé P, Pumir A 1985 J. Cryst. Growth 73 337Google Scholar

    [7]

    Dombre T, Haankim V 1987 Phys. Rev. A 36 2811Google Scholar

    [8]

    Pelcé P 1988 Dynamics of Curved Fronts (New York: Academic Press) pp327–340

    [9]

    Karma A, Pelcé P 1990 Phys. Rev. A 41 6741

    [10]

    Benamar M, Bouissou P, Pelcé P 1988 J. Cryst. Growth 92 97Google Scholar

    [11]

    Xu J J 1991 Phys. Rev. A 43 930Google Scholar

    [12]

    Xu J J 1991 Eur. J. Appl. Math. 2 105Google Scholar

    [13]

    Xu J J 1996 Phys. Rev. E 53 5323

    [14]

    Trivedi R, Seetharaman V, Eshelman M A 1991 Metall. Mater. Trans. A 22 585Google Scholar

    [15]

    Coriell S R, Sekerka R G 1976 J. Cryst. Growth 34 157Google Scholar

    [16]

    Young G W, Davis S H, Brattkus K 1987 J. Cryst. Growth 83 560Google Scholar

    [17]

    袁训锋 2014 铸造技术 35 1773

    Yuan X F 2014 Foundry Technol. 35 1773

    [18]

    Zheng G J, Chen M W, Yang C M, Liu N 2022 Chin. J. Phys. 78 155Google Scholar

    [19]

    Zheng G J, Chen M W, Yang C M, Wang Z D 2022 Chin. J. Phys. 77 10Google Scholar

    [20]

    Chen K X, Demange G, Cui X, Wang Z D, Pang X L, Patte R, Mao H H, Chen X H, Shi R J, Zapolsky H 2024 Acta Mater. 270 119874Google Scholar

    [21]

    Pelcé P 1988 Dynamics of Curved Fronts (New York: Academic Press) pp155–174

    [22]

    陈明文, 陈奕臣, 张文龙, 刘秀敏, 王自东 2014 物理学报 63 038101Google Scholar

    Chen M W, Chen Y C, Zhang W L, Liu X M, Wang Z D 2014 Acta Phys. Sin. 63 038101Google Scholar

    [23]

    Xu J J, Chen Y Q 2011 Phys. Rev. E 83 041601

    [24]

    钮迪, 蒋晗 2022 物理学报 71 168101Google Scholar

    Niu D, Jiang H 2022 Acta Phys. Sin. 71 168101Google Scholar

  • 图 1  随着拉速$V$增加, 定向凝固过程中出现的胞晶列和枝晶列结构的实验照片 (a)浅胞[2]; (b)深胞列[2]; (c)枝晶列[2]

    Fig. 1.  Experimental photos of the cell and dendrite structures that appear during directional solidification as the pulling speed V increases: (a) Shallow cellular[2]; (b) deep cellular arrays[2]; (c) dendritic arrays[2].

    图 2  (a) 理论图[18]; (b) 实验图[20]

    Fig. 2.  (a) Theoretical graph[18]; (b) experimental graph[20].

    图 3  胞晶列界面图的尖端(A)和根部底端(B)

    Fig. 3.  A sketch of cellular-line interface: The cellular tip (A) and the bottom of the root (B).

    图 4  特征值随参数$\varepsilon $的变化曲线图 (a) 实部${\sigma _{\text{R}}}$; (b) 虚部$\omega $

    Fig. 4.  Plot of eigenvalues with $\varepsilon $: (a) The real part ${\sigma _{\text{R}}}$; (b) the imaginary part $\omega $.

    图 5  GTW-S中性模式曲线. 参数分别为$V = 16{\text{ μm/s}}, {\text{ }}{C_\infty } = $$ 1.2{\text{%}}, ~{G_T} = $ $78 \times {10^{ - 4}}{\text{ K/μm}},\; {\text{ }}{\varepsilon _{\text{c}}} = 0.5338 \times {10^{ - 2}},\; {\text{ }}M $= $0.09552,\; {\text{ }}k = 0.29, \;{\text{ }}{m_*} = 1, \;{\text{ }}{G_{\text{c}}} = 0.14485 \times {10^{ - 4}}, \;{\text{ }}{\lambda _G} $= $ 0.4989, {\text{ }}E = 0.25, {\text{ }}{\beta _4} = 0.6$ (a) 首级近似[24]; (b) 一级近似

    Fig. 5.  The neutral curves of the GTW-S-modes for the case $V = 16{\text{ μm/s, }}\;{C_\infty } = 1.2{\text{%}},\; {\text{ }}{G_T}= 78 \;\times\; {10^{ - 4}}{\text{ K/μm}}, $ ${\varepsilon _{\text{c}}} = $$ 0.5338 \times {10^{ - 2}},\; {\text{ }}M = 0.09552,\; {\text{ }}k = 0.29, $ ${\text{ }}{m_*} = 1, {\text{ }}{G_{\text{c}}} = $$ 0.14485 \times {10^{ - 4}}, $ ${\lambda _G} = 0.4989, {\text{ }}E = 0.25, {\text{ }}{\beta _4} = 0.6$: (a) Leading-order approximation[24]; (b) first-order approximation.

    图 6  一级近似下的GTW-S中性模式曲线$\left( {n = 0} \right)$. 参数分别为${C_\infty } = 1.2{\text{%}}, {\text{ }}{G_T} =78 \times {10^{ - 4}}{\text{ K/μm}}, {\text{ }}V = 16{\text{ μm/s}},$ $ {\varepsilon _{\text{c}}} = 0.5338 \times {10^{ - 2}}, {\text{ }}M = 0.09552, {\text{ }}{G_{\text{c}}} = 0.14485 \times {10^{ - 4}} $, $k=0.29$, ${\lambda _G} = 0.4989$, $E = 0.25, {\text{ }}{m_*} = 5 $

    Fig. 6.  The neutral curves of the GTW-S-modes $(n = 0)$in the first-order approximation for the case ${C_\infty } = 1.2{\text{%}}$, ${G_T} = 78 \times {10^{ - 4}}{\text{ K/μm}}$, $V = 16\;{\text{μm/s}}$, ${\varepsilon _{\text{c}}} = 0.005338$, $M= $$ 0.09552$, ${G_{\text{c}}} = 0.14485 \times {10^{ - 4}}$, $k = 0.29,\; {\lambda _G} = 0.4989$, $E= 0.25, \; {m_*} = 5 $

    图 7  一级近似下的GTW-S中性模式曲线$\left( {n = 0} \right)$. 参数分别为${C_\infty }= 1.2{\text{%}}, {G_T} = 78 \times {10^{ - 4}}{\text{ K/μm, }}V = 16{\text{ μm/s }}, {\varepsilon _{\text{c}}} =$ $ 0.5338 \times {10^{ - 2}}, {\text{ }}M = 0.09552, {\text{ }}{G_{\text{c}}} $ = $0.14485 \times {10^{ - 4}},\; {\text{ }}k = $$ 0.29{, }\;{\lambda _G} = 0.4989,\; {\text{ }}E = 0.25$

    Fig. 7.  The neutral curves of the GTW-S-modes $(n = 0)$in the first-order approximation. The case ${C_\infty } = 1.2{\text{%}}$, $ {G_T} = $$ 78 \times {10^{-4}}{\text{ K/μm}}, \; V = 16\;{\text{μm/s}}, \;{\varepsilon _{\text{c}}} = 0.005338,\; M = 0.09552$, ${G_{\text{c}}} = 0.14485 \times {10^{ - 4}}, \;k = 0.29, \;\lambda_G = 0.4989,$ E = 0.25

  • [1]

    McFadden G B, Coriell S R 1984 Physica D 12 253Google Scholar

    [2]

    Hurle D 1993 Handbook of Crystal Growth (Vol. 1) (New York: Elsevier Science Publishers) pp899–1073

    [3]

    Mullins W W, Sekerka R F 1963 Appl. Phys. 34 323Google Scholar

    [4]

    Mullins W W, Sekerka R F 1964 Appl. Phys. 35 444

    [5]

    Langer J S 1980 Rev. Mod. Phys. 52 1Google Scholar

    [6]

    Pelcé P, Pumir A 1985 J. Cryst. Growth 73 337Google Scholar

    [7]

    Dombre T, Haankim V 1987 Phys. Rev. A 36 2811Google Scholar

    [8]

    Pelcé P 1988 Dynamics of Curved Fronts (New York: Academic Press) pp327–340

    [9]

    Karma A, Pelcé P 1990 Phys. Rev. A 41 6741

    [10]

    Benamar M, Bouissou P, Pelcé P 1988 J. Cryst. Growth 92 97Google Scholar

    [11]

    Xu J J 1991 Phys. Rev. A 43 930Google Scholar

    [12]

    Xu J J 1991 Eur. J. Appl. Math. 2 105Google Scholar

    [13]

    Xu J J 1996 Phys. Rev. E 53 5323

    [14]

    Trivedi R, Seetharaman V, Eshelman M A 1991 Metall. Mater. Trans. A 22 585Google Scholar

    [15]

    Coriell S R, Sekerka R G 1976 J. Cryst. Growth 34 157Google Scholar

    [16]

    Young G W, Davis S H, Brattkus K 1987 J. Cryst. Growth 83 560Google Scholar

    [17]

    袁训锋 2014 铸造技术 35 1773

    Yuan X F 2014 Foundry Technol. 35 1773

    [18]

    Zheng G J, Chen M W, Yang C M, Liu N 2022 Chin. J. Phys. 78 155Google Scholar

    [19]

    Zheng G J, Chen M W, Yang C M, Wang Z D 2022 Chin. J. Phys. 77 10Google Scholar

    [20]

    Chen K X, Demange G, Cui X, Wang Z D, Pang X L, Patte R, Mao H H, Chen X H, Shi R J, Zapolsky H 2024 Acta Mater. 270 119874Google Scholar

    [21]

    Pelcé P 1988 Dynamics of Curved Fronts (New York: Academic Press) pp155–174

    [22]

    陈明文, 陈奕臣, 张文龙, 刘秀敏, 王自东 2014 物理学报 63 038101Google Scholar

    Chen M W, Chen Y C, Zhang W L, Liu X M, Wang Z D 2014 Acta Phys. Sin. 63 038101Google Scholar

    [23]

    Xu J J, Chen Y Q 2011 Phys. Rev. E 83 041601

    [24]

    钮迪, 蒋晗 2022 物理学报 71 168101Google Scholar

    Niu D, Jiang H 2022 Acta Phys. Sin. 71 168101Google Scholar

  • [1] 钮迪, 蒋晗. 界面动力学参数对深胞晶界面形态整体波动不稳定性的影响. 物理学报, 2022, 71(16): 168101. doi: 10.7498/aps.71.20220322
    [2] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [3] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉. 爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性. 物理学报, 2017, 66(20): 204701. doi: 10.7498/aps.66.204701
    [4] 蒋晗, 陈明文, 王涛, 王自东. 各向异性界面动力学与各向异性表面张力的相互作用对定向凝固过程中深胞晶生长的影响. 物理学报, 2017, 66(10): 106801. doi: 10.7498/aps.66.106801
    [5] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [6] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [7] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案. 物理学报, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [8] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [9] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析. 物理学报, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [10] 刘谋斌, 常建忠. 光滑粒子动力学方法中粒子分布与数值稳定性分析. 物理学报, 2010, 59(6): 3654-3662. doi: 10.7498/aps.59.3654
    [11] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [12] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究. 物理学报, 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [13] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解. 物理学报, 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [14] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解. 物理学报, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [15] 孟 宗, 刘 彬. 相对转动非线性动力学方程的稳定性及在一类非线性弹性系数下的解. 物理学报, 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
    [16] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [17] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究. 物理学报, 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [18] 王 坤. 相对转动动力学方程的稳定性及在一类黏弹性系数下的解. 物理学报, 2005, 54(9): 3987-3991. doi: 10.7498/aps.54.3987
    [19] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解. 物理学报, 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
    [20] 薛卫东, 朱正和. CUO基态分子热力学稳定性研究. 物理学报, 2003, 52(12): 2965-2969. doi: 10.7498/aps.52.2965
计量
  • 文章访问数:  1278
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-04-09
  • 上网日期:  2024-04-11
  • 刊出日期:  2024-06-05

/

返回文章
返回