搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米限域Couette流边界气泡减阻机理

张鹏 张彦如 张福建 刘珍 张忠强

引用本文:
Citation:

纳米限域Couette流边界气泡减阻机理

张鹏, 张彦如, 张福建, 刘珍, 张忠强

Mechanism of boundary bubble drag reduction of Couette flow in nano-confined domain

Zhang Peng, Zhang Yan-Ru, Zhang Fu-Jian, Liu Zhen, Zhang Zhong-Qiang
PDF
HTML
导出引用
  • 气泡减阻技术对于提高水下航行器推进效率, 降低航行过程中的综合能耗具有重要意义. 本文采用分子动力学方法研究了气-液两相Couette流在平行壁板纳米通道内的流动特性和气泡边界减阻特性, 分析了表面润湿性、壁面粗糙度和气体浓度对边界滑移速度和减阻效果的影响规律. 研究结果表明: 气泡减阻效果随边界滑移速度的增大而增强; 在气-液两相流动区域, 随着剪切速度的增大, 边界吸附气泡的横向变形和边界滑移速度增大, 边界气泡减阻效果增强. 固-气相互作用强度和气体浓度增大均导致气体原子在近壁面的富集现象增强, 提高了壁面上气泡的铺展特性, 从而增大了固-液界面滑移速度. 壁面粗糙度会改变气泡的铺展特性, 影响边界滑移速度, 进而改变流固界面减阻效果; 随着肋高的增大, 气体原子在肋条间凹槽中聚集, 肋条上表面气体原子吸附量减少, 导致固-液界面边界滑移速度减小, 并最终降低了减阻效果. 研究结果将对大型舰船和水下航行器边界减阻技术提供重要理论指导.
    Bubble drag reduction technology is of great significance in improving the propulsion efficiency of underwater vehicle and reducing the comprehensive energy consumption during navigation. Bubble drag reduction is a highly effective method of reducing the frictional resistance encountered by large ships and underwater vehicles during navigation. It exhibits excellent stability in drag reduction, and has advantages such as environmental friendliness, adaptability to various flow environments, and suitability for all underwater components of ships. Therefore, it is greatly significant to conduct in-depth research on bubble drag reduction and its underlying mechanism. In this work, the flow characteristics and the boundary bubble drag reduction mechanism of gas-liquid Couette flow in parallel wall nanochannels are studied by molecular dynamics method, and the influences of surface wettability, wall roughness, and gas concentration on boundary slip velocity and bubble drag reduction effect are analyzed. The results indicate that the bubble drag reduction effect is enhanced with the increase of boundary slip velocity. In the gas-liquid two-phase flow region, with the increase of shear velocity, the lateral deformation of boundary adsorbed bubble and boundary slip velocity increase, thus enhancing the bubble drag reduction effect. The increase of solid-gas interaction strength and gas concentration can lead to the enrichment of gas atoms near the wall, improve the bubble spreading characteristics on the wall, and thus increase the slip velocity of the solid-liquid interface. The wall roughness can change the spreading characteristics of bubble, affect the boundary slip velocity, and then change the drag reduction effect of the fluid-solid interface. As the rib height increases, gas atoms accumulate in the grooves between ribs and the adsorption quantity of gas atoms on the upper surface of the rib decreases, which leads to the decrease of the boundary slip velocity of the solid-liquid interface and ultimately reduces the drag reduction effect. The research results will provide important theoretical guidance for implementing the boundary drag reduction technology in large ships and underwater vehicles.
      通信作者: 刘珍, liuzhen@just.edu.cn ; 张忠强, zhangzq@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12272151, 52005222, 92248301)资助的课题.
      Corresponding author: Liu Zhen, liuzhen@just.edu.cn ; Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12272151, 52005222, 92248301).
    [1]

    Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968Google Scholar

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar

    [3]

    Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50Google Scholar

    [4]

    李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar

    [5]

    康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087Google Scholar

    [6]

    史同雨 2020 硕士学位论文(大连: 大连海事大学)

    Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University

    [7]

    Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833Google Scholar

    [8]

    赵超, 吕明利, 贾文广 2022 船舶工程 44 69Google Scholar

    Zhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69Google Scholar

    [9]

    詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1Google Scholar

    Zhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1Google Scholar

    [10]

    张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863Google Scholar

    [11]

    Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239Google Scholar

    [12]

    Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769Google Scholar

    [13]

    Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701Google Scholar

    [14]

    Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084Google Scholar

    [15]

    Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415Google Scholar

    [16]

    Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar

    [17]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar

    [18]

    Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593Google Scholar

    [19]

    Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108Google Scholar

    [20]

    Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126Google Scholar

    [21]

    Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601Google Scholar

    [22]

    石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195Google Scholar

    Shi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195Google Scholar

    [23]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [25]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [26]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [27]

    刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar

    [28]

    Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar

    [29]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar

    [30]

    邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701Google Scholar

    Xing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701Google Scholar

    [31]

    Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar

    [32]

    吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179Google Scholar

    Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar

    [33]

    García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar

    [34]

    Tretyakov N, Müller M 2013 Soft Matter 9 3613Google Scholar

    [35]

    He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144Google Scholar

    [36]

    Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797Google Scholar

    [37]

    He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089Google Scholar

  • 图 1  (a)两相Couette流流动系统模型示意图; (b)纳米通道和粗糙结构模型图

    Fig. 1.  (a) Schematic diagram of a two-phase Couette flow system model; (b) diagram of the nanochannel and rough structure model

    图 2  不同剪切速度下的液体原子(a)速度轮廓图和(b)密度分布图; (c)稳态气泡形貌图

    Fig. 2.  Influence of shear velocity on (a) velocity profile and (b) density profile of liquid atoms; (c) steady-state bubble morphology.

    图 3  (a)边界滑移速度随剪切速度的变化; (b)剪切应力随剪切速度的变化

    Fig. 3.  (a) Plot of boundary slip velocity as a function of shear velocity; (b) plot of shear stress as a function of shear velocity.

    图 4  (a)不同固-气相互作用强度下的液体原子速度轮廓图; (b)边界滑移速度随固-气相互作用强度的变化

    Fig. 4.  (a) Velocity profiles of liquid atoms at different solid-gas interaction strength; (b) plot of boundary slip velocity as a function of solid-gas interaction strength.

    图 5  不同固-气相互作用强度下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Fig. 5.  (a) Steady-state bubble morphology and (b) density profiles of liquid atoms under different solid-gas interaction strength.

    图 6  剪切速度为40 m/s时, (a)不同粗糙面积分数下的液体原子速度轮廓图; (b)边界滑移速度随粗糙面积分数的变化

    Fig. 6.  When the shear velocity is 40 m/s, (a) velocity profile of liquid atoms at different rough area fraction; (b) plot of boundary slip velocity as a function of rough area fraction.

    图 7  剪切速度为40 m/s时, 不同粗糙面积分数下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Fig. 7.  When the shear velocity is 40 m/s, (a) steady-state bubble morphology and (b) density profiles of liquid atoms under different rough area fraction.

    图 8  剪切速度为40 m/s时, (a)不同肋高下的液体原子速度轮廓图; (b)边界滑移速度随肋高的变化

    Fig. 8.  When the shear velocity is 40 m/s, (a) velocity profiles of liquid atoms at different rib heights; (b) plot of boundary slip velocity as a function of rib height.

    图 9  剪切速度为40 m/s时, 不同肋高下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Fig. 9.  When the shear velocity is 40 m/s, (a) steady-state bubble morphology and (b) density profiles of liquid atoms under different rib heights.

    图 10  剪切速度为40 m/s时, (a)不同气体浓度下的液体原子速度轮廓图; (b)边界滑移速度随气体浓度的变化

    Fig. 10.  When the shear velocity is 40 m/s, (a) velocity profiles of liquid atoms at different gas concentrations; (b) plot of boundary slip velocity as a function of gas concentration.

    图 11  剪切速度为40 m/s时, 不同气体浓度下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Fig. 11.  When the shear velocity is 40 m/s, (a) steady-state bubble morphology and (b) density profiles of liquid atoms under different gas concentration.

    表 1  三相相互作用势能参数

    Table 1.  Potential energy parameter of three-phase interaction.

    两相类型ε/(kcal·mol–1)σ
    固-液0.417128253.4
    固-气0.59589754.2
    气-液0.2383594.488
    下载: 导出CSV

    表 2  不同肋间距对应的粗糙面积分数

    Table 2.  Rough area fraction corresponding to different rib spacing.

    肋间距b/nm
    1.2 1.4 1.6 1.8 2.0 2.2
    粗糙面积
    分数 f
    0.5 0.4545 0.4167 0.3846 0.3571 0.3333
    下载: 导出CSV
  • [1]

    Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968Google Scholar

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar

    [3]

    Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50Google Scholar

    [4]

    李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar

    [5]

    康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087Google Scholar

    [6]

    史同雨 2020 硕士学位论文(大连: 大连海事大学)

    Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University

    [7]

    Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833Google Scholar

    [8]

    赵超, 吕明利, 贾文广 2022 船舶工程 44 69Google Scholar

    Zhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69Google Scholar

    [9]

    詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1Google Scholar

    Zhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1Google Scholar

    [10]

    张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863Google Scholar

    [11]

    Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239Google Scholar

    [12]

    Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769Google Scholar

    [13]

    Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701Google Scholar

    [14]

    Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084Google Scholar

    [15]

    Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415Google Scholar

    [16]

    Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar

    [17]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar

    [18]

    Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593Google Scholar

    [19]

    Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108Google Scholar

    [20]

    Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126Google Scholar

    [21]

    Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601Google Scholar

    [22]

    石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195Google Scholar

    Shi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195Google Scholar

    [23]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [25]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [26]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [27]

    刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar

    [28]

    Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar

    [29]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar

    [30]

    邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701Google Scholar

    Xing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701Google Scholar

    [31]

    Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar

    [32]

    吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179Google Scholar

    Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar

    [33]

    García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar

    [34]

    Tretyakov N, Müller M 2013 Soft Matter 9 3613Google Scholar

    [35]

    He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144Google Scholar

    [36]

    Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797Google Scholar

    [37]

    He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [8] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [9] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [10] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [11] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [12] 魏琪, 鄂文汲. 薄膜去湿不稳定性的热力学分析. 物理学报, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [13] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [14] 张亮, 付伟基, 张立凤, 吴海燕, 黄泓. Couette流能量的演变. 物理学报, 2010, 59(3): 1437-1448. doi: 10.7498/aps.59.1437
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [17] 罗 晋, 祝文军, 林理彬, 贺红亮, 经福谦. 单晶铜在动态加载下空洞增长的分子动力学研究. 物理学报, 2005, 54(6): 2791-2798. doi: 10.7498/aps.54.2791
    [18] 王海龙, 王秀喜, 梁海弋. 应变效应对金属Cu表面熔化影响的分子动力学模拟. 物理学报, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  2049
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-06
  • 修回日期:  2024-06-05
  • 上网日期:  2024-06-19
  • 刊出日期:  2024-08-05

/

返回文章
返回