搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响

刘海洋 范晓跃 范豪杰 李阳阳 唐天鸿 王刚

引用本文:
Citation:

等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响

刘海洋, 范晓跃, 范豪杰, 李阳阳, 唐天鸿, 王刚

Influence of defects induced by plasma-bombarded monolayer WS2 on optical properties of bound excitons

Liu Hai-Yang, Fan Xiao-Yue, Fan Hao-Jie, Li Yang-Yang, Tang Tian-Hong, Wang Gang
PDF
HTML
导出引用
  • 单层过渡金属硫化物具有原子级厚度、直接带隙、强自旋轨道耦合等优异性能, 使其在自旋电子学、光电子学等领域具有重要的研究价值和广泛的应用前景. 通常材料中包含多种结构缺陷, 这可能是在样品制备和生长过程中形成的, 也可以经过后期处理产生, 这些缺陷会显著改变其物理化学性质. 因此, 控制和理解缺陷是调控材料性质的重要途径. 本文利用氩等离子体对机械剥离的单层WS2进行轰击处理, 通过控制轰击时间引入不同密度的缺陷. 光致发光和拉曼测试结果表明, 在未改变晶格结构的前提下, 引入了两种缺陷态的束缚激子, 两种激子的动力学过程与中性激子相比明显变慢. 对比真空和大气环境下的光致发光光谱(photoluminescence spectroscopy, PL), 两种激子的强度变化呈现相反的行为. 本文的研究结果可为二维材料缺陷的引入和调控以及特征光谱的研究提供依据.
    Monolayer transition metal dichalcogenides (TMDCs) exhibit exceptional properties including atomic-scale thickness, direct bandgap, and strong spin-orbit coupling, which make them have great potential applications in spintronics, optoelectronics, and other fields. Usually, materials contain various structural defects, which are either formed during preparation and growth or induced by subsequent treatments. These defects can significantly change their physicochemical properties. Consequently, controlling and comprehending defects is an important approach to adjusting the properties of these materials.Herein, we use Ar+ plasma to bombard monolayer WS2, which is exfoliated mechanically, thereby introducing defects whose density is controlled by changing the bombardment duration. The photoluminescence (PL) and Raman spectroscopic measurements at different temperatures and power values are utilized to investigate the optical properties of the defects. Furthermore, time-resolved photoluminescence is employed to unveil the dynamic behaviors of free and trapped excitons.The bombardment can introduce different types of defects into typical two-dimensional (2D) TMDCs such as MoS2 and WS2. Single sulfur vacancies are frequently generated, while other defects like double sulfur vacancies or metal atom vacancies can also occur. Exciton effects dominate the optical properties of monolayer TMDCs due to reduced screening and large effective mass. At low temperatures, bound exciton emissions arise from trapped states. Our measurements reveal two types of defect-bound excitons from the PL spectra at around 1.85 eV (XB1) and 1.55 eV (XB2). Meanwhile, the Raman peaks of the samples before and after treatment exhibit no obvious changes, indicating that the lattice structure remaines unchanged. After the Ar+ bombardment, the intensity of the free neutral exciton significantly decreases to 1/6 of untreated WS2, owing to the free exciton population and the increased non-radiative centers. The dynamic processes of these two bound excitons are considerably slower than the neutral exciton’s, showing the typical dynamic behavior of defect-bound excitons. Furthermore, comparison between the PL under vacuum condition and the PL under atmospheric condition shows that the intensities of the two bound excitons exhibit opposing behaviors. In an atmospheric environment, neutral excitons and bound exciton XB1 possess higher intensities. In the vacuum, the strength of neutral exciton and XB1 decrease quickly, while the intensity of deep-level bound exciton XB2 increases.In summary, we observe two bound exciton states arising from specific vacancy states in monolayer WS2 after Ar+ bombardment. Their energy values are 200 meV and 500 meV lower than those of the neutral exciton, with a splitting energy value being about 300 meV. The detailed evolution of the relative spectral weight with temperature and excitation power are presented. This work provides insights into the generation, control, and characteristic spectra of defects in 2D materials.
      通信作者: 王刚, gw@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074033)和北京理工大学科技创新计划培育专项(批准号: 2022CX01007)资助的课题.
      Corresponding author: Wang Gang, gw@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074033) and the Beijing Institute of Technology Science and Innovation Cultivation Program, China (Grant No. 2022CX01007).
    [1]

    Liang Q J, Zhang Q, Zhao X X, Liu M Z, Wee A T S 2021 ACS Nano 15 2165Google Scholar

    [2]

    Karaiskaj D, Thewalt M L, Ruf T, Cardona M, Pohl H J, Deviatych G G, Sennikov P G, Riemann H 2001 Phys. Rev. Lett. 86 6010Google Scholar

    [3]

    Skolnick M S, Tu C W, Harris T D 1986 Phys. Rev. B Condens. Matter 33 8468Google Scholar

    [4]

    Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B, Nordlund K 2005 Phys. Rev. Lett. 95 225502Google Scholar

    [5]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [6]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 2757Google Scholar

    [9]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [10]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J B, Grossman J C, Wu J Q 2013 Sci. Rep. 3 2657Google Scholar

    [11]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [13]

    Pisoni R, Kormanyos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [14]

    Tanoh A O A, Alexander-Webber J, Xiao J, Delport G, Williams C A, Bretscher H, Gauriot N, Allardice J, Pandya R, Fan Y, Li Z, Vignolini S, Stranks S D, Hofmann S, Rao A 2019 Nano Lett. 19 6299Google Scholar

    [15]

    Kim H, Lien D H, Amani M, Ager J W, Javey A 2017 ACS Nano 11 5179Google Scholar

    [16]

    Chuang H J, Chamlagain B, Koehler M, Perera M M, Yan J, Mandrus D, Tomanek D, Zhou Z 2016 Nano Lett. 16 1896Google Scholar

    [17]

    Xie Y, Wu E X, Hu R X, Qian S B, Feng Z H, Chen X J, Zhang H, Xu L Y, Hu X D, Liu J, Zhang D H 2018 Nanoscale 10 12436Google Scholar

    [18]

    Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853Google Scholar

    [19]

    Meng J L, Wei Z, Tang J, Zhao Y, Wang Q, Tian J, Yang R, Zhang G, Shi D 2020 Nanotechnology 31 235710Google Scholar

    [20]

    Shaik A B D, Palla P 2021 Sci. Rep. 11 12285Google Scholar

    [21]

    Palacios-Berraquero C, Barbone M, Kara D M, Chen X, Goykhman I, Yoon D, Ott A K, Beitner J, Watanabe K, Taniguchi T, Ferrari A C, Atature M 2016 Nat. Commun. 7 12978Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Moody G, Tran K, Lu X, Autry T, Fraser J M, Mirin R P, Yang L, Li X, Silverman K L 2018 Phys. Rev. Lett. 121 057403Google Scholar

    [24]

    Refaely-Abramson S, Qiu D Y, Louie S G, Neaton J B 2018 Phys. Rev. Lett. 121 167402Google Scholar

    [25]

    Mujeeb F, Chakrabarti P, Mahamiya V, Shukla A, Dhar S 2023 Phys. Rev. B 107 115429Google Scholar

    [26]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [27]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [28]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [29]

    Vaquero D, Clericò V, Salvador-Sánchez J, Martín-Ramos A, Díaz E, Domínguez-Adame F, Meziani Y M, Diez E, Quereda J 2020 Commun. Phys. 3 194Google Scholar

    [30]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474Google Scholar

    [31]

    Zhang X X, You Y, Zhao S Y, Heinz T F 2015 Phys. Rev. Lett. 115 257403Google Scholar

    [32]

    Tang Y H, Mak K F, Shan J 2019 Nat. Commun. 10 4047Google Scholar

    [33]

    You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R, Heinz T F 2015 Nat. Phys. 11 477Google Scholar

    [34]

    Ye Z, Waldecker L, Ma E Y, Rhodes D, Antony A, Kim B, Zhang X X, Deng M, Jiang Y, Lu Z, Smirnov D, Watanabe K, Taniguchi T, Hone J, Heinz T F 2018 Nat. Commun. 9 3718Google Scholar

    [35]

    Zhang X X, Cao T, Lu Z, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G, Heinz T F 2017 Nat. Nanotechnol. 12 883Google Scholar

    [36]

    Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804Google Scholar

    [37]

    Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [38]

    Amani M, Taheri P, Addou R, Ahn G H, Kiriya D, Lien D H, Ager J W, 3rd, Wallace R M, Javey A 2016 Nano Lett. 16 2786Google Scholar

    [39]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503Google Scholar

    [40]

    Zhao G Y, Deng H, Tyree N, Guy M, Lisfi A, Peng Q, Yan J A, Wang C, Lan Y 2019 Appl. Sci. 9 678Google Scholar

    [41]

    Chee S S, Lee W J, Jo Y R, Cho M K, Chun D, Baik H, Kim B J, Yoon M H, Lee K, Ham M H 2020 Adv. Funct. Mater. 30 1908147Google Scholar

    [42]

    Li Y L, Liu W, Wang Y K, Xue Z H, Leng Y C, Hu A Q, Yang H, Tan P H, Liu Y Q, Misawa H, Sun Q, Gao Y N, Hu X Y, Gong Q H 2020 Nano Lett. 20 3747Google Scholar

    [43]

    Wu Z T, Zhao W W, Jiang J, Zheng T, You Y M, Lu J P, Ni Z H 2017 J. Phys. Chem. C 121 12294Google Scholar

    [44]

    Zheng Y J, Chen Y, Huang Y L, Gogoi P K, Li M Y, Li L J, Trevisanutto P E, Wang Q, Pennycook S J, Wee A T S, Quek S Y 2019 ACS Nano 13 6050Google Scholar

    [45]

    Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C T, Barja S, Koch R J, Ogletree D F, Aloni S, Schwartzberg A M, Neaton J B, Louie S G, Weber-Bargioni A 2019 Phys. Rev. Lett. 123 076801Google Scholar

    [46]

    Carozo V, Wang Y, Fujisawa K, Carvalho B R, McCreary A, Feng S, Lin Z, Zhou C, Perea-López N, Elías A L, Kabius B, Crespi V H, Terrones M 2017 Sci. Adv. 3 e1602813Google Scholar

    [47]

    Liu H, Wang C, Liu D M, Luo J B 2019 Nanoscale 11 7913Google Scholar

    [48]

    Liu H, Wang C, Zuo Z, Liu D M, Luo J B 2020 Adv. Mater. 32 e1906540Google Scholar

    [49]

    Greben K, Arora S, Harats M G, Bolotin K I 2020 Nano Lett. 20 2544Google Scholar

    [50]

    Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W, Wu S 2017 Phys. Rev. Lett. 119 046101Google Scholar

    [51]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lü R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [52]

    Tsai C, Li H, Park S, Park J, Han H S, Norskov J K, Zheng X, Abild-Pedersen F 2017 Nat. Commun. 8 15113Google Scholar

    [53]

    Godde T, Schmidt D, Schmutzler J, Aßmann M, Debus J, Withers F, Alexeev E M, Del Pozo-Zamudio O, Skrypka O V, Novoselov K S, Bayer M, Tartakovskii A I 2016 Phys. Rev. B 94 165301Google Scholar

    [54]

    McCreary A, Berkdemir A, Wang J, Nguyen M A, Elías A L, Perea-López N, Fujisawa K, Kabius B, Carozo V, Cullen D A, Mallouk T E, Zhu J, Terrones M 2016 J. Mater. Res. 31 931Google Scholar

    [55]

    Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H, Kim J 2016 ACS Nano 10 2399Google Scholar

    [56]

    Feng J Y, Li Y Z, Li J X, Feng Q S, Xin W, Liu W Z, Xu H Y, Liu Y C 2022 Nano Lett. 22 3699Google Scholar

    [57]

    Xin M, Lan W Z, Wang G, Zhou Q, Gu C Z, Liu B L 2021 Appl. Phys. Lett. 119 153101Google Scholar

    [58]

    Liu H L, Yang T, Tatsumi Y, Zhang Y, Dong B J, Guo H H, Zhang Z D, Kumamoto Y, Li M Y, Li L J, Saito R, Kawata S 2018 Sci. Rep. 8 11398Google Scholar

    [59]

    Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M, Yu B, Terrones H, Koratkar N 2015 ACS Nano 9 1520Google Scholar

    [60]

    Goodman A J, Willard A P, Tisdale W A 2017 Phys. Rev. B 96 121404Google Scholar

    [61]

    Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C I, Wang B, Crespi V H, López-Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755Google Scholar

    [62]

    Shang J Z, Shen X N, Cong C X, Peimyoo N, Cao B C, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [63]

    Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X, Urbaszek B 2014 Phys. Rev. B 90 097403Google Scholar

    [64]

    Jadczak J, Kutrowska-Girzycka J, Kapuscinski P, Huang Y S, Wojs A, Bryja L 2017 Nanotechnology 28 395702Google Scholar

    [65]

    Singh A, Singh A K 2021 Phys. Rev. Mater. 5 084001Google Scholar

  • 图 1  (a)经过20 s处理的单层WS2; (b)经过30 s处理的单层WS2, 插图为处理前的单层WS2; (c)室温下, 处理前后样品的PL谱; (d)室温下, 处理前后样品的Raman谱; (e)室温下, 处理前后样品的白光反射谱; (f)室温下, 处理前后样品的PL谱, 为图(c)淡蓝色区域位置的放大

    Fig. 1.  (a) Monolayer WS2 after 20 s treatment; (b) monolayer WS2 after 30 s treatment, the insets are the monolayer WS2 before treatment; (c) PL spectra of the samples before and after treatment at room temperature; (d) Raman spectra of the samples before and after treatment at room temperature; (e) reflectivities of the samples before and after treatment at room temperature; (f) PL spectra of the sample before and after treatment at room temperature, zoom-in of the spectral range marked by the blue rectangle zone in panel (c).

    图 2  (a) 77 K下未处理的单层和经过20 s, 30 s处理的单层WS2的PL谱; (b), (c)经过20 s, 30 s处理的单层WS2变温PL谱; (d)经过20 s, 30 s处理的样品XB1(XB2)发光峰强度和X0强度比值随温度的变化; (e), (f)经过20 s, 30 s处理的单层WS2的X0, XB1, XB2峰位随温度的变化

    Fig. 2.  (a) PL spectra of untreated monolayer WS2 and monolayers treated for 20 s and 30 s at 77 K; (b), (c) temperature dependent PL spectra of monolayer WS2 after 20 s and 30 s treatment; (d) temperature dependent PL intensity ratio of bound excitons XB1 and XB2 over X0 of monolayers treated for 20 s and 30 s; (e), (f) temperature dependent peak energies of X0, XB1, and XB2 of monolayers treated for 20 s and 30 s.

    图 3  200 K温度下功率依赖PL结果 (a)—(c) 20 s处理样品的结果; (d)—(f) 30 s处理样品的结果; (a), (d)样品变功率PL光谱; (b), (e)样品XB1(XB2)发光峰强度和X0强度比值随功率的变化; (c), (f)样品X0, XB1, XB2发光峰强度积分随功率的变化

    Fig. 3.  Power dependent PL results at 200 K: (a)–(c) Results of monolayer treated for 20 s; (d)–(f) results of monolayer treated for 30 s; (a), (d) power dependent PL spectra; (b), (e) power dependent PL intensity ratio of bound excitons XB1 and XB2 over X0; (c), (f) power dependent PL intensities of X0, XB1, XB2.

    图 4  (a) 150 K下30 s处理的样品变功率的PL; (b) 30 s处理的样品中XB1变功率的PL; (c) 30 s处理的样品中X0变功率的PL

    Fig. 4.  (a) Power dependent PL spectra of the sample treated for 30 s at 150 K; (b) power dependent PL spectra of XB1 in the sample treated for 30 s; (c) power dependent PL spectra of X0 in the sample treated for 30 s.

    图 5  20 s和30 s处理样品的时间分辨光谱 (a) 77 K; (b) 300 K

    Fig. 5.  Time-resolved PL of monolayer treated for 20 s and 30 s: (a) 77 K; (b) 300 K.

    图 6  室温下, 大气环境和真空下单层WS2的PL (a)未处理的单层; (b) 20 s处理的单层; (c) 30 s处理的单层

    Fig. 6.  PL of monolayer WS2 under atmosphere and vacuum conditions at room temperature: (a) Results of untreated monolayer WS2; (b) results of monolayer WS2 treated for 20 s; (c) results of monolayer WS2 treated for 30 s.

  • [1]

    Liang Q J, Zhang Q, Zhao X X, Liu M Z, Wee A T S 2021 ACS Nano 15 2165Google Scholar

    [2]

    Karaiskaj D, Thewalt M L, Ruf T, Cardona M, Pohl H J, Deviatych G G, Sennikov P G, Riemann H 2001 Phys. Rev. Lett. 86 6010Google Scholar

    [3]

    Skolnick M S, Tu C W, Harris T D 1986 Phys. Rev. B Condens. Matter 33 8468Google Scholar

    [4]

    Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B, Nordlund K 2005 Phys. Rev. Lett. 95 225502Google Scholar

    [5]

    Wang G, Chernikov A, Glazov M M, Heinz T F, Marie X, Amand T, Urbaszek B 2018 Rev. Mod. Phys. 90 021001Google Scholar

    [6]

    Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S, Heinz T F 2014 Phys. Rev. Lett. 113 076802Google Scholar

    [7]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401Google Scholar

    [8]

    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, Tan P H 2016 2D Mater. 3 2757Google Scholar

    [9]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotechnol. 13 246Google Scholar

    [10]

    Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J B, Grossman J C, Wu J Q 2013 Sci. Rep. 3 2657Google Scholar

    [11]

    Rhodes D, Chae S H, Ribeiro-Palau R, Hone J 2019 Nat. Mater. 18 541Google Scholar

    [12]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [13]

    Pisoni R, Kormanyos A, Brooks M, Lei Z, Back P, Eich M, Overweg H, Lee Y, Rickhaus P, Watanabe K, Taniguchi T, Imamoglu A, Burkard G, Ihn T, Ensslin K 2018 Phys. Rev. Lett. 121 247701Google Scholar

    [14]

    Tanoh A O A, Alexander-Webber J, Xiao J, Delport G, Williams C A, Bretscher H, Gauriot N, Allardice J, Pandya R, Fan Y, Li Z, Vignolini S, Stranks S D, Hofmann S, Rao A 2019 Nano Lett. 19 6299Google Scholar

    [15]

    Kim H, Lien D H, Amani M, Ager J W, Javey A 2017 ACS Nano 11 5179Google Scholar

    [16]

    Chuang H J, Chamlagain B, Koehler M, Perera M M, Yan J, Mandrus D, Tomanek D, Zhou Z 2016 Nano Lett. 16 1896Google Scholar

    [17]

    Xie Y, Wu E X, Hu R X, Qian S B, Feng Z H, Chen X J, Zhang H, Xu L Y, Hu X D, Liu J, Zhang D H 2018 Nanoscale 10 12436Google Scholar

    [18]

    Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853Google Scholar

    [19]

    Meng J L, Wei Z, Tang J, Zhao Y, Wang Q, Tian J, Yang R, Zhang G, Shi D 2020 Nanotechnology 31 235710Google Scholar

    [20]

    Shaik A B D, Palla P 2021 Sci. Rep. 11 12285Google Scholar

    [21]

    Palacios-Berraquero C, Barbone M, Kara D M, Chen X, Goykhman I, Yoon D, Ott A K, Beitner J, Watanabe K, Taniguchi T, Ferrari A C, Atature M 2016 Nat. Commun. 7 12978Google Scholar

    [22]

    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P, Veuillen J Y, Marcus J, Kossacki P, Potemski M 2015 Nat. Nanotechnol. 10 503Google Scholar

    [23]

    Moody G, Tran K, Lu X, Autry T, Fraser J M, Mirin R P, Yang L, Li X, Silverman K L 2018 Phys. Rev. Lett. 121 057403Google Scholar

    [24]

    Refaely-Abramson S, Qiu D Y, Louie S G, Neaton J B 2018 Phys. Rev. Lett. 121 167402Google Scholar

    [25]

    Mujeeb F, Chakrabarti P, Mahamiya V, Shukla A, Dhar S 2023 Phys. Rev. B 107 115429Google Scholar

    [26]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [27]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [28]

    Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar

    [29]

    Vaquero D, Clericò V, Salvador-Sánchez J, Martín-Ramos A, Díaz E, Domínguez-Adame F, Meziani Y M, Diez E, Quereda J 2020 Commun. Phys. 3 194Google Scholar

    [30]

    Ross J S, Wu S F, Yu H Y, Ghimire N J, Jones A M, Aivazian G, Yan J Q, Mandrus D G, Xiao D, Yao W, Xu X D 2013 Nat. Commun. 4 1474Google Scholar

    [31]

    Zhang X X, You Y, Zhao S Y, Heinz T F 2015 Phys. Rev. Lett. 115 257403Google Scholar

    [32]

    Tang Y H, Mak K F, Shan J 2019 Nat. Commun. 10 4047Google Scholar

    [33]

    You Y, Zhang X X, Berkelbach T C, Hybertsen M S, Reichman D R, Heinz T F 2015 Nat. Phys. 11 477Google Scholar

    [34]

    Ye Z, Waldecker L, Ma E Y, Rhodes D, Antony A, Kim B, Zhang X X, Deng M, Jiang Y, Lu Z, Smirnov D, Watanabe K, Taniguchi T, Hone J, Heinz T F 2018 Nat. Commun. 9 3718Google Scholar

    [35]

    Zhang X X, Cao T, Lu Z, Lin Y C, Zhang F, Wang Y, Li Z, Hone J C, Robinson J A, Smirnov D, Louie S G, Heinz T F 2017 Nat. Nanotechnol. 12 883Google Scholar

    [36]

    Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804Google Scholar

    [37]

    Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C 2013 Nano Lett. 13 2615Google Scholar

    [38]

    Amani M, Taheri P, Addou R, Ahn G H, Kiriya D, Lien D H, Ager J W, 3rd, Wallace R M, Javey A 2016 Nano Lett. 16 2786Google Scholar

    [39]

    Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503Google Scholar

    [40]

    Zhao G Y, Deng H, Tyree N, Guy M, Lisfi A, Peng Q, Yan J A, Wang C, Lan Y 2019 Appl. Sci. 9 678Google Scholar

    [41]

    Chee S S, Lee W J, Jo Y R, Cho M K, Chun D, Baik H, Kim B J, Yoon M H, Lee K, Ham M H 2020 Adv. Funct. Mater. 30 1908147Google Scholar

    [42]

    Li Y L, Liu W, Wang Y K, Xue Z H, Leng Y C, Hu A Q, Yang H, Tan P H, Liu Y Q, Misawa H, Sun Q, Gao Y N, Hu X Y, Gong Q H 2020 Nano Lett. 20 3747Google Scholar

    [43]

    Wu Z T, Zhao W W, Jiang J, Zheng T, You Y M, Lu J P, Ni Z H 2017 J. Phys. Chem. C 121 12294Google Scholar

    [44]

    Zheng Y J, Chen Y, Huang Y L, Gogoi P K, Li M Y, Li L J, Trevisanutto P E, Wang Q, Pennycook S J, Wee A T S, Quek S Y 2019 ACS Nano 13 6050Google Scholar

    [45]

    Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C T, Barja S, Koch R J, Ogletree D F, Aloni S, Schwartzberg A M, Neaton J B, Louie S G, Weber-Bargioni A 2019 Phys. Rev. Lett. 123 076801Google Scholar

    [46]

    Carozo V, Wang Y, Fujisawa K, Carvalho B R, McCreary A, Feng S, Lin Z, Zhou C, Perea-López N, Elías A L, Kabius B, Crespi V H, Terrones M 2017 Sci. Adv. 3 e1602813Google Scholar

    [47]

    Liu H, Wang C, Liu D M, Luo J B 2019 Nanoscale 11 7913Google Scholar

    [48]

    Liu H, Wang C, Zuo Z, Liu D M, Luo J B 2020 Adv. Mater. 32 e1906540Google Scholar

    [49]

    Greben K, Arora S, Harats M G, Bolotin K I 2020 Nano Lett. 20 2544Google Scholar

    [50]

    Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W, Wu S 2017 Phys. Rev. Lett. 119 046101Google Scholar

    [51]

    Gutierrez H R, Perea-Lopez N, Elias A L, Berkdemir A, Wang B, Lü R, Lopez-Urias F, Crespi V H, Terrones H, Terrones M 2013 Nano Lett. 13 3447Google Scholar

    [52]

    Tsai C, Li H, Park S, Park J, Han H S, Norskov J K, Zheng X, Abild-Pedersen F 2017 Nat. Commun. 8 15113Google Scholar

    [53]

    Godde T, Schmidt D, Schmutzler J, Aßmann M, Debus J, Withers F, Alexeev E M, Del Pozo-Zamudio O, Skrypka O V, Novoselov K S, Bayer M, Tartakovskii A I 2016 Phys. Rev. B 94 165301Google Scholar

    [54]

    McCreary A, Berkdemir A, Wang J, Nguyen M A, Elías A L, Perea-López N, Fujisawa K, Kabius B, Carozo V, Cullen D A, Mallouk T E, Zhu J, Terrones M 2016 J. Mater. Res. 31 931Google Scholar

    [55]

    Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H, Kim J 2016 ACS Nano 10 2399Google Scholar

    [56]

    Feng J Y, Li Y Z, Li J X, Feng Q S, Xin W, Liu W Z, Xu H Y, Liu Y C 2022 Nano Lett. 22 3699Google Scholar

    [57]

    Xin M, Lan W Z, Wang G, Zhou Q, Gu C Z, Liu B L 2021 Appl. Phys. Lett. 119 153101Google Scholar

    [58]

    Liu H L, Yang T, Tatsumi Y, Zhang Y, Dong B J, Guo H H, Zhang Z D, Kumamoto Y, Li M Y, Li L J, Saito R, Kawata S 2018 Sci. Rep. 8 11398Google Scholar

    [59]

    Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M, Yu B, Terrones H, Koratkar N 2015 ACS Nano 9 1520Google Scholar

    [60]

    Goodman A J, Willard A P, Tisdale W A 2017 Phys. Rev. B 96 121404Google Scholar

    [61]

    Berkdemir A, Gutiérrez H R, Botello-Méndez A R, Perea-López N, Elías A L, Chia C I, Wang B, Crespi V H, López-Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755Google Scholar

    [62]

    Shang J Z, Shen X N, Cong C X, Peimyoo N, Cao B C, Eginligil M, Yu T 2015 ACS Nano 9 647Google Scholar

    [63]

    Wang G, Bouet L, Lagarde D, Vidal M, Balocchi A, Amand T, Marie X, Urbaszek B 2014 Phys. Rev. B 90 097403Google Scholar

    [64]

    Jadczak J, Kutrowska-Girzycka J, Kapuscinski P, Huang Y S, Wojs A, Bryja L 2017 Nanotechnology 28 395702Google Scholar

    [65]

    Singh A, Singh A K 2021 Phys. Rev. Mater. 5 084001Google Scholar

  • [1] 汤衍浩. 转角半导体过渡金属硫族化物莫尔超晶格中的新奇物态. 物理学报, 2023, 72(2): 027802. doi: 10.7498/aps.72.20222080
    [2] 赵罡, 梁汉普, 段益峰. 二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运. 物理学报, 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [3] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合. 物理学报, 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [4] 古杰, 马立国. 莫尔晶格中的激子绝缘体. 物理学报, 2023, 72(6): 067101. doi: 10.7498/aps.72.20230079
    [5] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [6] 宋雨心, 李玉琦, 王凌寒, 张晓兰, 王冲, 王钦生. 利用Li+插层调控WS2光电器件响应性能研究. 物理学报, 2023, 72(22): 226801. doi: 10.7498/aps.72.20231000
    [7] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用. 物理学报, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [8] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁. 物理学报, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [9] 邹双阳, Muhammad Arshad Kamran, 杨高岭, 刘瑞斌, 石丽洁, 张用友, 贾宝华, 钟海政, 邹炳锁. II-VI族稀磁半导体微纳结构中的激子磁极化子及其发光. 物理学报, 2019, 68(1): 017101. doi: 10.7498/aps.68.20181211
    [10] 俞洋, 张文杰, 赵婉莹, 林贤, 金钻明, 刘伟民, 马国宏. WS2与WSe2单层膜中的A激子及其自旋动力学特性研究. 物理学报, 2019, 68(1): 017201. doi: 10.7498/aps.68.20181769
    [11] 王艳文, 吴花蕊. 闪锌矿GaN/AlGaN量子点中激子态及光学性质的研究. 物理学报, 2012, 61(10): 106102. doi: 10.7498/aps.61.106102
    [12] 岳蕾蕾, 陈雨, 樊光辉, 何娇, 赵德荀, 刘应开. 缺陷态对4340钢-环氧树脂二维声子晶体带隙的影响. 物理学报, 2011, 60(10): 106103. doi: 10.7498/aps.60.106103
    [13] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [14] 程萍, 高峰, 陈向东, 杨继平. 偏置电场对聚对苯乙烯激发态弛豫特性的影响. 物理学报, 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [15] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [16] 董建文, 陈溢杭, 汪河洲. 含奇异材料的掺杂一维光子晶体色散关系和空间局域度理论. 物理学报, 2007, 56(1): 268-273. doi: 10.7498/aps.56.268
    [17] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [18] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [19] 刘文楷, 林世鸣, 张存善. 半导体微腔中腔模、重空穴激子模和轻空穴激子模耦合. 物理学报, 2002, 51(9): 2052-2056. doi: 10.7498/aps.51.2052
    [20] 吴福根, 刘有延. 二维周期性复合介质中声波带隙结构及其缺陷态. 物理学报, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
计量
  • 文章访问数:  1982
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-06
  • 修回日期:  2024-05-17
  • 上网日期:  2024-05-21
  • 刊出日期:  2024-07-05

/

返回文章
返回