搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于扫描隧道显微镜的低噪声前置电流放大器

唐海涛 米壮 王文宇 唐向前 叶霞 单欣岩 陆兴华

引用本文:
Citation:

用于扫描隧道显微镜的低噪声前置电流放大器

唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华

Low-noise preamplifier for scanning tunneling microscope

Tang Hai-Tao, Mi Zhuang, Wang Wen-Yu, Tang Xiang-Qian, Ye Xia, Shan Xin-Yan, Lu Xing-Hua
PDF
HTML
导出引用
  • 前置电流放大器是扫描隧道显微镜的重要部件之一, 其性能对于扫描隧道显微镜系统的基本操作及新功能开发至关重要. 本文详细分析了影响前置电流放大器性能的因素, 通过筛选噪声极低的运放芯片和电路结构优化, 设计了一款针对扫描隧道显微镜系统的前置电流放大器. 该放大器最灵敏档位(1 GΩ)的噪声低至4 $ {\mathrm{f}}{\mathrm{A}}/\sqrt{{\mathrm{H}}{\mathrm{z}}} $, 带宽为2.3 kHz, 具有10 MΩ, 100 MΩ和1 GΩ三个测量量程并且可以通过控制信号实现自动切换, 测量范围覆盖pA—μA量级的隧穿电流. 利用该前置电流放大器展示了扫描隧道显微镜系统的主要功能, 包括表面形貌表征、扫描隧道谱测量以及原子搬运, 并探索了隧穿电流中散粒噪声的测量. 通过散粒噪声随隧穿电流的变化关系, 得到隧穿结中散粒噪声的法诺因子约等于1, 验证了简单金属隧穿结中电子隧穿满足泊松过程, 为表面电子关联体系的高精度表征提供了基础.
    The current preamplifier is one of the important components of the scanning tunneling microscope (STM), and its performance is crucial to the basic operations of the STM system, as well as for the development of demanding novel functionalities such as autonomous atomic fabrication. In this study, the factors that affect the performance of a current preamplifier, including its noise spectrum density and the bandwidth, are analyzed in depth, and a preamplifier is designed and fabricated specifically for the STM system. By using a carefully selected low-noise op amp chip, the optimized current preamplifier has a noise floor as low as 4 $ {\mathrm{f}}{\mathrm{A}}/\sqrt{{\mathrm{H}}{\mathrm{z}}} $ and a bandwidth of 2.3 kHz, at its most sensitive transimpedance gain of 1 GΩ. It has three transimpedance gains, 10 MΩ, 100 MΩ, and 1 GΩ, that can be switched through digital control signals. A two-switch configuration is adopted to minimize the noise floor while maintaining the optimal bandwidth. The current detectable by this three-level preamplifier ranges from pA to μA, satisfying the requirements of most STM operations. Using this preamplifier, the fundamental functions of the STM system are successfully demonstrated, including surface topographic characterization, scanning tunneling spectroscopy, and single atom/molecule manipulation. The measurement of shot noise in tunneling current is also explored, and a linear relationship between shot noise and tunneling current is obtained by carefully analyzing noise. It is illustrated that the Fano factor of the shot noise in a normal metallic tunneling junction is approximately equal to 1, revealing the expected Poisson process for electron tunneling in such a scenario. The results are valuable for the high-resolution characterization of correlation systems in the future.
      通信作者: 单欣岩, Shanxinyan@iphy.ac.cn ; 陆兴华, xhlu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11727902, 21961142021)和北京市自然科学基金(批准号: 4181003 )资助的课题.
      Corresponding author: Shan Xin-Yan, Shanxinyan@iphy.ac.cn ; Lu Xing-Hua, xhlu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11727902, 21961142021) and the Natural Science Foundation of Beijing, China (Grant No. 4181003).
    [1]

    Binnig G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57Google Scholar

    [2]

    Stroscio J A, Feenstra R M, Fein A P 1986 Phys. Rev. Lett. 57 2579Google Scholar

    [3]

    Chen C J 2021 Introduction to Scanning Tunneling Microscopy Third Edition (Vol. 69) (USA: Oxford University Press

    [4]

    Scheiber P, Riss A, Schmid M, Varga P, Diebold U 2010 Phys. Rev. Lett. 105 216101Google Scholar

    [5]

    Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar

    [6]

    Bartels L, Meyer G, Rieder K H 1997 Phys. Rev. Lett. 79 697Google Scholar

    [7]

    Kalff F E, Rebergen M P, Fahrenfort E, Girovsky J, Toskovic R, Lado J L, Fernandez-Rossier J, Otte A F 2016 Nat. Nanotechnol. 11 926Google Scholar

    [8]

    Štubian M, Bobek J, Setvin M, Diebold U, Schmid M 2020 Rev. Sci. Instrum. 91 074701Google Scholar

    [9]

    de-Picciotto R, Reznikov M, Heiblum M, Umansky V, Bunin G, Mahalu D 1997 Nature 389 162Google Scholar

    [10]

    Saminadayar L, Glattli D C, Jin Y, Etienne B 1997 Phys. Rev. Lett. 79 2526Google Scholar

    [11]

    Jehl X, Sanquer M, Calemczuk R, Mailly D 2000 Nature 405 50Google Scholar

    [12]

    Bastiaans K M, Chatzopoulos D, Ge J F, Cho D, Tromp W O, van Ruitenbeek J M, Fischer M H, de Visser P J, Thoen D J, Driessen E F C, Klapwijk T M, Allan M P 2021 Science 374 608Google Scholar

    [13]

    Kumar A, Saminadayar L, Glattli D C, Jin Y, Etienne B 1996 Phys. Rev. Lett. 76 2778Google Scholar

    [14]

    DiCarlo L, Zhang Y, McClure D T, Reilly D J, Marcus C M, Pfeiffer L N, West K W 2006 Phys. Rev. Lett. 97 036810Google Scholar

    [15]

    Hashisaka M, Ota T, Yamagishi M, Fujisawa T, Muraki K 2014 Rev. Sci. Instrum. 85 054704Google Scholar

    [16]

    Henny M, Oberholzer S, Strunk C, Schönenberger C 1999 Phys. Rev. B 59 2871Google Scholar

    [17]

    Chen R, Wheeler P J, Natelson D 2012 Phys. Rev. B 85 235455Google Scholar

    [18]

    Bastiaans K M, Benschop T, Chatzopoulos D, Cho D, Dong Q, Jin Y, Allan M P 2018 Rev. Sci. Instrum. 89 093709Google Scholar

    [19]

    Kay A 2012 Operational Amplifier Noise: Techniques and Tips for Analyzing and Reducing Noise (Elsevier) pp13–14

    [20]

    Horowitz P, Hill W, Robinson I 1989 The art of electronics (Vol. 2) (Cambridge: Cambridge university Press) pp171–184

    [21]

    Mikhael W B, Michael S 1987 IEEE T. Circuits Syst. 34 449Google Scholar

    [22]

    Blanter Y M, Büttiker M 2000 Physics Reports 336 1Google Scholar

    [23]

    Kobayashi K, Hashisaka M 2021 J Phys Soc Jpn 90 102001Google Scholar

    [24]

    Birk H, De Jong M, Schönenberger C 1995 Phys. Rev. Lett. 75 1610Google Scholar

  • 图 1  (a)前置电流放大器的电路噪声模型; (b)等效输入电流噪声谱密度示意图

    Fig. 1.  (a) Noise model of current preamplifier; (b) schematic diagram of equivalent input current noise power spectral density.

    图 2  (a)典型低噪声运算放大器芯片的噪声谱密度模拟; (b)多量程复合电路设计

    Fig. 2.  (a) Simulated input current noise spectrum density of typical low noise operational amplifiers; (b) basic circuit of a composite transimpedance amplifier with multiple gains.

    图 3  (a)多量程开关控制设计; (b)继电器结构示意图及其电容特征; (c), (d) 3种不同开关状态下1 GΩ档的增益和等效电流噪声谱密度

    Fig. 3.  (a) Switching circuit for multiple gain control; (b) schematic diagram of electromagnetic relay and related typical capacitances; (c), (d) the gain and input current noise spectrum density with 1 GΩ transimpedance gain under three different switch conditions.

    图 4  (a)前置电流放大器PCB设计图; (b)前置电流放大器实物图; (c)不同反馈电阻对应的跨阻增益曲线; (d)不同反馈电阻对应的等效输入电流噪声谱密度

    Fig. 4.  (a) PCB layout of the preamplifier circuit; (b) photo of the current preamplifier; (c) measured transimpedance gain with different feedback resistors; (d) equivalent input current spectrum density of three gains.

    图 5  (a) 78 K温度下Au(111)表面的STM形貌表征(V = 0.5 V, I = 0.3 nA); (b) 隧穿电流微分电导谱; (c) 7 K温度条件下原子搬运前后形貌图(V = 0.2 V, I = 1 nA); (d)不同操作功能下的隧穿电流曲线

    Fig. 5.  (a) STM topographic image (V = 0.5 V, I = 0.3 nA) of Au(111) surface at 78 K; (b) tunneling differential conductance spectrum measured on Cu(111) surface; (c) STM topographs (V = 0.2 V, I = 1 nA) before and after atomic manipulation at 7 K; (d) tunneling current under different STM operations.

    图 6  (a)典型隧穿电流噪声谱密度分析; (b)隧穿电流散粒噪声随电流强度的变化

    Fig. 6.  (a) Typical noise spectrum density of the tunneling current; (b) shot noise in tunneling current, as a function of the current amplitude.

    表 1  自制前置电流放大器与三款商业化产品的主要参数对比

    Table 1.  Main parameters of home-built preamplifier and three commercial products.

    Gain/(V·A–1) Input noise
    @109 V/A/(fA·Hz–1/2)
    –3 dB bandwidth
    @109 V/A
    Gain control
    (manual, remote)
    自研放大器 $ {10}^{7}—{10}^{9} $ 4.0 2.3 kHz R
    商用放大器A $ {10}^{3}—{10}^{11} $ 4.3 1.1 kHz M, R
    商用放大器B $ {10}^{3}—{10}^{11} $ 5.0 1.0 kHz M
    商用放大器C $ {10}^{3}—{10}^{12} $ 10.0 15.0 Hz M, R
    下载: 导出CSV
  • [1]

    Binnig G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57Google Scholar

    [2]

    Stroscio J A, Feenstra R M, Fein A P 1986 Phys. Rev. Lett. 57 2579Google Scholar

    [3]

    Chen C J 2021 Introduction to Scanning Tunneling Microscopy Third Edition (Vol. 69) (USA: Oxford University Press

    [4]

    Scheiber P, Riss A, Schmid M, Varga P, Diebold U 2010 Phys. Rev. Lett. 105 216101Google Scholar

    [5]

    Eigler D M, Schweizer E K 1990 Nature 344 524Google Scholar

    [6]

    Bartels L, Meyer G, Rieder K H 1997 Phys. Rev. Lett. 79 697Google Scholar

    [7]

    Kalff F E, Rebergen M P, Fahrenfort E, Girovsky J, Toskovic R, Lado J L, Fernandez-Rossier J, Otte A F 2016 Nat. Nanotechnol. 11 926Google Scholar

    [8]

    Štubian M, Bobek J, Setvin M, Diebold U, Schmid M 2020 Rev. Sci. Instrum. 91 074701Google Scholar

    [9]

    de-Picciotto R, Reznikov M, Heiblum M, Umansky V, Bunin G, Mahalu D 1997 Nature 389 162Google Scholar

    [10]

    Saminadayar L, Glattli D C, Jin Y, Etienne B 1997 Phys. Rev. Lett. 79 2526Google Scholar

    [11]

    Jehl X, Sanquer M, Calemczuk R, Mailly D 2000 Nature 405 50Google Scholar

    [12]

    Bastiaans K M, Chatzopoulos D, Ge J F, Cho D, Tromp W O, van Ruitenbeek J M, Fischer M H, de Visser P J, Thoen D J, Driessen E F C, Klapwijk T M, Allan M P 2021 Science 374 608Google Scholar

    [13]

    Kumar A, Saminadayar L, Glattli D C, Jin Y, Etienne B 1996 Phys. Rev. Lett. 76 2778Google Scholar

    [14]

    DiCarlo L, Zhang Y, McClure D T, Reilly D J, Marcus C M, Pfeiffer L N, West K W 2006 Phys. Rev. Lett. 97 036810Google Scholar

    [15]

    Hashisaka M, Ota T, Yamagishi M, Fujisawa T, Muraki K 2014 Rev. Sci. Instrum. 85 054704Google Scholar

    [16]

    Henny M, Oberholzer S, Strunk C, Schönenberger C 1999 Phys. Rev. B 59 2871Google Scholar

    [17]

    Chen R, Wheeler P J, Natelson D 2012 Phys. Rev. B 85 235455Google Scholar

    [18]

    Bastiaans K M, Benschop T, Chatzopoulos D, Cho D, Dong Q, Jin Y, Allan M P 2018 Rev. Sci. Instrum. 89 093709Google Scholar

    [19]

    Kay A 2012 Operational Amplifier Noise: Techniques and Tips for Analyzing and Reducing Noise (Elsevier) pp13–14

    [20]

    Horowitz P, Hill W, Robinson I 1989 The art of electronics (Vol. 2) (Cambridge: Cambridge university Press) pp171–184

    [21]

    Mikhael W B, Michael S 1987 IEEE T. Circuits Syst. 34 449Google Scholar

    [22]

    Blanter Y M, Büttiker M 2000 Physics Reports 336 1Google Scholar

    [23]

    Kobayashi K, Hashisaka M 2021 J Phys Soc Jpn 90 102001Google Scholar

    [24]

    Birk H, De Jong M, Schönenberger C 1995 Phys. Rev. Lett. 75 1610Google Scholar

  • [1] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [2] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [3] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量. 物理学报, 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [4] 颜志猛, 王静, 郭健宏. Majorana零模式的电导与低压振荡散粒噪声. 物理学报, 2018, 67(18): 187302. doi: 10.7498/aps.67.20172372
    [5] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [6] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [7] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] 贾晓菲, 杜磊, 唐冬和, 王婷岚, 陈文豪. 准弹道输运纳米MOSFET散粒噪声的抑制研究. 物理学报, 2012, 61(12): 127202. doi: 10.7498/aps.61.127202
    [9] 陈文豪, 杜磊, 庄奕琪, 包军林, 何亮, 陈华, 孙鹏, 王婷岚. 电子器件散粒噪声测试方法研究. 物理学报, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [10] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [11] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [12] 施振刚, 文伟, 谌雄文, 向少华, 宋克慧. 双量子点电荷比特的散粒噪声谱. 物理学报, 2010, 59(5): 2971-2975. doi: 10.7498/aps.59.2971
    [13] 梁志鹏, 董正超. 半导体/磁性d波超导隧道结中的散粒噪声. 物理学报, 2010, 59(2): 1288-1293. doi: 10.7498/aps.59.1288
    [14] 陈 华, 杜 磊, 庄奕琪. 相干介观系统中散粒噪声的Monte Carlo模拟方法研究. 物理学报, 2008, 57(4): 2438-2444. doi: 10.7498/aps.57.2438
    [15] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [16] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [17] 张志勇, 王太宏. 用散粒噪声测量碳纳米管中Luttinger参数. 物理学报, 2004, 53(3): 942-946. doi: 10.7498/aps.53.942
    [18] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [19] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  741
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-23
  • 修回日期:  2024-05-12
  • 上网日期:  2024-05-16
  • 刊出日期:  2024-07-05

/

返回文章
返回