-
超宽禁带AlN材料具有禁带宽度大、击穿电场高、热导率高、直接带隙等优势, 被广泛应用于光电子器件和电力电子器件等领域. AlN材料的质量影响着AlN基器件的性能, 为此研究人员提出了多种方法来提高异质外延AlN晶体的质量, 但是这些方法工艺复杂且成本高昂. 因此, 本文提出了诱导成核的新方法来获得高质量的AlN材料. 首先, 对纳米图案化的蓝宝石衬底注入不同剂量的N离子进行预处理, 随后基于该衬底用金属有机化学气相沉积法外延AlN基板, 并在其上生长多量子阱结构, 最后基于此多量子阱结构制备紫外发光二极管. 研究结果表明, 在注入N离子剂量为1×1013 cm–2的衬底上外延获得的AlN基板, 其表面粗糙度最小且位错密度最低. 由此可见, 适当剂量的N离子注入促进了AlN异质外延过程中的横向生长与合并过程; 这可能是因为N离子的注入, 抑制了初期成核过程中形成的扭曲的镶嵌结构, 有效地降低了AlN的螺位错以及刃位错密度. 此外, 基于该基板制备的多量子阱结构, 其残余应力最小, 光致发光强度提高到无注入样品的152% . 此外, 紫外发光二极管的光电性能大幅提高, 当注入电流为100 mA时, 光输出功率和电光转换效率分别提高了63.8%和61.7%.
-
关键词:
- 氮化铝 /
- 离子注入 /
- 金属有机化学气相淀积 /
- 发光二极管
AlN materials have a wide range of applications in the fields of optoelectronic, power electronic, and radio frequency. However, the significant lattice mismatch and thermal mismatch between heteroepitaxial AlN and its substrate lead to a high threading dislocation (TD) density, thereby degrading the performance of device. In this work, we introduce a novel, cost-effective, and stable approach to epitaxially growing AlN. We inject different doses of nitrogen ions into nano patterned sapphire substrates, and then deposit the AlN layers by using metal-organic chemical vapor deposition. Ultraviolet light-emitting diode (UV-LED) with a luminescence wavelength of 395 nm is fabricated on it, and the optoelectronic properties are evaluated. Compared with the sample prepared by the traditional method, the sample injected with N ions at a dose of 1×1013 cm–2 exhibits an 82% reduction in screw TD density, the lowest surface roughness, and a 52% increase in photoluminescence intensity. It can be seen that appropriate dose of N ion implantation can promote the lateral growth and merging process in AlN heteroepitaxy. This is due to the fact that the process of implantation of N ions can suppress the tilt and twist of the nucleation islands, effectively reducing the density of TDs in AlN. Furthermore, in comparison with the controlled LED, the LED prepared on the high quality AlN template increases 63.8% and 61.7% in light output power and wall plug efficiency, respectively. The observed enhancement in device performance is attributed to the TD density of the epitaxial layer decreasing, which effectively reduces the nonradiative recombination centers. In summary, this study indicates that the ion implantation can significantly improve the quality of epitaxial AlN, thereby facilitating the development of high-performance AlN-based UV-LEDs.[1] 徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 物理学报 72 196101Google Scholar
Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101Google Scholar
[2] 武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar
[3] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 物理学报 66 167301Google Scholar
Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar
[4] Niass M I, Wang F, Liu Y H 2022 Chin. J. Electron. 31 683Google Scholar
[5] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325Google Scholar
[6] Yu R X, Liu G X, Wang G D, Chen C M, Xu M S, Zhou H, Wang T L, Yu J X, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852Google Scholar
[7] Fu H Q, Baranowski I, Huang X Q, Chen H, Lu Z J, Montes J, Zhang X D, Zhao Y J 2017 IEEE Electron Device Lett. 38 1286Google Scholar
[8] Cheng Z, Koh Y R, Mamun A, Shi J, Bai T, Huynh K, Yates L, Liu Z, Li R, Lee E 2020 Phys. Rev. Mater. 4 044602Google Scholar
[9] Amano H, Collazo R, Santi D C, Einfeldt S, Funato M, Glaab J, Hagedorn S, Hirano A, Hirayama H, Ishii R 2020 J. Phys. D: Appl. Phys. 53 503001Google Scholar
[10] Fei C L, Liu X L, Zhu B P, Li D, Yang X F, Yang Y T, Zhou Q F 2018 Nano Energy 51 146Google Scholar
[11] Ni X F, Fan Q, Hua B, Sun P H, Cai Z Z, Wang H C, Huang C N, Gu X 2020 IEEE Trans. Electron Devices 67 3988Google Scholar
[12] Chu Y W, Kharel P, Yoon T, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666Google Scholar
[13] Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar
[14] Wu H L, Wu W C, Zhang H X, Chen Y D, Wu Z S, Wang G, Jiang H 2016 Appl. Phys. Express 9 052103Google Scholar
[15] Mackey T K, Contreras J T, Liang B A 2014 Sci. Total Environ. 472 125Google Scholar
[16] Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552Google Scholar
[17] Peng R S, Xu S R, Fan X M, Tao H C, Su H K, Gao Y, Zhang J C, Hao Y 2023 J. Semicond. 44 042801Google Scholar
[18] Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar
[19] Brazel E G, Chin M A, Narayanamurti V 1999 Appl. Phys. Lett. 74 2367Google Scholar
[20] Wu H L, Zhang K, He C G, He L F, Wang Q, Zhao W, Chen Z T 2022 Crystals 12 38Google Scholar
[21] Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar
[22] Tao H C, Xu S R, Su H K, et al. 2023 Mater. Lett. 351 135097Google Scholar
[23] Wang J M, Xie N, Xu F J, et al. 2023 Nat. Mater. 22 853Google Scholar
[24] Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101Google Scholar
[25] Hushur A, Manghnani M H, Narayan J 2009 J. Appl. Phys. 106 54317Google Scholar
[26] Kozawa T, Kachi T, Kano H, Nagase H, Koide N, Manabe K 1995 J. Appl. Phys. 77 4389Google Scholar
-
-
[1] 徐爽, 许晟瑞, 王心颢, 卢灏, 刘旭, 贠博祥, 张雅超, 张涛, 张进成, 郝跃 2023 物理学报 72 196101Google Scholar
Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 196101Google Scholar
[2] 武鹏, 张涛, 张进成, 郝跃 2022 物理学报 71 158503Google Scholar
Wu P, Zhang T, Zhang J C, Hao Y 2022 Acta Phys. Sin. 71 158503Google Scholar
[3] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂 2017 物理学报 66 167301Google Scholar
Guo H J, Duan B X, Yuan S, Xie S L, Yang Y T 2017 Acta Phys. Sin. 66 167301Google Scholar
[4] Niass M I, Wang F, Liu Y H 2022 Chin. J. Electron. 31 683Google Scholar
[5] Taniyasu Y, Kasu M, Makimoto T 2006 Nature 441 325Google Scholar
[6] Yu R X, Liu G X, Wang G D, Chen C M, Xu M S, Zhou H, Wang T L, Yu J X, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852Google Scholar
[7] Fu H Q, Baranowski I, Huang X Q, Chen H, Lu Z J, Montes J, Zhang X D, Zhao Y J 2017 IEEE Electron Device Lett. 38 1286Google Scholar
[8] Cheng Z, Koh Y R, Mamun A, Shi J, Bai T, Huynh K, Yates L, Liu Z, Li R, Lee E 2020 Phys. Rev. Mater. 4 044602Google Scholar
[9] Amano H, Collazo R, Santi D C, Einfeldt S, Funato M, Glaab J, Hagedorn S, Hirano A, Hirayama H, Ishii R 2020 J. Phys. D: Appl. Phys. 53 503001Google Scholar
[10] Fei C L, Liu X L, Zhu B P, Li D, Yang X F, Yang Y T, Zhou Q F 2018 Nano Energy 51 146Google Scholar
[11] Ni X F, Fan Q, Hua B, Sun P H, Cai Z Z, Wang H C, Huang C N, Gu X 2020 IEEE Trans. Electron Devices 67 3988Google Scholar
[12] Chu Y W, Kharel P, Yoon T, Yoon T, Frunzio L, Rakich P T, Schoelkopf R J 2018 Nature 563 666Google Scholar
[13] Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar
[14] Wu H L, Wu W C, Zhang H X, Chen Y D, Wu Z S, Wang G, Jiang H 2016 Appl. Phys. Express 9 052103Google Scholar
[15] Mackey T K, Contreras J T, Liang B A 2014 Sci. Total Environ. 472 125Google Scholar
[16] Look D C, Hemsky J W, Sizelove J R 1999 Phys. Rev. Lett. 82 2552Google Scholar
[17] Peng R S, Xu S R, Fan X M, Tao H C, Su H K, Gao Y, Zhang J C, Hao Y 2023 J. Semicond. 44 042801Google Scholar
[18] Jena D, Gossard A C, Mishra U K 2000 Appl. Phys. Lett. 76 1707Google Scholar
[19] Brazel E G, Chin M A, Narayanamurti V 1999 Appl. Phys. Lett. 74 2367Google Scholar
[20] Wu H L, Zhang K, He C G, He L F, Wang Q, Zhao W, Chen Z T 2022 Crystals 12 38Google Scholar
[21] Tao H C, Xu S R, Zhang J C, Su H K, Gao Y, Zhang Y C, Zhou H, Hao Y 2023 Opt. Express 31 20850Google Scholar
[22] Tao H C, Xu S R, Su H K, et al. 2023 Mater. Lett. 351 135097Google Scholar
[23] Wang J M, Xie N, Xu F J, et al. 2023 Nat. Mater. 22 853Google Scholar
[24] Ban K, Yamamoto J, Takeda K, Ide K, Iwaya M, Takeuchi T, Kamiyama S, Akasaki I, Amano H 2011 Appl. Phys. Express 4 052101Google Scholar
[25] Hushur A, Manghnani M H, Narayan J 2009 J. Appl. Phys. 106 54317Google Scholar
[26] Kozawa T, Kachi T, Kano H, Nagase H, Koide N, Manabe K 1995 J. Appl. Phys. 77 4389Google Scholar
计量
- 文章访问数: 809
- PDF下载量: 44
- 被引次数: 0