搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型四元硫族化合物光伏特性的高通量筛选和第一性原理研究

康家兴 严全河 曹浩宇 孟威威 徐飞 洪峰

引用本文:
Citation:

新型四元硫族化合物光伏特性的高通量筛选和第一性原理研究

康家兴, 严全河, 曹浩宇, 孟威威, 徐飞, 洪峰

Photovoltaic properties of novel quaternary chalcogenides based on high-throughput screening and first-principles calculations

Kang Jia-Xing, Yan Quan-He, Cao Hao-Yu, Meng Wei-Wei, Xu Fei, Hong Feng
PDF
HTML
导出引用
  • 本工作提出了一种对Cu2ZnSnS4中Zn元素异价取代策略, 探讨了新型四元硫族化合物A2M2M'Q4 (A = Na, K, Rb, Cs, In, Tl; M = Cu, Ag, Au; M' = Ti, Zr, Hf, Ge, Sn; Q = S, Se, Te)作为新型太阳能电池吸收层材料的应用潜力. 利用第一性原理高通量计算, 评估了1350种A2M2M'Q4化合物热力学稳定性、带隙、光谱极限最大效率和声子色散谱等特性. 结果表明, 有10种热力学和动力学稳定的候选材料, 它们表现出合适的带隙, 并展现出高的光吸收性能, 光谱极限最大效率的理论值均超过30%. 它们的电子结构和光学性质类似于Cu2ZnSnS4, 有望应用于高效单结薄膜太阳能电池. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00006 中访问获取.
    In recent decades, the demand for clean energy has promoted extensive research on solar cells as a key renewable energy source. Among the various emerging absorber layer materials, Kesterite-type semiconductors have aroused significant interest. Especially, Kesterite Cu2ZnSnS4 (CZTS) stands out as a promising candidate for low-cost thin-film solar cells due to its direct bandgap, high optical absorption coefficient, suitable bandgap (1.39–1.52 eV), and abundance of constituent elements. However, the power conversion efficiency (PCE) of CZTS-based solar cells currently lags behind that of Cu(In,Ga)Se2 (CIGS) cells, mainly due to insufficient open-circuit voltage caused by a large number of disordered cations and defect clusters, resulting in non-radiative recombination and band-tail states.To address these challenges, partial or complete cation substitution has become a viable strategy for altering the harmful defects in CZTS. This study proposes a heterovalent substitution of Zn in CZTS and explores the potential of novel quaternary chalcogenide compound A2M2M'Q4 (A = Na, K, Rb, Cs, In, Tl; M = Cu, Ag, Au; M' = Ti, Zr, Hf, Ge, Sn; Q = S, Se, Te) as absorbers for solar cells. By substituting elements in five prototype structures, a comprehensive material database comprising 1350 A2M2M'Q4 compounds is established.High-throughput screening and first-principles calculations are used to evaluate the thermodynamic stabilities, band gaps, spectroscopic limited maximum efficiencies (SLMEs), and phonon dispersions of these compounds. Our research results indicate that 543 compounds exhibit thermodynamic stability (Ehull < 0.01 eV/atom), 202 compounds possess suitable band gaps (1.0–1.5 eV), and 10 compounds meet all the criteria for thermodynamic and dynamic stability, suitable band gaps, and high optical absorption performance (104–106 cm–1), with theoretical SLME values exceeding 30%.Notably, Ibam-Rb2Ag2GeTe4 exhibits the highest SLME (31.8%) in these candidates, featuring a band gap of 1.27 eV and a small carrier effective mass (< m0). The electronic structures and optical properties of these compounds are comparable to those of CZTS, which makes them suitable for highly efficient single-junction thin-film solar cells.All the data presented in this work can be found at https://www.doi.org/10.57760/sciencedb.j00213.00006.
      通信作者: 徐飞, feixu@shu.edu.cn ; 洪峰, fenghong@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62350054, 12175131, 12374379)资助的课题.
      Corresponding author: Xu Fei, feixu@shu.edu.cn ; Hong Feng, fenghong@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62350054, 12175131, 12374379).
    [1]

    Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389Google Scholar

    [2]

    Sobayel K, Shahinuzzaman M, Amin N, Karim M R, Dar M A, Gul R, Alghoul M A, Sopian K, Hasan A K M, Akhtaruzzaman M 2020 Sol. Energy 207 479Google Scholar

    [3]

    Zhou J Z, Xu X, Wu H J, Wang J L, Lou L C, Yin K, Gong Y C, Shi J J, Luo Y H, Li D M, Xin H, Meng Q B 2023 Nat. Energy 8 526Google Scholar

    [4]

    Zhang Z F, Yuan X, Lu Y S, He D M, Yan Q H, Cao H Y, Hong F, Jiang Z M, Xu R, Ma Z Q, Song H W, Xu F 2024 Acta Phys. Sin. 73 098803Google Scholar

    [5]

    Wang J, Chen H, Wei S H, Yin W J 2019 Adv. Mater. 31 1806593Google Scholar

    [6]

    Keller J, Kiselman K, Donzel Gargand O, Martin N M, Babucci M, Lundberg O, Wallin E, Stolt L, Edoff M 2024 Nat. Energy 9 467Google Scholar

    [7]

    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B 2013 Adv. Energy Mater. 3 34Google Scholar

    [8]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508Google Scholar

    [9]

    Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421Google Scholar

    [10]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453Google Scholar

    [11]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [12]

    Shin D, Saparov B, Mitzi D B 2017 Adv. Energy Mater. 7 1602366Google Scholar

    [13]

    Chen S Y, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204Google Scholar

    [14]

    Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S 2018 Sol. Energy Mater. Sol. Cells 179 142Google Scholar

    [15]

    Gershon T, Lee Y S, Antunez P, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M, Haight R 2016 Adv. Energy Mater. 6 1502468Google Scholar

    [16]

    Gong Y C, Qiu R C, Niu C Y, Fu J J, Jedlicka E, Giridharagopal R, Zhu Q, Zhou Y G, Yan W B, Yu S T, Jiang J J, Wu S X, Ginger D S, Huang W, Xin H 2021 Adv. Funct. Mater. 31 2101927Google Scholar

    [17]

    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar

    [18]

    Yuan Z K, Chen S Y, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar

    [19]

    Zhang J, Liao J, Shao L X, Xue S W, Wang Z G 2018 Chin. Phys. Lett. 35 083101Google Scholar

    [20]

    Su Z, Tan J M R, Li X, Zeng X, Batabyal S K, Wong L H 2015 Adv. Energy Mater. 5 1500682Google Scholar

    [21]

    Bao W, Sachuronggui, Qiu F Y 2016 Chin. Phys. B 25 127102Google Scholar

    [22]

    Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil B P, Sun K, Pu A, Zhou F, Stride J A, Green M A, Hao X 2017 ACS Energy Lett. 2 930Google Scholar

    [23]

    Luan H M, Yao B, Li Y F, Liu R J, Ding Z H, Zhang Z Z, Zhao H F, Zhang L G 2021 J. Alloy. Compd. 876 160160Google Scholar

    [24]

    Su Z H, Liang G X, Fan P, Luo J T, Zheng Z H, Xie Z G, Wang W, Chen S, Hu J G, Wei Y D, Yan C, Huang J L, Hao X J, Liu F Y 2020 Adv. Mater. 32 2000121Google Scholar

    [25]

    Wang C C, Chen S Y, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411Google Scholar

    [26]

    Shin D, Saparov B, Zhu T, Huhn W P, Blum V, Mitzi D B 2016 Chem. Mater. 28 4771Google Scholar

    [27]

    Ge J, Yu Y, Yan Y F 2016 ACS Energy Lett. 1 583Google Scholar

    [28]

    Chen Z, Sun K W, Su Z H, Liu F Y, Tang D, Xiao H R, Shi L, Jiang L X, Hao X J, Lai Y Q 2018 ACS Appl. Energ. Mater. 1 3420Google Scholar

    [29]

    Hong F, Lin W, Meng W W, Yan Y F 2016 Phys. Chem. Chem. Phys. 18 4828Google Scholar

    [30]

    Xiao Z W, Meng W W, Li J V, Yan Y F 2017 ACS Energy Lett. 2 29Google Scholar

    [31]

    Zhu T, Huhn W P, Wessler G C, Shin D, Saparov B, Mitzi D B, Blum V 2017 Chem. Mater. 29 7868Google Scholar

    [32]

    Teymur B, Kim Y, Huang J, Sun K, Hao X, Mitzi D B 2022 Adv. Energy Mater. 12 2201602Google Scholar

    [33]

    Du Y C, Wang S S, Tian Q W, Zhao Y C, Chang X H, Xiao H Q, Deng Y Q, Chen S Y, Wu S X, Liu S Z 2021 Adv. Funct. Mater. 31 2010325Google Scholar

    [34]

    Kuo D H, Tsega M 2014 Jpn. J. Appl. Phys. 53 035801Google Scholar

    [35]

    Sun Q Z, Shi C, Xie W H, Li Y F, Zhang C X, Wu J H, Zheng Q, Deng H, Cheng S Y 2024 Adv. Sci. 11 2306740Google Scholar

    [36]

    Maeda T, Kawabata A, Wada T 2015 Phys. Status Solidi. Conf. 12 631Google Scholar

    [37]

    Chen S, Gong X G, Walsh A, Wei S H 2009 Phys. Rev. B 79 165211Google Scholar

    [38]

    Liao J H, Kanatzidis M G 1993 Chem. Mater. 5 1561Google Scholar

    [39]

    Löken S, Tremel W 1998 Z. Anorg. Allg. Chem. 624 1588Google Scholar

    [40]

    Li J, Guo H Y, Proserpio D M, Sironi A 1995 J. Solid State Chem. 117 247Google Scholar

    [41]

    Chen X A, Huang X Y, Fu A H, Li J, Zhang L D, Guo H Y 2000 Chem. Mater. 12 2385Google Scholar

    [42]

    An Y, Baiyin M, Liu X, Ji M, Jia C, Ning G 2004 Inorg. Chem. Commun. 7 114Google Scholar

    [43]

    Mansuetto M F, Ibers J A 1995 IEEE J. Solid-State Circuit 117 30Google Scholar

    [44]

    Pell M A, Ibers J A 2002 J. Am. Chem. Soc. 117 6284Google Scholar

    [45]

    Huang F Q, Ibers J A 2001 Inorg. Chem. 40 2602Google Scholar

    [46]

    Sun B H, He J Q, Zhang X, Bu K J, Zheng C, Huang F Q 2017 J. Alloy. Compd. 725 557Google Scholar

    [47]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [48]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [49]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [50]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [51]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [52]

    Ong S P, Wang L, Kang B, Ceder G 2008 Chem. Mater. 20 1798Google Scholar

    [53]

    Ong S P, Jain A, Hautier G, Kang B, Ceder G 2010 Electrochem. Commun. 12 427Google Scholar

    [54]

    Wang A, Kingsbury R, McDermott M, Horton M, Jain A, Ong S P, Dwaraknath S, Persson K A 2021 Sci Rep 11 15496Google Scholar

    [55]

    Togo A 2022 J. Phys. Soc. Jpn. 92 012001Google Scholar

    [56]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys. : Condens. Matter 35 353001Google Scholar

    [57]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [58]

    Jin H, Zhang H, Li J, Wang T, Wan L, Guo H, Wei Y 2019 J. Phys. Chem. Lett. 10 5211Google Scholar

    [59]

    Singh A K, Montoya J H, Gregoire J M, Persson K A 2019 Nat. Commun. 10 443Google Scholar

    [60]

    Liu Y T, Li X B, Zheng H, Chen N K, Wang X P, Zhang X L, Sun H B, Zhang S 2021 Adv. Funct. Mater. 31 2009803Google Scholar

    [61]

    Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 Sci. Adv. 2 e1600225Google Scholar

    [62]

    Morales García Á, Valero R, Illas F 2017 J. Phys. Chem. C 121 18862Google Scholar

    [63]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401Google Scholar

    [64]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L C, Alamariu B A 2006 Appl. Phys. Lett. 89 111111Google Scholar

    [65]

    Gan Y, Miao N, Lan P, Zhou J Z, Elliott S R, Sun Z 2022 J. Am. Chem. Soc. 144 5878Google Scholar

    [66]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [67]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [68]

    Wang V, Tang G, Liu Y C, Wang R T, Mizuseki H, Kawazoe Y, Nara J, Geng W T 2022 J. Phys. Chem. Lett. 13 11581Google Scholar

    [69]

    Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794Google Scholar

    [70]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [71]

    Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar

    [72]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovolt. 5 401Google Scholar

    [73]

    Pandey M, Rasmussen F A, Kuhar K, Olsen T, Jacobsen K W, Thygesen K S 2016 Nano Lett. 16 2234Google Scholar

    [74]

    Wexler R B, Gautam G S, Stechel E B, Carter E A 2021 J. Am. Chem. Soc. 143 13212Google Scholar

  • 图 1  5种四元硫族化合物A2M2M'Q4原型的晶体结构

    Fig. 1.  Five prototypes of A2M2M'Q4.

    图 2  使用高通量第一性原理计算筛选新材料的工作流程示意图

    Fig. 2.  Schematic workflow of novel materials’ discovery with high-throughput first principle calculations.

    图 3  (a) 1350种A2M2M'Q4化合物的Ehull和$ {{E}}_{\text{g}}^{\text{PBE}} $的散点图和直方图; (b) 202种化合物的ΔEg直方图

    Fig. 3.  (a) The scatter plot and histograms of Ehull and $ {{E}}_{\text{g}}^{\text{PBE}} $ for 1350 A2M2M'Q4 compounds; (b) histogram of ΔEg for 202 compounds.

    图 4  (a) 72种化合物在薄膜厚度为2 μm时的SLME与$ {{E}}_{\text{g}}^{\text{HSE}} $的关系图, 蓝线为Shockley-Queisser极限; (b) Ibam-Rb2Ag2SnTe4的声子色散谱; 4种SLME超过31%的候选材料, CZTS和CZTSe的(c) SLME与薄膜厚度的关系和(d) 光吸收系数

    Fig. 4.  (a) SLME at 2 μm vs. the HSE bandgap $ {{E}}_{\text{g}}^{\text{HSE}} $ for the 72 compounds, the blue curve represents the Shockley-Queisser limit; (b) phonon dispersion of Ibam-Rb2Ag2SnTe4; (c) thickness dependent SLME values and (d) optical absorption spectra of the top 4 compounds (SLME > 31%), CZTS and CZTSe.

    图 5  (a) Ibam-Rb2Ag2GeTe4; (b) P2/c-Rb2Cu2GeTe4的能带结构、分态密度、晶体结构和载流子有效质量

    Fig. 5.  Band structure, partial density of states (PDOS), structure and effective mass of (a) Ibam-Rb2Ag2GeTe4; (b) P2/c-Rb2Cu2GeTe4.

    表 1  四元硫族化合物A2M2M'Q4实验报道的带隙和结构与本工作的对比

    Table 1.  Reported structures and bandgap for A2M2M'Q4 systems.

    Compounds Ehull/(eV·atom–1) Stable phase Eg/eV
    Experiment This work Experiment HSE06
    Na2Cu2ZrS4[43] 0.129 C2/m Ibam 0.07
    Cs2Ag2ZrTe4[44] 0 C222 C222 2.08
    Rb2Cu2SnS4[38] 0.012 Ibam Ibam 2.08 2.02
    K2Ag2SnSe4[41] 0 P2/c P2/c 1.8 1.69
    Cs2Ag2TiS4[45] 0.001 P42/mcm P42/mcm 2.44 2.44
    Cs2Cu2TiS4[45] 0 P42/mcm P42/mcm 2.56
    K2Cu2TiS4[45] 0.002 P42/mcm P42/mcm 2.04 2.62
    Rb2Ag2TiS4[45] 0.002 P42/mcm P42/mcm 2.33 2.45
    Rb2Cu2TiS4[45] 0.001 P42/mcm P42/mcm 2.19 2.63
    下载: 导出CSV
  • [1]

    Gloeckler M, Sankin I, Zhao Z 2013 IEEE J. Photovolt. 3 1389Google Scholar

    [2]

    Sobayel K, Shahinuzzaman M, Amin N, Karim M R, Dar M A, Gul R, Alghoul M A, Sopian K, Hasan A K M, Akhtaruzzaman M 2020 Sol. Energy 207 479Google Scholar

    [3]

    Zhou J Z, Xu X, Wu H J, Wang J L, Lou L C, Yin K, Gong Y C, Shi J J, Luo Y H, Li D M, Xin H, Meng Q B 2023 Nat. Energy 8 526Google Scholar

    [4]

    Zhang Z F, Yuan X, Lu Y S, He D M, Yan Q H, Cao H Y, Hong F, Jiang Z M, Xu R, Ma Z Q, Song H W, Xu F 2024 Acta Phys. Sin. 73 098803Google Scholar

    [5]

    Wang J, Chen H, Wei S H, Yin W J 2019 Adv. Mater. 31 1806593Google Scholar

    [6]

    Keller J, Kiselman K, Donzel Gargand O, Martin N M, Babucci M, Lundberg O, Wallin E, Stolt L, Edoff M 2024 Nat. Energy 9 467Google Scholar

    [7]

    Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B 2013 Adv. Energy Mater. 3 34Google Scholar

    [8]

    Wang K, Gunawan O, Todorov T, Shin B, Chey S J, Bojarczuk N A, Mitzi D, Guha S 2010 Appl. Phys. Lett. 97 143508Google Scholar

    [9]

    Mitzi D B, Gunawan O, Todorov T K, Wang K, Guha S 2011 Sol. Energy Mater. Sol. Cells 95 1421Google Scholar

    [10]

    Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K 2010 Prog. Photovoltaics 18 453Google Scholar

    [11]

    Chen S Y, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [12]

    Shin D, Saparov B, Mitzi D B 2017 Adv. Energy Mater. 7 1602366Google Scholar

    [13]

    Chen S Y, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204Google Scholar

    [14]

    Rey G, Larramona G, Bourdais S, Choné C, Delatouche B, Jacob A, Dennler G, Siebentritt S 2018 Sol. Energy Mater. Sol. Cells 179 142Google Scholar

    [15]

    Gershon T, Lee Y S, Antunez P, Mankad R, Singh S, Bishop D, Gunawan O, Hopstaken M, Haight R 2016 Adv. Energy Mater. 6 1502468Google Scholar

    [16]

    Gong Y C, Qiu R C, Niu C Y, Fu J J, Jedlicka E, Giridharagopal R, Zhu Q, Zhou Y G, Yan W B, Yu S T, Jiang J J, Wu S X, Ginger D S, Huang W, Xin H 2021 Adv. Funct. Mater. 31 2101927Google Scholar

    [17]

    Chagarov E, Sardashti K, Kummel A C, Lee Y S, Haight R, Gershon T S 2016 J. Chem. Phys. 144 104704Google Scholar

    [18]

    Yuan Z K, Chen S Y, Xiang H, Gong X G, Walsh A, Park J S, Repins I, Wei S H 2015 Adv. Funct. Mater. 25 6733Google Scholar

    [19]

    Zhang J, Liao J, Shao L X, Xue S W, Wang Z G 2018 Chin. Phys. Lett. 35 083101Google Scholar

    [20]

    Su Z, Tan J M R, Li X, Zeng X, Batabyal S K, Wong L H 2015 Adv. Energy Mater. 5 1500682Google Scholar

    [21]

    Bao W, Sachuronggui, Qiu F Y 2016 Chin. Phys. B 25 127102Google Scholar

    [22]

    Yan C, Sun K, Huang J, Johnston S, Liu F, Veettil B P, Sun K, Pu A, Zhou F, Stride J A, Green M A, Hao X 2017 ACS Energy Lett. 2 930Google Scholar

    [23]

    Luan H M, Yao B, Li Y F, Liu R J, Ding Z H, Zhang Z Z, Zhao H F, Zhang L G 2021 J. Alloy. Compd. 876 160160Google Scholar

    [24]

    Su Z H, Liang G X, Fan P, Luo J T, Zheng Z H, Xie Z G, Wang W, Chen S, Hu J G, Wei Y D, Yan C, Huang J L, Hao X J, Liu F Y 2020 Adv. Mater. 32 2000121Google Scholar

    [25]

    Wang C C, Chen S Y, Yang J H, Lang L, Xiang H J, Gong X G, Walsh A, Wei S H 2014 Chem. Mater. 26 3411Google Scholar

    [26]

    Shin D, Saparov B, Zhu T, Huhn W P, Blum V, Mitzi D B 2016 Chem. Mater. 28 4771Google Scholar

    [27]

    Ge J, Yu Y, Yan Y F 2016 ACS Energy Lett. 1 583Google Scholar

    [28]

    Chen Z, Sun K W, Su Z H, Liu F Y, Tang D, Xiao H R, Shi L, Jiang L X, Hao X J, Lai Y Q 2018 ACS Appl. Energ. Mater. 1 3420Google Scholar

    [29]

    Hong F, Lin W, Meng W W, Yan Y F 2016 Phys. Chem. Chem. Phys. 18 4828Google Scholar

    [30]

    Xiao Z W, Meng W W, Li J V, Yan Y F 2017 ACS Energy Lett. 2 29Google Scholar

    [31]

    Zhu T, Huhn W P, Wessler G C, Shin D, Saparov B, Mitzi D B, Blum V 2017 Chem. Mater. 29 7868Google Scholar

    [32]

    Teymur B, Kim Y, Huang J, Sun K, Hao X, Mitzi D B 2022 Adv. Energy Mater. 12 2201602Google Scholar

    [33]

    Du Y C, Wang S S, Tian Q W, Zhao Y C, Chang X H, Xiao H Q, Deng Y Q, Chen S Y, Wu S X, Liu S Z 2021 Adv. Funct. Mater. 31 2010325Google Scholar

    [34]

    Kuo D H, Tsega M 2014 Jpn. J. Appl. Phys. 53 035801Google Scholar

    [35]

    Sun Q Z, Shi C, Xie W H, Li Y F, Zhang C X, Wu J H, Zheng Q, Deng H, Cheng S Y 2024 Adv. Sci. 11 2306740Google Scholar

    [36]

    Maeda T, Kawabata A, Wada T 2015 Phys. Status Solidi. Conf. 12 631Google Scholar

    [37]

    Chen S, Gong X G, Walsh A, Wei S H 2009 Phys. Rev. B 79 165211Google Scholar

    [38]

    Liao J H, Kanatzidis M G 1993 Chem. Mater. 5 1561Google Scholar

    [39]

    Löken S, Tremel W 1998 Z. Anorg. Allg. Chem. 624 1588Google Scholar

    [40]

    Li J, Guo H Y, Proserpio D M, Sironi A 1995 J. Solid State Chem. 117 247Google Scholar

    [41]

    Chen X A, Huang X Y, Fu A H, Li J, Zhang L D, Guo H Y 2000 Chem. Mater. 12 2385Google Scholar

    [42]

    An Y, Baiyin M, Liu X, Ji M, Jia C, Ning G 2004 Inorg. Chem. Commun. 7 114Google Scholar

    [43]

    Mansuetto M F, Ibers J A 1995 IEEE J. Solid-State Circuit 117 30Google Scholar

    [44]

    Pell M A, Ibers J A 2002 J. Am. Chem. Soc. 117 6284Google Scholar

    [45]

    Huang F Q, Ibers J A 2001 Inorg. Chem. 40 2602Google Scholar

    [46]

    Sun B H, He J Q, Zhang X, Bu K J, Zheng C, Huang F Q 2017 J. Alloy. Compd. 725 557Google Scholar

    [47]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [48]

    Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar

    [49]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [50]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [51]

    Paier J, Marsman M, Hummer K, Kresse G, Gerber I C, Ángyán J G 2006 J. Chem. Phys. 124 154709Google Scholar

    [52]

    Ong S P, Wang L, Kang B, Ceder G 2008 Chem. Mater. 20 1798Google Scholar

    [53]

    Ong S P, Jain A, Hautier G, Kang B, Ceder G 2010 Electrochem. Commun. 12 427Google Scholar

    [54]

    Wang A, Kingsbury R, McDermott M, Horton M, Jain A, Ong S P, Dwaraknath S, Persson K A 2021 Sci Rep 11 15496Google Scholar

    [55]

    Togo A 2022 J. Phys. Soc. Jpn. 92 012001Google Scholar

    [56]

    Togo A, Chaput L, Tadano T, Tanaka I 2023 J. Phys. : Condens. Matter 35 353001Google Scholar

    [57]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033Google Scholar

    [58]

    Jin H, Zhang H, Li J, Wang T, Wan L, Guo H, Wei Y 2019 J. Phys. Chem. Lett. 10 5211Google Scholar

    [59]

    Singh A K, Montoya J H, Gregoire J M, Persson K A 2019 Nat. Commun. 10 443Google Scholar

    [60]

    Liu Y T, Li X B, Zheng H, Chen N K, Wang X P, Zhang X L, Sun H B, Zhang S 2021 Adv. Funct. Mater. 31 2009803Google Scholar

    [61]

    Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, Ceder G 2016 Sci. Adv. 2 e1600225Google Scholar

    [62]

    Morales García Á, Valero R, Illas F 2017 J. Phys. Chem. C 121 18862Google Scholar

    [63]

    Tran F, Blaha P 2009 Phys. Rev. Lett. 102 226401Google Scholar

    [64]

    Zeng L, Yi Y, Hong C, Liu J, Feng N, Duan X, Kimerling L C, Alamariu B A 2006 Appl. Phys. Lett. 89 111111Google Scholar

    [65]

    Gan Y, Miao N, Lan P, Zhou J Z, Elliott S R, Sun Z 2022 J. Am. Chem. Soc. 144 5878Google Scholar

    [66]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [67]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [68]

    Wang V, Tang G, Liu Y C, Wang R T, Mizuseki H, Kawazoe Y, Nara J, Geng W T 2022 J. Phys. Chem. Lett. 13 11581Google Scholar

    [69]

    Zheng F, Tan L Z, Liu S, Rappe A M 2015 Nano Lett. 15 7794Google Scholar

    [70]

    Deringer V L, Tchougréeff A L, Dronskowski R 2011 J. Phys. Chem. A 115 5461Google Scholar

    [71]

    Yang D W, Lv J, Zhao X G, Xu Q L, Fu Y H, Zhan Y Q, Zunger A, Zhang L J 2017 Chem. Mater. 29 524Google Scholar

    [72]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovolt. 5 401Google Scholar

    [73]

    Pandey M, Rasmussen F A, Kuhar K, Olsen T, Jacobsen K W, Thygesen K S 2016 Nano Lett. 16 2234Google Scholar

    [74]

    Wexler R B, Gautam G S, Stechel E B, Carter E A 2021 J. Am. Chem. Soc. 143 13212Google Scholar

  • [1] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [2] 莫秋燕, 张颂, 荆涛, 张泓筠, 李先绪, 吴家隐. CuSe表面修饰的第一性原理研究. 物理学报, 2023, 72(12): 127301. doi: 10.7498/aps.72.20230093
    [3] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [4] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究. 物理学报, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [5] 高云亮, 朱芫江, 李进平. Al辐照损伤初期的第一性原理研究. 物理学报, 2017, 66(5): 057104. doi: 10.7498/aps.66.057104
    [6] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [7] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, 2014, 63(20): 207301. doi: 10.7498/aps.63.207301
    [8] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [9] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [10] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [11] 刘春华, 欧阳楚英, 嵇英华. 第一性原理计算Mg2Ni氢化物的电子结构及其稳定性分析. 物理学报, 2011, 60(7): 077103. doi: 10.7498/aps.60.077103
    [12] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 物理学报, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [13] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [14] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究. 物理学报, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [15] 王风, 王新强, 聂招秀, 程志梅, 刘高斌. 三元化合物ZnVSe2半金属铁磁性的第一性原理计算. 物理学报, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [16] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [17] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [18] 许红斌, 王渊旭. 过渡金属Tc及其氮化物TcN,TcN2,TcN3与TcN4低压缩性的第一性原理计算研究. 物理学报, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [19] 朱建新, 李永华, 孟繁玲, 刘常升, 郑伟涛, 王煜明. NiTi合金的第一性原理研究. 物理学报, 2008, 57(11): 7204-7209. doi: 10.7498/aps.57.7204
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  1337
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-06-25
  • 上网日期:  2024-08-12
  • 刊出日期:  2024-09-05

/

返回文章
返回