搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

μSR实验进展与缪子源发展趋势

王颖 殳蕾

引用本文:
Citation:

μSR实验进展与缪子源发展趋势

王颖, 殳蕾

μSR experimental progress and trends of developing muon facilities

Wang Ying, Shu Lei
PDF
HTML
导出引用
  • 缪子自旋弛豫/旋转技术 (muon spin relaxation/rotation, μSR) 是一种高度灵敏的原子尺度磁性探测手段. 随着μSR技术的不断发展, 其在凝聚态物理研究中愈加重要. 本文简要介绍μSR技术的优越性和独特性, 概述近期μSR技术在凝聚态领域的几项重要进展和挑战, 包括镍基超导体La3Ni2O7和 (R, Sr)NiO2的磁性基态研究、笼目晶格超导体 AV3Sb5 (A = K, Rb)的电荷密度波研究、NaYbSe2量子自旋液体“海洋”中沉浸的自旋“磁滴”和Cr2O3磁电表面附近磁单极子的研究, 并简单阐述了国际上缪子源的建设情况和升级进展.
    Muon spin relaxation/rotation (μSR) is a highly sensitive technique for investigating magnetic properties on an atomic scale. With the continuous development of this technique, the researches in condensed matter physics have been significantly promoted. Firstly, this article introduces the advantages and uniqueness of μSR technique, followed by several recent progress contributed by μSR in the field of condensed matter physics, including revealing the magnetic ground state of superconducting nickelates La3Ni2O7 and (R, Sr)NiO2, the investigation into the charge density wave in kagome lattice superconductor AV3Sb5 (A = K, Rb), identifying the magnetic droplets immersed in a sea of quantum spin liquid ground state in NaYbSe2, and the exploration of magnetic monopole near a magnetoelectric surface of Cr2O3. Finally, this article summarizes the current construction status and upgrade plans of muon facilities in the world.
      通信作者: 殳蕾, leishu@fudan.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174065)和上海市市级科技重大专项(批准号: 2019SHZDZX01)资助的课题.
      Corresponding author: Shu Lei, leishu@fudan.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174065) and the Shanghai Municipal Science and Technology Major Project, China (Grant No. 2019SHZDZX01).
    [1]

    Karlsson E B 2022 Eur. Phys. J. H 47 4Google Scholar

    [2]

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257 [殳蕾, 倪晓杰, 潘子文 2021 物理 50 257]Google Scholar

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257Google Scholar

    [3]

    Bednorz J G, Muller K A 1986 Z. Phys. B Condens. Mat. 64 189Google Scholar

    [4]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Tohyama T 2012 Jpn. J. Appl. Phys. 51 10004Google Scholar

    [7]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [8]

    Fowlie J, Hadjimichael M, Martins M M, Li D, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J, Hwang H Y, Suter A 2022 Nat. Phys. 18 1043Google Scholar

    [9]

    Yin J X, Lian B, Hasan M Z 2022 Nature 612 647Google Scholar

    [10]

    Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 94407Google Scholar

    [11]

    Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, Khasanov R 2023 Nat. Commun. 14 153Google Scholar

    [12]

    Shumiya N, Hossain M S, Yin J, Jiang Y, Ortiz B R, Liu H, Shi Y, Yin Q, Le H, Zhan S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z, Yang X P, Guguchia Z, Wilson S D, Hasan M Z 2021 Phys. Rev. B 104 35131Google Scholar

    [13]

    Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar

    [14]

    Liu W W, Zhang Z, Ji J T, Liu Y X, Li J Q, Wang X Q, Lei H C, Chen G, Zhang Q M 2018 Chin. Phys. Lett. 35 117501Google Scholar

    [15]

    Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 Innovation 4 100459Google Scholar

    [16]

    Dirac P 1931 Proc. R. Soc. London Ser. A-Math. Phys. 133 60Google Scholar

    [17]

    Rajantie A 2016 Phys. Today 69 40Google Scholar

    [18]

    Fechner M, Spaldin N A, Dzyaloshinskii I E 2014 Phys. Rev. B 89 184415Google Scholar

    [19]

    Wiegelmann H, Jansen A G M, Wyder P, Rivera J P, Schmid H 1994 Ferroelectrics 162 141Google Scholar

    [20]

    Meier Q N, Fechner M, Nozaki T, Sahashi M, Salman Z, Prokscha T, Suter A, Schoenherr P, Lilienblum M, Borisov P, Dzyaloshinskii I E, Fiebig M, Luetkens H, Spaldin N A 2019 Phys. Rev. X 9 11011Google Scholar

    [21]

    SμS Instruments. https://www.psi.ch/en/smus/instruments [2024-09-18]

    [22]

    FLexible Advanced MuSR Environment (FLAME) Project. https://www.psi.ch/en/smus/flame-project [2024-09-18]

    [23]

    Super-MuSR. https://www.isis.stfc.ac.uk/Pages/Super-MuSR.aspx [2024-09-18]

    [24]

    μSR Beamlines at TRIUMF. https://cmms.triumf.ca/equip/muSRbeamlines.html [2024-09-18]

    [25]

    Muon Instruments at Materials and Life Science Experimental Facility. https://j-parc.jp/researcher/MatLife/en/instrumentation/ms.html [2024-09-18]

    [26]

    Kanda S, Teshima N, Adachi T, Ikedo Y, Miyake Y, Nagatani Y, Nakamura S, Oishi Y, Shimomura K, Strasser P, Umezawa T 2023 The Ultra-Slow Muon Beamline at J-PARC: Present Status and Future Prospects2462) (Parma) p12030

    [27]

    Li Q, Pan Z W, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 Design of the First μSR Spectrometer at China Spallation Neutron Source2462) (Parma) p12022

    [28]

    Williams T J, MacDougall G J 2017 Future Muon Source Possibilities at the SNS (Oak Ridge, TN (United States): Office of Scientific and Technical Information (OSTI)

    [29]

    Choi S, Park J, Roh Y J 2015 J. Korean Phys. Soc. 66 762Google Scholar

    [30]

    彭毅, 赵国强, 邓正, 靳常青 2024 物理学报 73 017503Google Scholar

    Peng Y, Zhao G Q, Deng Z, Jin C Q 2024 Acta Phys. Sin. 73 017503Google Scholar

    [31]

    McClelland I, Johnston B, Baker P J, Amores M, Cussen E J, Corr S A (Clarke D R ed) 2020 Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials) p371

  • 图 1  (a) μSR技术的原理示意图; (b) μSR技术填补了其他手段测量动态磁场的频率空白

    Fig. 1.  (a) Schematic diagram of the principle of μSR technique; (b) μSR technique fills in the gap of magnetic fluctuation rate between multiple techniques.

    图 2  (a) La3Ni2O7中的缪子不对称性参数谱在154 K以下出现了明显的振荡衰减[7]; (b) RbV3Sb5中缪子自旋弛豫率Γ在CDW转变温度$T_1^* 和T_2^*$处明显增强, 表明出现该转变打破时间反演对称[11]; (c) 量子自旋液体“海洋”中沉浸的自旋磁滴[15]; (d) 磁电材料Cr2O3表面上的单个电荷将诱导出表面下的镜像磁单极子, 这一镜像磁单极子又能在表面之上产生理想的单极磁场[20]

    Fig. 2.  (a) Muon asymmetry spectrum in La3Ni2O7 shows clear oscillations and damping below T = 154 K[7]; (b) muon spin relaxation rate Γ, is strongly enhanced below $T = T_1^*,\;T_2^* $, suggesting the time reversal symmetry broken CDW in RbV3Sb5[11]; (c) magnetic droplets immersed in a sea of quantum spin liquid[15]; (d) a single charge above the surface of magnetoelectric materials, Cr2O3, induces an image monopole beneath the surface, the image monopole then generates an ideal monopolar magnetic field above the surface[20].

    表 1  μSR设施的主要参数

    Table 1.  Main parameters of μSR facilities.

    主要参数 PSI TRIUMF ISIS J-PARC CSNS
    质子功率/MW 1.4 0.07 0.14 1 0.02
    表面缪子流强/s–1 107—109 2×106 107—108 1.5×107 105
    自旋极化率/% > 95 > 90 > 90 > 95 95
    重复频率/Hz 连续型 连续型 40 25 1—5
    不对称性参数A0 0.3 0.28 0.28 0.25 0.32
    计数率/(M·h–1·cm–2) ~25 ~15 ~100* ~55 ~20
    注: * 100 M/(h·cm2)是ISIS现有谱仪EMU的计数率, 正在改建的Super-MuSR将会使计数率提高到约1400 M/(h·cm2).
    下载: 导出CSV
  • [1]

    Karlsson E B 2022 Eur. Phys. J. H 47 4Google Scholar

    [2]

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257 [殳蕾, 倪晓杰, 潘子文 2021 物理 50 257]Google Scholar

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257Google Scholar

    [3]

    Bednorz J G, Muller K A 1986 Z. Phys. B Condens. Mat. 64 189Google Scholar

    [4]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [5]

    Zhang Y N, Su D J, Huang Y E, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [6]

    Tohyama T 2012 Jpn. J. Appl. Phys. 51 10004Google Scholar

    [7]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [8]

    Fowlie J, Hadjimichael M, Martins M M, Li D, Osada M, Wang B Y, Lee K, Lee Y, Salman Z, Prokscha T, Triscone J, Hwang H Y, Suter A 2022 Nat. Phys. 18 1043Google Scholar

    [9]

    Yin J X, Lian B, Hasan M Z 2022 Nature 612 647Google Scholar

    [10]

    Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald L, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, Toberer E S 2019 Phys. Rev. Mater. 3 94407Google Scholar

    [11]

    Guguchia Z, Mielke C, Das D, Gupta R, Yin J X, Liu H, Yin Q, Christensen M H, Tu Z, Gong C, Shumiya N, Hossain M S, Gamsakhurdashvili T, Elender M, Dai P, Amato A, Shi Y, Lei H C, Fernandes R M, Hasan M Z, Luetkens H, Khasanov R 2023 Nat. Commun. 14 153Google Scholar

    [12]

    Shumiya N, Hossain M S, Yin J, Jiang Y, Ortiz B R, Liu H, Shi Y, Yin Q, Le H, Zhan S S, Chang G, Zhang Q, Cochran T A, Multer D, Litskevich M, Cheng Z, Yang X P, Guguchia Z, Wilson S D, Hasan M Z 2021 Phys. Rev. B 104 35131Google Scholar

    [13]

    Anderson P W 1973 Mater. Res. Bull. 8 153Google Scholar

    [14]

    Liu W W, Zhang Z, Ji J T, Liu Y X, Li J Q, Wang X Q, Lei H C, Chen G, Zhang Q M 2018 Chin. Phys. Lett. 35 117501Google Scholar

    [15]

    Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Jiang C Y, Huang Y Y, Cheng E J, Yu Y J, Miao J J, Hillier A D, Chen X H, Wu T, Zhou Y, Li S Y, Shu L 2023 Innovation 4 100459Google Scholar

    [16]

    Dirac P 1931 Proc. R. Soc. London Ser. A-Math. Phys. 133 60Google Scholar

    [17]

    Rajantie A 2016 Phys. Today 69 40Google Scholar

    [18]

    Fechner M, Spaldin N A, Dzyaloshinskii I E 2014 Phys. Rev. B 89 184415Google Scholar

    [19]

    Wiegelmann H, Jansen A G M, Wyder P, Rivera J P, Schmid H 1994 Ferroelectrics 162 141Google Scholar

    [20]

    Meier Q N, Fechner M, Nozaki T, Sahashi M, Salman Z, Prokscha T, Suter A, Schoenherr P, Lilienblum M, Borisov P, Dzyaloshinskii I E, Fiebig M, Luetkens H, Spaldin N A 2019 Phys. Rev. X 9 11011Google Scholar

    [21]

    SμS Instruments. https://www.psi.ch/en/smus/instruments [2024-09-18]

    [22]

    FLexible Advanced MuSR Environment (FLAME) Project. https://www.psi.ch/en/smus/flame-project [2024-09-18]

    [23]

    Super-MuSR. https://www.isis.stfc.ac.uk/Pages/Super-MuSR.aspx [2024-09-18]

    [24]

    μSR Beamlines at TRIUMF. https://cmms.triumf.ca/equip/muSRbeamlines.html [2024-09-18]

    [25]

    Muon Instruments at Materials and Life Science Experimental Facility. https://j-parc.jp/researcher/MatLife/en/instrumentation/ms.html [2024-09-18]

    [26]

    Kanda S, Teshima N, Adachi T, Ikedo Y, Miyake Y, Nagatani Y, Nakamura S, Oishi Y, Shimomura K, Strasser P, Umezawa T 2023 The Ultra-Slow Muon Beamline at J-PARC: Present Status and Future Prospects2462) (Parma) p12030

    [27]

    Li Q, Pan Z W, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 Design of the First μSR Spectrometer at China Spallation Neutron Source2462) (Parma) p12022

    [28]

    Williams T J, MacDougall G J 2017 Future Muon Source Possibilities at the SNS (Oak Ridge, TN (United States): Office of Scientific and Technical Information (OSTI)

    [29]

    Choi S, Park J, Roh Y J 2015 J. Korean Phys. Soc. 66 762Google Scholar

    [30]

    彭毅, 赵国强, 邓正, 靳常青 2024 物理学报 73 017503Google Scholar

    Peng Y, Zhao G Q, Deng Z, Jin C Q 2024 Acta Phys. Sin. 73 017503Google Scholar

    [31]

    McClelland I, Johnston B, Baker P J, Amores M, Cussen E J, Corr S A (Clarke D R ed) 2020 Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials) p371

  • [1] 殷嘉鑫, 王强华. 超导能隙振荡: 到底来自配对密度波还是拆对散射?. 物理学报, 2024, 73(15): 157401. doi: 10.7498/aps.73.20240807
    [2] 赵宗阳, 李铭, 周涛. 石墨烯类超导体的单磁性杂质效应. 物理学报, 2023, 72(20): 207401. doi: 10.7498/aps.72.20230830
    [3] 郭琳, 杨小帆, 程二建, 泮炳霖, 朱楚楚, 李世燕. 三角晶格自旋液体候选材料NaYbSe2在高压下的超导转变. 物理学报, 2023, 72(15): 157401. doi: 10.7498/aps.72.20230730
    [4] 黄佳贝, 廉富镯, 汪致远, 孙世涛, 李明, 张棣, 蔡晓凡, 马国栋, 麦志洪, Andy Shen, 王雷, 于葛亮. 二维范德瓦耳斯材料的超导物性研究及性能调控. 物理学报, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [5] 奉熙林, 蒋坤, 胡江平. 钒基笼目超导体. 物理学报, 2022, 71(11): 118103. doi: 10.7498/aps.71.20220891
    [6] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器. 物理学报, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [7] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质. 物理学报, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [8] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [9] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [10] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [11] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [12] 史良马, 张世军, 朱仁义. 双能隙介观超导体的涡旋结构模拟. 物理学报, 2013, 62(9): 097401. doi: 10.7498/aps.62.097401
    [13] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [14] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [15] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [16] 杨鹏飞, 白晋涛, 杨小鹏. 有限厚无限大平板超导体模型场分布的严格解. 物理学报, 2007, 56(9): 5033-5036. doi: 10.7498/aps.56.5033
    [17] 杨鹏飞, 陈文学. 超导体界面层的电场电荷分布及起源. 物理学报, 2006, 55(12): 6622-6629. doi: 10.7498/aps.55.6622
    [18] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [19] 徐荣青, 王嘉赋, 周青春. 极向Kerr效应对电子自旋交换劈裂的依赖性. 物理学报, 2002, 51(9): 2161-2166. doi: 10.7498/aps.51.2161
    [20] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
计量
  • 文章访问数:  802
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-08-30
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回