搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶忆阻Henon映射的可控多稳定性及其视频加密应用

张红伟 付常磊 潘志翔 丁大为 王金 杨宗立 刘涛

引用本文:
Citation:

分数阶忆阻Henon映射的可控多稳定性及其视频加密应用

张红伟, 付常磊, 潘志翔, 丁大为, 王金, 杨宗立, 刘涛
cstr: 32037.14.aps.73.20240942

Controllable multistability of fractional-order memristive Henon map and its application in video encryption

Zhang Hong-Wei, Fu Chang-Lei, Pan Zhi-Xiang, Ding Da-Wei, Wang Jin, Yang Zong-Li, Liu Tao
cstr: 32037.14.aps.73.20240942
PDF
HTML
导出引用
  • 基于局部有源离散忆阻器构建一种能够产生任意数量共存吸引子的分数阶忆阻Henon映射. 该映射的不动点数量由忆阻器内部参数控制, 实现可控的同质多稳定性, 适合基于混沌的工程应用. 通过相图、分岔图、最大Lyapunov指数和吸引盆等方法揭示该映射的复杂动力学行为. 数值模拟结果表明, 该分数阶映射能够产生各种周期轨道、混沌吸引子和倍周期分岔等现象. 随后使用ARM数字平台实现该系统, 实验结果验证其物理可实现性. 最后, 基于该映射设计一种视频加密算法, 并通过安全性分析验证该加密算法能够有效保证视频的安全传输.
    In recent years, the use of discrete memristors to enhance chaotic maps has received increasing attention. The introduction of memristors increases the complexity of chaotic maps, making them suitable for engineering applications based on chaotic systems. In this work, a fractional-order discrete memristor exhibiting local activity and controllable asymptotic stability points is constructed by using multiband nonlinear functions. The locally active property of this memristor is demonstrated by using the power-off plot and DC v - i plot. It is then introduced into the Henon map to construct a fractional-order memristive Henon map that can generate any number of coexisting attractors. Simulation results show that the number of fixed points in the system is controlled by the memristor parameters and related to the number of coexisting attractors, thus achieving controllable homogeneous multistability. The complex dynamical behaviors of this map are analyzed by using phase portraits, bifurcation diagrams, maximum Lyapunov exponent (MLE), and attractor basins. Numerical simulations show that the fractional-order map can generate various periodic orbits, chaotic attractors, and period-doubling bifurcations. The system is then implemented on an ARM digital platform. The experimental results are consistent with the simulation results, confirming the accuracy of the theoretical analysis and its physical feasibility. Finally, a parallel video encryption algorithm is designed by using the chaotic sequence iteratively generated by fraction-order memory Henon mapping, which mainly includes frame pixel scrambling and diffusion. Comprehensive security analyses are conducted, proving the robustness and reliability of the proposed encryption scheme. The results show that the encryption algorithm can effectively protect video information. In the future, we will explore other methods of constructing chaotic or hyperchaotic systems with controllable multistability and study their circuit implementation, synchronization control, and chaos-based engineering applications.
      通信作者: 丁大为, dwding@ahu.edu.cn
      Corresponding author: Ding Da-Wei, dwding@ahu.edu.cn
    [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130Google Scholar

    [2]

    黄泽徽, 李亚安, 陈哲, 刘恋 2020 物理学报 69 160501Google Scholar

    Huang Z H, Li Y A, Chen Z, Liu L 2020 Acta Phys. Sin. 69 160501Google Scholar

    [3]

    Hua Z Y, Zhou B H, Zhou Y C 2019 IEEE Trans. Ind. Electron. 66 1273Google Scholar

    [4]

    Zhou S, Qiu Y Y, Wang X Y, Zhang Y Q 2023 Nonlinear Dyn. 111 9571Google Scholar

    [5]

    Li H D, Li C L, Du J R 2023 Nonlinear Dyn. 111 2895Google Scholar

    [6]

    Araújo J, Gallas J A C 2021 Chaos Soliton. Fract. 150 111180Google Scholar

    [7]

    Lv Z W, Sun F Y, Cai C X 2022 Nonlinear Dyn. 109 3133Google Scholar

    [8]

    Fu L X, Wu X M, He S B, Wang H H, Sun K H 2023 IEEE Trans. Ind. Electron. 71 9668Google Scholar

    [9]

    Zhang S, Li C B, Zheng J H, Wang X P, Zeng Z G, Peng X N 2022 IEEE Trans. Ind. Electron. 69 7202Google Scholar

    [10]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [11]

    吴朝俊, 方礼熠, 杨宁宁 2024 物理学报 73 010501Google Scholar

    Wu C J, Fang L Y, Yang N N 2024 Acta Phys. Sin. 73 010501Google Scholar

    [12]

    Pratyusha N, Mandal S 2023 Circuits Syst. Signal Process. 42 3812Google Scholar

    [13]

    Elsadany A A, Elsonbaty A, Hagras E A A 2023 Soft Comput. 27 4521Google Scholar

    [14]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Zhou G D, Qi D L 2022 IEEE Trans. Consum. Electron. 69 1005Google Scholar

    [15]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Qi D L 2023 IEEE Trans. Circuits Syst. Video Technol. 33 7928Google Scholar

    [16]

    郭慧朦, 梁燕, 董玉姣, 王光义 2023 物理学报 72 070501Google Scholar

    Guo H M, Liang Y, Dong Y J, Wang G Y 2023 Acta Phys. Sin. 72 070501Google Scholar

    [17]

    Ji X Y, Dong, Z K, Zhou G D, Lai C S, Qi D L 2024 IEEE Trans. Syst. Man. Cybern. Syst. 54 5137Google Scholar

    [18]

    Chua L 2014 Semicond. Sci. Technol. 29 104001Google Scholar

    [19]

    Ma M L, Yang Y, Qiu Z C, Peng Y X, Sun Y C, Li Z J, Wang M J 2022 Nonlinear Dyn. 107 2935Google Scholar

    [20]

    Lai Q, Wan Z Q, Zhang H, Chen G R 2023 IEEE Trans. Neural Netw. Learn. Syst. 34 7824Google Scholar

    [21]

    Zhang S, Li C B, Zheng J H, Wang X P, Zeng Z G, Chen G R 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 4945Google Scholar

    [22]

    Li H Z, Hua Z Y, Bao H, Zhu L, Chen M, Bao B C 2021 IEEE Trans. Ind. Electron. 68 9931Google Scholar

    [23]

    Abbes A, Ouannas A, Shawagfeh N, Khennaoui A A 2022 Eur. Phys. J. Plus 137 235Google Scholar

    [24]

    Zhao L D 2021 Physica A 561 125150Google Scholar

    [25]

    Zhao L D 2020 Circuits Syst. Signal Process. 39 6394Google Scholar

    [26]

    Liu X G, Ma L 2020 Appl. Math. Comput. 385 125423Google Scholar

    [27]

    Peng Y X, He S B, Sun K H 2021 Results Phys. 24 104106Google Scholar

    [28]

    Liu X, Yu Y G 2021 Neural Comput. Appl. 33 10503Google Scholar

    [29]

    Yang F F, Mou J, Ma C G, Cao Y H 2020 Opt. Lasers Eng. 129 106031Google Scholar

    [30]

    Wang Y P, Liu S T, Li H 2020 Nonlinear Dyn. 102 579Google Scholar

    [31]

    Ma C G, Mou J, Li P, Liu T M 2021 Eur. Phys. J. Spec. Top. 230 1945Google Scholar

    [32]

    Hadjadj M A, Sadoudi S, Azzaz M S, Bendecheche H, Kaibou R 2022 J. Real- Time Image Process. 19 1049Google Scholar

    [33]

    Dolati N, Beheshti A, Azadegan H 2021 Multimed. Tools Appl. 80 2319Google Scholar

    [34]

    Tabash F K, Izharuddin M 2019 Multimed. Tools Appl. 78 7365Google Scholar

    [35]

    Karmakar J, Pathak A, Nandi D, Mandal M K 2021 Digit. Signal Prog. 117 103143Google Scholar

    [36]

    Liu S C, Li Y X, Ge X Z, Li C B, Zhao Y B 2022 Phys. Scr. 97 085210Google Scholar

    [37]

    Li X D, Yu H Y, Zhang H Y, Jin X, Sun H B, Liu J 2020 Multimed. Tools Appl. 79 23995Google Scholar

    [38]

    Liu T M, Mou J, Banerjee S, Cao Y H, Han X T 2021 Nonlinear Dyn. 106 1011Google Scholar

    [39]

    Lu Y M, Wang C H, Deng Q L, Xu C 2022 Chin. Phys. B 31 060502Google Scholar

    [40]

    Lin H, Wang C, Sun Y, Yao W 2020 Nonlinear Dyn. 100 3667Google Scholar

    [41]

    丁大为, 王谋媛, 王金, 杨宗立, 牛炎, 王威 2024 物理学报 73 100502Google Scholar

    Ding D W, Wang M Y, Wang J, Yang Z L, Niu Y, Wang W 2024 Acta Phys. Sin. 73 100502Google Scholar

    [42]

    全旭, 邱达, 孙智鹏, 张贵重, 刘嵩 2023 物理学报 72 190502Google Scholar

    Quan X, Qiu D, Sun Z P, Zhang G Z, Liu S 2023 Acta Phys. Sin. 72 190502Google Scholar

    [43]

    张贵重, 全旭, 刘嵩 2022 物理学报 71 240502Google Scholar

    Zhang G Z, Quan X, Liu S 2022 Acta Phys. Sin. 71 240502Google Scholar

    [44]

    秦铭宏, 赖强, 吴永红 2022 物理学报 71 160502Google Scholar

    Qin M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [45]

    El-Latif A A A, Abd-El-Atty B, Mazurczyk W, Fung C, Venegas-Andraca S E 2020 IEEE Trans. Netw. Serv. Manage. 17 118Google Scholar

    [46]

    Jiang D, Chen T, Yuan Z, Li W X, Wang H T, Lu L L 2024 Inf. Sci. 666 120420Google Scholar

  • 图 1  分数阶局部有源离散忆阻器的紧磁滞回线 (a) $ H = 1.0 $; (b) $ \omega = 0.001 $

    Fig. 1.  Pinched hysteresis loops of fractional-order locally active discrete memristor: (a) $ H = 1.0 $; (b) $ \omega = 0.001 $.

    图 2  分数阶局部有源离散忆阻器的POP (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $

    Fig. 2.  POP of fractional-order locally active discrete memristor: (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $.

    图 3  分数阶局部有源离散忆阻器的DC v - i

    Fig. 3.  DC v - i plot of fractional-order locally active discrete memristor.

    图 4  忆阻Henon映射的结构图

    Fig. 4.  Structure of memristive Henon map.

    图 5  分数阶忆阻Henon映射的不动点 (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $

    Fig. 5.  Fixed points of fractional-order memristive Henon map: (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $.

    图 6  分数阶忆阻Henon映射生成的共存吸引子 (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $

    Fig. 6.  Coexisting attractors generated by fractional-order memristive Henon map: (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $

    图 7  初始值$ z(1) $的分岔图 (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $

    Fig. 7.  Bifurcation diagrams of initial value $ z(1) $: (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $.

    图 8  $ x(1){\text{-}}z(1) $平面的吸引盆 (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $

    Fig. 8.  Attraction basins in $ x(1){\text{-}}z(1) $ plane : (a) $ {I_1} = 0 $; (b) $ {I_2} = 0 $; (c) $ {I_1} = 1 $; (d) $ {I_2} = 1 $.

    图 10  当$ q $取不同值时, 分数阶忆阻Henon映射产生的吸引子 (a) $ q = 0.75 $; (b) $ q = 0.83 $; (c) $ q = 0.935 $

    Fig. 10.  When $ q $ takes different values, the attractors generated by the fractional-order memristive Henon map: (a) $ q = 0.75 $; (b) $ q = 0.83 $; (c) $ q = 0.935 $.

    图 11  当$ k \in [ - 0.59, 2.09] $时, 分数阶忆阻Henon的动力学行为 (a)分岔图; (b) MLE

    Fig. 11.  When $ k \in [ - 0.59, 2.09] $, the dynamical behaviors of fractional-order memristive Henon map: (a) Bifurcation diagram; (b) MLE.

    图 12  当$ k $取不同值时, 分数阶忆阻Henon映射产生的吸引子 (a) $ k = - 0.5 $; (b) $ k = 0.1 $; (c) $ k = 0.88 $

    Fig. 12.  When $ k $ takes different values, the attractors generated by the fractional-order memristive Henon map: (a) $ k = - 0.5 $; (b) $ k = 0.1 $; (c) $ k = 0.88 $.

    图 13  硬件实现框架

    Fig. 13.  Framework of hardware implementation.

    图 9  当$ q \in [0.728, 1.15] $时, 分数阶忆阻Henon的动力学行为 (a)分岔图; (b) MLE

    Fig. 9.  When $ q \in [0.728, 1.15] $, the dynamical behaviors of fractional-order memristive Henon map: (a) Bifurcation diagram; (b) MLE.

    图 14  阶次$ q $取不同值时的硬件实现结果 (a)硬件连接图; (b) $ q = 0.75 $; (c) $ q = 0.935 $

    Fig. 14.  Results of hardware implementation for different values of order $ q $: (a) Hardware connection diagram; (b) $ q = $$ 0.75 $; (c) $ q = 0.935 $.

    图 15  视频加密方案的流程

    Fig. 15.  Flow of video encryption scheme.

    图 16  帧图像加密的流程

    Fig. 16.  Flow of frame image encryption.

    图 17  样本视频的加密和解密结果 (a) 原始News帧图像(第1, 91, 139, 186和300帧); (b)加密帧图像; (c)解密帧图像

    Fig. 17.  Encryption and decryption results of the sample videos: (a) Original News frame images (frames 1, 91, 139, 186 and 300); (b) encrypt frame images; (c) decrypt frame images.

    图 18  原始帧图像和加密帧图像的直方图(News第91帧) (a)原始帧图像; (b)加密帧图像

    Fig. 18.  Histograms of the original and encrypted frame image (News frame 91): (a) Original frame image; (b) encrypted frame image.

    图 19  (a)—(c)原始帧图像和(d)—(f)加密帧图像(News第91帧)在3个方向上的相关性 (a), (d)水平; (b), (e)垂直; (c), (f)对角线

    Fig. 19.  Correlation of the (a)–(c) original and (d)–(f) encrypted frame image (News frame 91) in three directions: (a), (d) Horizontal; (b), (e) vertical; (c), (f) diagonal.

    图 20  密钥敏感性分析(News第91帧) (a)使用正确密钥解密的帧图像; (b)使用错误密钥解密的帧图像($ y(1) = 0.5 + {10^{ - 16}} $); (c)使用错误密钥解密的帧图像($ q = 0.95 + {10^{ - 16}} $)

    Fig. 20.  Key sensitivity analysis (News frame 91): (a) Decrypted frame image with the correct key; (b) decrypted frame image with the wrong key ($ y(1) = 0.5 + {10^{ - 16}} $); (c) decrypted frame image with the wrong key ($ q = 0.95 + {10^{ - 16}} $).

    图 21  不同强度椒盐噪声攻击下的解密帧图像(News第91帧) (a) 10%; (b) 20%; (c) 30%

    Fig. 21.  Decrypted frame image (News frame 91) under salt and pepper noise attack with different noise intensities: (a) 10%; (b) 20%; (c) 30%.

    图 22  不同数据丢失强度下的加密帧图像和解密帧图像(News第91帧) (a), (d) 1/16; (b), (e) 1/4; (c), (f) 1/2

    Fig. 22.  Encrypted and decrypted frame image (News frame 91) under different data loss intensities: (a), (d) 1/16; (b), (e) 1/4; (c), (f) 1/2.

    表 1  原始帧图像和加密帧图像(News第91帧)在3个方向上的相关系数

    Table 1.  Correlation coefficients between the original frame image and the encrypted frame image (News frame 91) in three directions.

    图像 方向 R G B
    原始帧图像 水平 0.9536 0.9338 0.9408
    垂直 0.9718 0.9618 0.9658
    对角线 0.9346 0.9077 0.9173
    加密后的帧图像 水平 0.0001 –0.0066 –0.0031
    垂直 –0.0060 0.0014 –0.0001
    对角线 –0.0004 0.0012 –0.0034
    文献[45]加密帧图像 水平 0.0001 –0.0017 –0.0004
    垂直 –0.0008 0.0009 0.0011
    对角线 0.0001 0.0004 0.0007
    下载: 导出CSV

    表 2  原始帧图像和加密帧图像(News第91帧)的信息熵

    Table 2.  Information entropy of original frame image and encrypted frame image (News frame 91).

    R G B
    原始帧图像 7.2456 7.0573 6.9584
    加密后的帧图像 7.9980 7.9986 7.9985
    下载: 导出CSV

    表 3  与其他视频加密方案密钥空间的比较结果.

    Table 3.  Comparison of key spaces with other video encryption schemes.

    文献[37][45][32][46]本文
    密钥空间21972305232023842478
    下载: 导出CSV
  • [1]

    Lorenz E N 1963 J. Atmos. Sci. 20 130Google Scholar

    [2]

    黄泽徽, 李亚安, 陈哲, 刘恋 2020 物理学报 69 160501Google Scholar

    Huang Z H, Li Y A, Chen Z, Liu L 2020 Acta Phys. Sin. 69 160501Google Scholar

    [3]

    Hua Z Y, Zhou B H, Zhou Y C 2019 IEEE Trans. Ind. Electron. 66 1273Google Scholar

    [4]

    Zhou S, Qiu Y Y, Wang X Y, Zhang Y Q 2023 Nonlinear Dyn. 111 9571Google Scholar

    [5]

    Li H D, Li C L, Du J R 2023 Nonlinear Dyn. 111 2895Google Scholar

    [6]

    Araújo J, Gallas J A C 2021 Chaos Soliton. Fract. 150 111180Google Scholar

    [7]

    Lv Z W, Sun F Y, Cai C X 2022 Nonlinear Dyn. 109 3133Google Scholar

    [8]

    Fu L X, Wu X M, He S B, Wang H H, Sun K H 2023 IEEE Trans. Ind. Electron. 71 9668Google Scholar

    [9]

    Zhang S, Li C B, Zheng J H, Wang X P, Zeng Z G, Peng X N 2022 IEEE Trans. Ind. Electron. 69 7202Google Scholar

    [10]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [11]

    吴朝俊, 方礼熠, 杨宁宁 2024 物理学报 73 010501Google Scholar

    Wu C J, Fang L Y, Yang N N 2024 Acta Phys. Sin. 73 010501Google Scholar

    [12]

    Pratyusha N, Mandal S 2023 Circuits Syst. Signal Process. 42 3812Google Scholar

    [13]

    Elsadany A A, Elsonbaty A, Hagras E A A 2023 Soft Comput. 27 4521Google Scholar

    [14]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Zhou G D, Qi D L 2022 IEEE Trans. Consum. Electron. 69 1005Google Scholar

    [15]

    Ji X Y, Dong Z K, Han Y F, Lai C S, Qi D L 2023 IEEE Trans. Circuits Syst. Video Technol. 33 7928Google Scholar

    [16]

    郭慧朦, 梁燕, 董玉姣, 王光义 2023 物理学报 72 070501Google Scholar

    Guo H M, Liang Y, Dong Y J, Wang G Y 2023 Acta Phys. Sin. 72 070501Google Scholar

    [17]

    Ji X Y, Dong, Z K, Zhou G D, Lai C S, Qi D L 2024 IEEE Trans. Syst. Man. Cybern. Syst. 54 5137Google Scholar

    [18]

    Chua L 2014 Semicond. Sci. Technol. 29 104001Google Scholar

    [19]

    Ma M L, Yang Y, Qiu Z C, Peng Y X, Sun Y C, Li Z J, Wang M J 2022 Nonlinear Dyn. 107 2935Google Scholar

    [20]

    Lai Q, Wan Z Q, Zhang H, Chen G R 2023 IEEE Trans. Neural Netw. Learn. Syst. 34 7824Google Scholar

    [21]

    Zhang S, Li C B, Zheng J H, Wang X P, Zeng Z G, Chen G R 2021 IEEE Trans. Circuits Syst. I-Regul. Pap. 68 4945Google Scholar

    [22]

    Li H Z, Hua Z Y, Bao H, Zhu L, Chen M, Bao B C 2021 IEEE Trans. Ind. Electron. 68 9931Google Scholar

    [23]

    Abbes A, Ouannas A, Shawagfeh N, Khennaoui A A 2022 Eur. Phys. J. Plus 137 235Google Scholar

    [24]

    Zhao L D 2021 Physica A 561 125150Google Scholar

    [25]

    Zhao L D 2020 Circuits Syst. Signal Process. 39 6394Google Scholar

    [26]

    Liu X G, Ma L 2020 Appl. Math. Comput. 385 125423Google Scholar

    [27]

    Peng Y X, He S B, Sun K H 2021 Results Phys. 24 104106Google Scholar

    [28]

    Liu X, Yu Y G 2021 Neural Comput. Appl. 33 10503Google Scholar

    [29]

    Yang F F, Mou J, Ma C G, Cao Y H 2020 Opt. Lasers Eng. 129 106031Google Scholar

    [30]

    Wang Y P, Liu S T, Li H 2020 Nonlinear Dyn. 102 579Google Scholar

    [31]

    Ma C G, Mou J, Li P, Liu T M 2021 Eur. Phys. J. Spec. Top. 230 1945Google Scholar

    [32]

    Hadjadj M A, Sadoudi S, Azzaz M S, Bendecheche H, Kaibou R 2022 J. Real- Time Image Process. 19 1049Google Scholar

    [33]

    Dolati N, Beheshti A, Azadegan H 2021 Multimed. Tools Appl. 80 2319Google Scholar

    [34]

    Tabash F K, Izharuddin M 2019 Multimed. Tools Appl. 78 7365Google Scholar

    [35]

    Karmakar J, Pathak A, Nandi D, Mandal M K 2021 Digit. Signal Prog. 117 103143Google Scholar

    [36]

    Liu S C, Li Y X, Ge X Z, Li C B, Zhao Y B 2022 Phys. Scr. 97 085210Google Scholar

    [37]

    Li X D, Yu H Y, Zhang H Y, Jin X, Sun H B, Liu J 2020 Multimed. Tools Appl. 79 23995Google Scholar

    [38]

    Liu T M, Mou J, Banerjee S, Cao Y H, Han X T 2021 Nonlinear Dyn. 106 1011Google Scholar

    [39]

    Lu Y M, Wang C H, Deng Q L, Xu C 2022 Chin. Phys. B 31 060502Google Scholar

    [40]

    Lin H, Wang C, Sun Y, Yao W 2020 Nonlinear Dyn. 100 3667Google Scholar

    [41]

    丁大为, 王谋媛, 王金, 杨宗立, 牛炎, 王威 2024 物理学报 73 100502Google Scholar

    Ding D W, Wang M Y, Wang J, Yang Z L, Niu Y, Wang W 2024 Acta Phys. Sin. 73 100502Google Scholar

    [42]

    全旭, 邱达, 孙智鹏, 张贵重, 刘嵩 2023 物理学报 72 190502Google Scholar

    Quan X, Qiu D, Sun Z P, Zhang G Z, Liu S 2023 Acta Phys. Sin. 72 190502Google Scholar

    [43]

    张贵重, 全旭, 刘嵩 2022 物理学报 71 240502Google Scholar

    Zhang G Z, Quan X, Liu S 2022 Acta Phys. Sin. 71 240502Google Scholar

    [44]

    秦铭宏, 赖强, 吴永红 2022 物理学报 71 160502Google Scholar

    Qin M H, Lai Q, Wu Y H 2022 Acta Phys. Sin. 71 160502Google Scholar

    [45]

    El-Latif A A A, Abd-El-Atty B, Mazurczyk W, Fung C, Venegas-Andraca S E 2020 IEEE Trans. Netw. Serv. Manage. 17 118Google Scholar

    [46]

    Jiang D, Chen T, Yuan Z, Li W X, Wang H T, Lu L L 2024 Inf. Sci. 666 120420Google Scholar

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究. 物理学报, 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 王梦蛟, 杨琛, 贺少波, 李志军. 一种新型复合指数型局部有源忆阻器耦合的Hopfield神经网络. 物理学报, 2024, 73(13): 130501. doi: 10.7498/aps.73.20231888
    [3] 何朝滔, 卢羽, 李秀林, 陈鹏. 限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控. 物理学报, 2022, 71(8): 086102. doi: 10.7498/aps.71.20211999
    [4] 丁大为, 卢小齐, 胡永兵, 杨宗立, 王威, 张红伟. 分数阶忆阻耦合异质神经元的多稳态及硬件实现. 物理学报, 2022, 71(23): 230501. doi: 10.7498/aps.71.20221525
    [5] 张贵重, 全旭, 刘嵩. 一个具有超级多稳定性的忆阻混沌系统的分析与FPGA实现. 物理学报, 2022, 71(24): 240502. doi: 10.7498/aps.71.20221423
    [6] 王世场, 卢振洲, 梁燕, 王光义. N型局部有源忆阻器的神经形态行为. 物理学报, 2022, 71(5): 050502. doi: 10.7498/aps.71.20212017
    [7] 朱玮, 刘兰, 文常保, 李杰. 双层结构突触仿生忆阻器的时空信息传递及稳定性. 物理学报, 2021, 70(17): 178504. doi: 10.7498/aps.70.20210274
    [8] 林书庆, 江宁, 王超, 胡少华, 李桂兰, 薛琛鹏, 刘雨倩, 邱昆. 基于动态混沌映射的三维加密正交频分复用无源光网络. 物理学报, 2018, 67(2): 028401. doi: 10.7498/aps.67.20171246
    [9] 林毅, 刘文波, 沈骞. 五阶压控忆阻蔡氏混沌电路的双稳定性. 物理学报, 2018, 67(23): 230502. doi: 10.7498/aps.67.20181283
    [10] 俞清, 包伯成, 徐权, 陈墨, 胡文. 基于有源广义忆阻的无感混沌电路研究. 物理学报, 2015, 64(17): 170503. doi: 10.7498/aps.64.170503
    [11] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [12] 李丽香, 彭海朋, 罗群, 杨义先, 刘喆. 一种分数阶非线性系统稳定性判定定理的问题及分析. 物理学报, 2013, 62(2): 020502. doi: 10.7498/aps.62.020502
    [13] 胡建兵, 赵灵冬. 分数阶系统稳定性理论与控制研究. 物理学报, 2013, 62(24): 240504. doi: 10.7498/aps.62.240504
    [14] 张新稳, 胡琦. 有机电致发光器件的稳定性. 物理学报, 2012, 61(20): 207802. doi: 10.7498/aps.61.207802
    [15] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用. 物理学报, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [16] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步. 物理学报, 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [17] 胡建兵, 韩焱, 赵灵冬. 分数阶系统的一种稳定性判定定理及在分数阶统一混沌系统同步中的应用. 物理学报, 2009, 58(7): 4402-4407. doi: 10.7498/aps.58.4402
    [18] 李齐良, 朱海东, 唐向宏, 李承家, 王小军, 林理彬. 有源光放大器链路中交叉相位调制的不稳定性. 物理学报, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [19] 陆启韶. 有扩散不稳定性的四阶反应-扩散系统的空间周期结构. 物理学报, 1989, 38(12): 1901-1910. doi: 10.7498/aps.38.1901
    [20] 许鹏飞, 冯秉铨. 电子耦合振荡器之频率稳定性. 物理学报, 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
计量
  • 文章访问数:  1074
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-08
  • 修回日期:  2024-08-12
  • 上网日期:  2024-08-20
  • 刊出日期:  2024-09-20

/

返回文章
返回