搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

心律失常的多尺度建模、计算与动力学理论进展综述

黄晓东 贺彬烜 宋震 弭元元 屈支林 胡岗

引用本文:
Citation:

心律失常的多尺度建模、计算与动力学理论进展综述

黄晓东, 贺彬烜, 宋震, 弭元元, 屈支林, 胡岗
cstr: 32037.14.aps.73.20240977

A review of advances in multiscale modelings, computations, and dynamical theories of arrhythmias

Huang Xiao-Dong, He Bin-Xuan, Song Zhen, Mi Yuan-Yuan, Qu Zhi-Lin, Hu Gang
cstr: 32037.14.aps.73.20240977
PDF
HTML
导出引用
  • 心律失常是当前生物物理交叉学科中发展得比较成熟的一个分支, 在实验和理论方面均取得了丰硕的成果. 近年来, 随着实验数据的积累, 人们在多个尺度上发现了更丰富多样的心律失常诱因, 这对物理学的研究提出了新的需求和挑战. 因此, 心肌系统的多尺度建模、计算和动力学分析是心律失常领域进一步发展的关键. 本文旨在对这个课题进行一个阶段性的回顾, 扼要介绍心肌多尺度建模的基本理念和方法, 并以尺度为脉络, 介绍近年来在心律失常机制理论方面取得的若干重要成果. 现有成果表明, 非线性动力学、斑图动力学和统计物理对心律失常的基本认识和理论的发展具有重要的意义. 未来的研究应在拓展模型尺度(向更微观和宏观方向拓展模型), 解决心律失常基础动力学问题(如非均匀系统的稳定性、斑图的相变理论), 以及解决更复杂而基本的生理医学问题(如心率变异、人群心律失常发生概率风险的评估)等方面继续深入探索.
    Biological systems are complex systems that are regulated on multiple scales, with dynamics ranging from random molecular fluctuations to spatiotemporal wave dynamics and periodic oscillations. To understand the underlying mechanisms and link the dynamics on a molecular scale to those on a tissue scale and an organ scale, the research approaches to integrating computer modeling and simulation, nonlinear dynamics, and experimental and clinical data have been widely used. In this article, we review how these approaches have been used to investigate the multiscale cardiac excitation dynamics, particularly the genesis of cardiac arrhythmias that can lead to sudden death. The specific topics covered in this review are as follows: i) mechanisms of formation of intracellular calcium sparks and waves on a subcellular scale, which can be described by the stochastic transitions between the two stable states of a bistable system and the second order phase transition, respectively; ii) mechanisms of triggered activities on a cellular scale resulting from transmembrane voltage and intracellular calcium cycling and their coupling, some of which can be well described by the bifurcation theories of the nonlinear dynamical system; iii) mechanisms for the genesis of arrhythmias on a tissue scale induced by the triggered activities, which can be regarded as dynamical instability-induced pattern formation in heterogeneous excitable media; and iv) manifestations of the excitation dynamics and transitions in the whole heart (on an organ scale) in electrocardiogram to bridge the spatiotemporal wave dynamics to clinical observations. These results indicate that nonlinear dynamics, pattern formation, and statistical physics are the fundamental components in establishing a theoretical framework for understanding cardiac arrhythmias.
      通信作者: 黄晓东, schuangxd@scut.edu.cn
    • 基金项目: 广东省基础与应用基础研究基金(批准号: 2021A1515010500)和国家自然科学基金(批准号: 82172067, T2122016)资助的课题.
      Corresponding author: Huang Xiao-Dong, schuangxd@scut.edu.cn
    • Funds: Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2021A1515010500) and the National Natural Science Foundation of China (Grant Nos. 82172067, T2122016).
    [1]

    Barber M, Nguyen L S, Wassermann J, Spano J P, Funck-Brentano C, Salem J E 2019 Cardiovasc. Res. 115 878Google Scholar

    [2]

    Yoshimoto A, Morikawa S, Kato E, Takeuchi H, Ikegaya Y 2024 Science 384 1361Google Scholar

    [3]

    Trayanova N A, Winslow R 2011 Circ. Res. 108 113Google Scholar

    [4]

    Qu Z L, Hu G, Garfinkel A, Weiss J N 2014 Phys. Rep. 543 61Google Scholar

    [5]

    Sager P T, Gintant G, Turner J R, Pettit S, Stockbridge N 2014 Am. Heart J. 167 292Google Scholar

    [6]

    Gintant G, Sager P T 2016 Nat. Rev. Drug Discov. 15 457Google Scholar

    [7]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500Google Scholar

    [8]

    Noble D 1962 J. Physiol. 160 317Google Scholar

    [9]

    Beeler G W, Reuter H 1977 J. Physiol. 268 177Google Scholar

    [10]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501Google Scholar

    [11]

    Zhang H, Holden A V, Kodama I, Honjo H, Lei M, Varghese T, Boyett M R 2000 Am. J. Physiol. Heart Circ. Physiol. 279 397Google Scholar

    [12]

    Luo C H, Rudy Y 1994 Circ. Res. 74 1071Google Scholar

    [13]

    ten Tusscher K H W J, Noble D, Noble P J, Panfilov A V 2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573Google Scholar

    [14]

    O’Hara T, Virag L, Varro A, Rudy Y 2011 PLoS Comput. Biol. 7 e1002061Google Scholar

    [15]

    Grandi E, Pasqualini F S, Bers D M 2010 J. Mol. Cell Cardiol. 48 112Google Scholar

    [16]

    Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie L H, Yang M J, Chen P S, Restrepo J G, Karma A, Garfinkel A, Qu Z L, Weiss J N 2008 Biophys. J. 94 392Google Scholar

    [17]

    Bartolucci C, Forouzandehmehr M, Severi S, Paci M 2022 Front. Physiol. 13 906146Google Scholar

    [18]

    Xia L, Huo M M, Wei Q, Liu F, Crozier S 2005 Phys. Med. Biol. 50 1901Google Scholar

    [19]

    Lu L Y, Zheng Q Q, Xia L, Zhu X W 2019 Comput. Biol. Med. 108 234Google Scholar

    [20]

    Balakina-Vikulova N A, Panfilov A, Solovyova O, Katsnelson L B 2020 J. Physiol. Sci. 70 12Google Scholar

    [21]

    Restrepo J G, Weiss J N, Karma A 2008 Biophys. J. 95 3767Google Scholar

    [22]

    Nivala M, de Lange E, Rovetti R, Qu Z L 2012 Front. Physiol. 3 114Google Scholar

    [23]

    Wilson D, Ermentrout B, Nemec J, Salama G 2017 Chaos 27 093940Google Scholar

    [24]

    Winfree A T 1983 Sci. Am. 248 144Google Scholar

    [25]

    Winfree A T 1987 When Time Breaks Down (Princeton: Princeton University Press

    [26]

    Glass L 1996 Phys. Today 49 40Google Scholar

    [27]

    Keener J, Sneyd J 2009 Mathematical Physiology (2nd Ed.) (Springer

    [28]

    Nolasco J B, Dahlen R W 1968 J. Appl. Physiol. 25 191Google Scholar

    [29]

    Weiss J N, Karma A, Shiferaw Y, Chen P S, Garfinkel A, Qu Z L 2006 Circ. Res. 98 1244Google Scholar

    [30]

    Qu Z L, Weiss J N 2023 Circ. Res. 132 127Google Scholar

    [31]

    Gilmour Jr R 2003 Drug Discov. Today 8 162Google Scholar

    [32]

    Karma A 2013 Annu. Rev. Condens. Matter Phys. 4 313Google Scholar

    [33]

    Panfilov A V, Dierckx H, Volpert V 2019 Physica D 399 1Google Scholar

    [34]

    Qu Z L, Weiss J N 2015 Annu. Rev. Physiol. 77 29Google Scholar

    [35]

    Lakatta E G, Maltsev V A, Vinogradova T M 2010 Circ Res 106 659Google Scholar

    [36]

    Weiss J N, Qu Z L 2020 JACC: Clin. Electrophy. 6 1841Google Scholar

    [37]

    Manoj P, Kim J A, Kim S, Li T, Sewani M, Chelu M G, Li N 2023 Am. J. Physiol. Heart Circ. Physiol. 324 H259Google Scholar

    [38]

    Torrente A G, Zhang R, Zaini A, Giani J F, Kang J, Lamp S T, Philipson K D, Goldbaber J I 2015 PNAS 112 9769Google Scholar

    [39]

    Krogh-Madsen T, Abbott G W, Christini D J 2012 PLoS Comput. Biol. 8 e1002390Google Scholar

    [40]

    Trayanova N A 2014 Circ. Res. 114 1516Google Scholar

    [41]

    Liu W, Kim T Y, Huang X D, Liu M B, Koren G, Choi B R, Qu Z L 2018 J. Physiol. 596 1341Google Scholar

    [42]

    Huang X D, Kim T Y, Koren G, Choi B R, Qu Z L 2016 Am. J. Physiol. 311 H147Google Scholar

    [43]

    Zhang Z, Liu M B, Huang X D, Song Z, Qu Z L 2021 Biophys. J. 120 352Google Scholar

    [44]

    Zhang Z, Qu Z L 2021 Phys. Rev. E 103 062406Google Scholar

    [45]

    Zhang Z, Chen P S, Weiss J N, Qu Z L 2022 Circ. Arrhythm. Electrophysiol. 15 e010365Google Scholar

    [46]

    Wilson L D, Jeyaraj D, Wan X, Hoeker G S, Said T M, Gittinger M, Laurita K R, Rosenbaum D S 2009 Heart Rhythm 6 251Google Scholar

    [47]

    Baher A A, Uy M, Xie F, Garfinkel A, Qu Z L, Weiss J N 2011 Heart Rhythm 8 599Google Scholar

    [48]

    Bak T, Sato D 2024 Heart Rhythm (DOI: 10.1016/j.hrthm. 2024.07.019

    [49]

    Xu A X, Guevara M R 1998 Chaos 8 157Google Scholar

    [50]

    Xie F, Qu Z L, Garfinkel A, Weiss J N 2001 Am. J. Physiol. Heart Circ. Physiol. 280 H1667Google Scholar

    [51]

    Vandersickel N, de Boer T P, Vos M A, Panfilov A V 2016 J. Physiol. 594 6865Google Scholar

    [52]

    Qu Z L, Garfinkel A, Weiss J N, Nivala M 2011 Prog. Biophys. Mol. Biol. 107 21Google Scholar

    [53]

    Zima A V, Picht E, Bers D M, Blatter L A 2008 Biophys. J. 94 1867Google Scholar

    [54]

    Laver D R, Kong C H T, Imtiaz M S, Cannell M B 2013 J. Mol. Cell. Cardiol. 54 98Google Scholar

    [55]

    Liu M B, Vandersickel N, Panfilov A V, Qu Z L 2019 Circ. Arrhythm. Electrophysiol. 12 e007571Google Scholar

    [56]

    Joshi H, Singharoy A B, Sereda Y V, Cheluvaraja S, Ortoleva P J 2011 Prog. Biophys. Mol. Biol. 107 200Google Scholar

    [57]

    Bers D M 2008 Annu. Rev. Physiol. 70 23Google Scholar

    [58]

    Fabiato A 1983 Am. J. Physiol. 245 C1Google Scholar

    [59]

    Cheng H P, Lederer W J, Cannell M B 1993 Science 262 740Google Scholar

    [60]

    Fowler E D, Wang N, Hezzell M, Chanoit G, Hancox J C, Cannell M B 2020 PNAS 117 2687Google Scholar

    [61]

    Qu Z L, Yan D, Song Z 2022 Biomolecules 12 1686Google Scholar

    [62]

    Song Z, Karma A, Weiss J N, Qu Z L 2016 PLoS Comput. Biol. 12 e1004671Google Scholar

    [63]

    Iaparov B I, Zahradnik I, Moskvin A S, Zahradnikova A 2021 J. Gen. Physiol. 153 e202012685Google Scholar

    [64]

    Dixon R E, Navedo M F, Binder M D, Santana L F 2022 Physiol. Rev. 102 1159Google Scholar

    [65]

    Gonzalez A, Kirsch W G, Shirokova N, Pizarro G, Brum G, Pessah I N, Stern M D, Cheng H P, Rios E 2000 PNAS 97 4380Google Scholar

    [66]

    Hui C S, Besch H R Jr, Bidasee K R 2004 Biophys. J. 87 243Google Scholar

    [67]

    Sobie E A, Dilly K W, dos Santos Cruz J, Lederer W J, Jafri M S 2002 Biophys. J. 83 59.Google Scholar

    [68]

    Hinch R 2004 Biophys. J. 86 1293Google Scholar

    [69]

    Stern M D, Rios E, Maltsev V A 2013 J. Gen. Physiol. 142 257Google Scholar

    [70]

    Xiao R P, Valdivia H H, Bogdanov K, Valdivia C, Lakatta E G, Cheng H P 1997 J. Physiol. 500 343Google Scholar

    [71]

    胡岗 1994 随机力与非线性系统(上海: 上海科技教育出版社)

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technology Education Publishing House

    [72]

    Lukyanenko V, Gyorke S 1999 J. Physiol. 521 575Google Scholar

    [73]

    Lipp P, Niggli E 1993 Biophys. J. 65 2272Google Scholar

    [74]

    Bovo E, Lipsius S L, Zima A V 2012 J. Physiol. 590 3291Google Scholar

    [75]

    ter Keurs H E D J, Boyden P A 2007 Physiol. Rev. 87 457Google Scholar

    [76]

    Nivala M, Ko C Y, Weiss J N, Qu Z L 2012 Biophys. J. 102 2433Google Scholar

    [77]

    Krogh-Madsen T, Christini D J 2012 Annu. Rev. Biomed. Eng. 14 179Google Scholar

    [78]

    Gao Z X, Li T T, Jiang H Y, He J 2023 Phys. Rev. E 107 024402Google Scholar

    [79]

    Hernandez-Hernandez G, Alvarez-Lacalle E, Shiferaw Y 2015 Phys. Rev. E 92 052715Google Scholar

    [80]

    Shiferaw Y 2016 Phys. Rev. E 94 032405Google Scholar

    [81]

    Xie Y, Yang Y, Galice S, Bers D M, Sato D 2019 Biophys. J. 116 530Google Scholar

    [82]

    Xie W, Brochet D X P, Wei S, Wang X, Cheng H P 2010 J. Gen. Physiol. 136 129Google Scholar

    [83]

    Chen X, Feng Y, Huo Y, Tan W 2018 Front. Physiol. 9 393Google Scholar

    [84]

    Cranefield P F 1977 Circ. Res. 41 415Google Scholar

    [85]

    Rosen M R, Moak J P, Damiano B 1984 Ann. N. Y. Acad. Sci. 427 84Google Scholar

    [86]

    Liu G X, Choi B R, Ziv O, Li W, de Lange E, Qu Z L, Koren G 2012 J. Physiol. 590 1171Google Scholar

    [87]

    Alexander C, Bishop M J, Gilchrist R J, Burton F L, Smith G L, Myles R C 2023 Cardiovasc. Res. 119 465Google Scholar

    [88]

    Tsuji Y, Yamazaki M, Shimojo M, Yanagisawa S, Inden Y, Murohara T 2024 Front. Cardiovasc. Med. 11 1363848Google Scholar

    [89]

    Yan G X, Wu Y, Liu T, Wang J, Marinchak R A, Kowey P R 2001 Circulation 103 2851Google Scholar

    [90]

    January C T, Chau V, Makielski J C 1991 Eur. Heart J. 12 4

    [91]

    January C T, Moscucci A 1992 Ann. N. Y. Acad. Sci. 644 23Google Scholar

    [92]

    Koval O M, Guan X Q, Wu Y J, Joiner M L, Gao Z, Chen B Y, Grumbach I M, Luczak E D, Colbran R J, Song L S, Hund T J, Mohler P J, Anderson M E 2010 PNAS 107 4996Google Scholar

    [93]

    Guo D, Zhao X, Wu Y, Liu T, Kowey P R, Yan G X 2007 J. Cardiovasc. Electrophysiol. 18 196Google Scholar

    [94]

    Zhao Z H, Xie Y F, Wen H R, Xiao D D, Allen C, Fefelova N, Dun W, Boyden P A, Qu Z L, Xie L H 2012 Cardiovasc. Res. 95 308Google Scholar

    [95]

    Tran D, Sato D, Yochelis A, Weiss J N, Garfinkel A, Qu Z L 2009 Phys. Rev. Lett. 102 258103Google Scholar

    [96]

    Qu Z L, Xie L H, Olcese R, Karagueuzian H S, Chen P S, Garfinkel A, Weiss J N 2013 Cardiovasc. Res. 99 6Google Scholar

    [97]

    Huang X D, Song Z, Qu Z L 2018 PLoS Comput. Biol. 14 e1006382Google Scholar

    [98]

    Chang M G, Chang C Y, de Lange E, Xu L, O’Rourke B, Karagueuzian H S, Tung L, Marban E, Garfinkel A, Weiss J N, Qu Z L, Abraham M R 2012 Biophys. J. 102 2706Google Scholar

    [99]

    Xie Y, Izu L T, Bers D M, Sato D 2014 Biophys. J. 106 1391Google Scholar

    [100]

    Kugler P 2016 PLoS ONE 11 e0151178Google Scholar

    [101]

    Kurata Y, Tsumoto K, Hayashi K, Hisatome I, Tanida M, Kuda Y 2017 Am. J. Physiol. Heart Circ. Physiol. 312 H106Google Scholar

    [102]

    Tsumoto K, Kurata Y, Furutani K, Kurachi Y 2017 Sci. Rep. 7 10771Google Scholar

    [103]

    Kim S, Sato D 2018 Front. Phys. 6 117Google Scholar

    [104]

    Kimrey J, Vo T, Bertram R 2020 PLoS Comput. Biol. 16 e1008341Google Scholar

    [105]

    Chu Z K, Yang D P, Huang X D 2020 Chaos 30 043105Google Scholar

    [106]

    Slepukhina E, Ryashko L, Kugler P 2020 Chaos Soliton. Fract. 131 109515Google Scholar

    [107]

    Barrio R, Martinez M A, Pueyo E, Serrano S 2021 Chaos 31 073137Google Scholar

    [108]

    Choi B R, Burton F, Salama G 2002 J. Physiol. 543 615Google Scholar

    [109]

    Zhao Z, Wen H, Fefelova N, Allen C, Baba A, Matsuda T, Xie L H 2012 Am. J. Physiol. Heart Circ. Physiol. 302 H1636Google Scholar

    [110]

    Wang R, Huang X D, Qu Z L 2024 PLoS Comput. Biol. 20 e1011930Google Scholar

    [111]

    Song Z, Ko C Y, Nivala M, Weiss J N, Qu Z L 2015 Biophys. J. 108 1908Google Scholar

    [112]

    Lou Q, Belevych A E, Radwanski P B, Liu B, Kalyanasundaram A, Knollmann B C, Fedorov V V, Gyorke S 2015 J. Physiol. 593 1443Google Scholar

    [113]

    Chen-Izu Y, Ward C W, Stark W, Banyasz T, Wehrens X H T 2007 Am. J. Physiol. Heart Circ. Physiol. 293 H2409Google Scholar

    [114]

    Hoeker G S, Katra R P, Wilson L D, Plummer B N, Laurita K R 2009 Am. J. Physiol. Heart Circ. Physiol. 297 H1235Google Scholar

    [115]

    Ross J L, Howlett S E 2009 Eur. J. Pharmacol. 602 364Google Scholar

    [116]

    Bai Y, Jones P P, Guo J, Zhong X, Clark R B, Zhou Q, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Semeniuk L, Guo A, Song L S, Duff H J, Chen S R 2013 Circ. Res. 113 517Google Scholar

    [117]

    Song Z, Qu Z L, Karma A 2017 PNAS 114 E270Google Scholar

    [118]

    Weiss J N, Garfinkel A, Karagueuzian H S, Qu Z L, Chen P S 1999 Circulation 99 2819Google Scholar

    [119]

    Samie F H, Mandapati R, Gray R A, Watanabe Y, Zuur C, Beaumont J, Jalife J 2000 Circ. Res. 86 684Google Scholar

    [120]

    Wang Y, Li Q, Tao B, Angelini M, Ramadoss S, Sun B, Wang P, Krokhaleva Y, Ma F, Gu Y, Espinoza A, Yamauchi K, Pellegrini M, Novitch B, Olcese R, Qu Z L, Song Z, Deb A 2023 Science 381 1480Google Scholar

    [121]

    Greene D, Kaboudian A, Wasserstrom J A, Fenton F H, Shiferaw Y 2022 Biophys. J. 121 383Google Scholar

    [122]

    Field R J, Burger M 1985 Oscillations and Traveling Waves in Chemical Systems (New York: Wiley

    [123]

    欧阳颀 2010 非线性科学与斑图动力学导论(北京: 北京大学出版社)

    Ouyang Q 2010 An Introductory Book of Nonlinear Science and Pattern Dynamics (Beijing: Beijing University Press

    [124]

    Fenton F H, Cherry E M, Hastings H M, Evans S J 2002 Chaos 12 852Google Scholar

    [125]

    Barkely D 1992 Phys. Rev. Lett. 68 2090Google Scholar

    [126]

    Bar M, Or-Guil M 1999 Phys. Rev. Lett. 82 1160Google Scholar

    [127]

    Xie Y F, Hu G, Sato D, Weiss J N, Garfinkel A, Qu Z L 2007 Phys. Rev. Lett. 99 118101Google Scholar

    [128]

    Alonso S, Panfilov A V 2008 Phys. Rev. Lett. 100 218101Google Scholar

    [129]

    Zhang H, Cao Z, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301Google Scholar

    [130]

    Tang G N, Deng M Y, Hu B B, Hu G 2008 Phys. Rev. E 77 046217Google Scholar

    [131]

    Zhang Z Y, Zhang Y H, Qu Z L 2023 Phys. Rev. E 108 064405Google Scholar

    [132]

    Wang X, Gao J, Gu C G, Wu D Y, Liu X S, Shen C S 2023 Phys. Rev. E 108 044205Google Scholar

    [133]

    Pravdin S F, Epanchintsev T I, Panfilov A V 2020 Sci. Rep. 10 20632Google Scholar

    [134]

    Luo J, Li T C, Zhang H 2020 Phys. Rev. E 101 032205Google Scholar

    [135]

    Majumder R, Zykov V S, Bodenschatz E 2022 Phys. Rev. Appl. 17 064033Google Scholar

    [136]

    Das T S, Wilson D 2022 Phys. Rev. E 105 064213Google Scholar

    [137]

    Xia Y X, Zhi X P, Li T C, Pan J T, Panfilov A V, Zhang H 2022 Phys. Rev. E 106 024405Google Scholar

    [138]

    Li Q H, Xia Y X, Xu S X, Song Z, Pan J T, Panfilov A V, Zhang H 2022 Phys. Rev. E 105 044210Google Scholar

    [139]

    Xia Y X, Xie L H, He Y J, Pan J Y, Panfilov A V, Zhang H 2023 Phys. Rev. E 108 064406Google Scholar

    [140]

    Li T C, Pan D B, Zhou K, Jiang R, Jiang C, Zheng B, Zhang H 2018 Phys. Rev. E 98 062405Google Scholar

    [141]

    He Y J, Li Q H, Zhou K S, et al. 2021 Phys. Rev. E 104 014213Google Scholar

    [142]

    He Y J, Xia Y X, Mei J T, Zhou J, Jiang C Y, Pan J T, Zheng D F, Zheng B, Zhang H 2023 Phys. Rev. E 107 014217Google Scholar

    [143]

    Li T C, Li B W, Zheng B, Zhang H, Panfilov A V, Dierckx H 2019 New J. Phys. 21 043012Google Scholar

    [144]

    Gotoh M, Uchida T, Mandel W J, Fishbein M C, Chen P S, Karagueuzian H S 1997 Circulation 95 2141Google Scholar

    [145]

    Roth B 1998 J. Theoret. Biol. 190 389Google Scholar

    [146]

    Pastore J M, Girouard S D, Laurita K R, Akar F G, Rosenbaum D S 1999 Circulation 99 1385Google Scholar

    [147]

    Qu Z L, Garfinkel A, Chen P S, Weiss J N 2000 Circulation 102 1664Google Scholar

    [148]

    You T, Xie Y, Luo C, Zhang K, Zhang H 2023 Physiol. Rep. 11 e15619Google Scholar

    [149]

    Sato D, Xie L H, Sovari A A, Tran D X, Morita N, Xie F, Karagueuzian H S, Garfinkel A, Weiss J N, Qu Z L 2009 PNAS 106 2983Google Scholar

    [150]

    Xie Y, Sato D, Garfinkel A, Qu Z L, Weiss J N 2010 Biophys. J. 99 1408Google Scholar

    [151]

    Maruyama M, Lin S F, Xie Y, Chua S K, Joung B, Han S, Shinohara T, Shen M J, Qu Z L, Weiss J N, Chen P S 2011 Circ. Arrhythm. Electrophysiol. 4 103Google Scholar

    [152]

    Zhang Z Y, Qu Z L 2021 Physiol. Rep. 9 e14883Google Scholar

    [153]

    Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y 2023 Comput. Meth. Prog. Bio. 240 107722Google Scholar

    [154]

    Teplenin A S, Dierckx H, de Vries A A F, Pijnappels D A, Panfilov A V 2018 Phys. Rev. X 8 021077Google Scholar

    [155]

    Heitmann S, Shpak A, Vandenberg J I, Hill A P 2021 PLoS Comput. Biol. 17 e1008683Google Scholar

    [156]

    Lin J, Qu Z L, Huang X D 2023 Phys. Rev. E 107 034402Google Scholar

    [157]

    Neira V, Enriquez A, Simpson C, Baranchuk A 2019 J. Cardiovasc. Electrophysiol. 30 3068Google Scholar

    [158]

    Qu Z L, Liu M B, Olcese R, Karagueuzian H S, Garfinkel A, Chen P S, Weiss J N 2023 Heart Rhythm 19 1369Google Scholar

    [159]

    Liu M B, de Lange E, Garfinkel A, Weiss J N, Qu Z L 2015 Heart Rhythm 12 2115Google Scholar

    [160]

    Sadrieh A, Domanski L, Pitt-Francis J, Mann S A, Hodkinson E C, Ng C A, Perry M D, Taylor J A, Gavaghan D, Subbiah R N, Vandenberg J I, Hill A P 2014 Nat. Commun. 5 5069Google Scholar

    [161]

    Cui X H, Rovetti R J, Yang L, Garfinkel A, Weiss J N, Qu Z L 2009 Phys. Rev. Lett. 103 044102Google Scholar

    [162]

    Fox J J, Bodenschatz E, Gilmour Jr. R F 2002 Phys. Rev. Lett. 89 138101Google Scholar

    [163]

    Huang X D, Qian Y, Zhang X M, Hu G 2010 Phys. Rev. E 81 051903Google Scholar

    [164]

    Song Z, Liu M B, Qu Z L 2018 J. Mol. Cellular Cardiol. 114 288Google Scholar

    [165]

    Song Z, Xie L H, Weiss J N, Qu Z L 2019 Biophys. J. 117 2349Google Scholar

    [166]

    Pandey V, Xie L H, Qu Z L, Song Z 2021 PLoS Comput. Biol. 17 e1008624Google Scholar

    [167]

    Oren R V, Clancy C E 2010 PLoS Comput. Biol. 6 e1001041Google Scholar

    [168]

    Huang X D, Mi Y Y, Qian Y, Hu G 2011 Phys. Rev. E 83 061917Google Scholar

    [169]

    Maltsev A V, Yaniv Y, Maltsev A V, Stern M D, Lakatta E G 2014 J. Pharmacol. Sci. 125 6Google Scholar

    [170]

    Huang X D, Cui X H 2015 PLoS ONE 10 e0118623Google Scholar

    [171]

    Zhao N, Li Q C, Zhang K, Wang K Q, He R N, Yuan Y F, Zhang H G 2020 PLoS Comput. Biol. 16 e1008048Google Scholar

    [172]

    Trayanova N A, Popescu D M, Shade J K 2021 Circ. Res. 128 544Google Scholar

    [173]

    Goldberger A L, Amaral L A N, Hausdorff J M, Ivanov P C, Peng C K, Stanley H E 2002 PNAS 99 2466Google Scholar

    [174]

    Kobayashi M, Musha T 1982 IEEE T. Bio. Eng. BME- 29 456Google Scholar

  • 图 1  生命(生物)科学在实验、建模计算、动力学理论方面形成的交叉学科

    Fig. 1.  Interdisciplinary subjects of experiment, modeling and simulation, and dynamical theory for life (biological) science.

    图 2  心肌系统的多尺度行为 (a) 钙单元上一个RyR通道的开闭状态时间序列[53]; (b) CRU集团的钙释放时空斑图(水平向右表示时间, 竖直方向为空间)[53], 下栏曲线表示细胞内钙释放总量; (c) 单细胞的动作电位, 黑线为细胞膜电位, 红线为内钙浓度; (d) 心肌组织的螺旋波斑图[55]; (e) 人体心电图

    Fig. 2.  Multiscale behaviors of a cardiac system: (a) A record of the stochastic opening and closing of a singe RyR channel[53]; (b) a spatiotemporal pattern of calcium release of the CRU network (horizontal direction stands for time and vertical for space) [53], the curve in the lower column represents the total intracellular calcium release; (c) an action potential of a single cardiomyocyte, the black line represents the cell membrane potential, and the red line represents the intracellular calcium concentration; (d) spiral electrical waves in heart[55]; (e) electrocardiogram of human being.

    图 3  心肌系统的多尺度结构(蓝色箭头指示尺度增大方向) (a) 单个CRU的结构; (b) 几万个CRU构成的钙释放网络, 红线框中是单个CRU; (c) 单细胞的结构, 蓝灰色SR是CRU网络的整体示意, 绿色箭头指示内钙离子循环路线; (d) 多个细胞连接成的一片心肌组织; (e) 心肌细胞在三维空间排布成全心室组织

    Fig. 3.  Hierarchical structure of a heart (the blue arrow indicates the direction of scale increase): (a) A single CRU; (b) the calcium release network composed by tens of thousands of CRUs, the red box therein shows a single CRU; (c) the scenario of a single cardiomyocyte, the grey-blue SR is the overall schematic of the CRU network, and the green arrow indicates the process of intracellular calcium cycling; (d) a piece of myocardial tissue formed by the connection of multiple cells; (e) myocardial cells are arranged in three-dimensional space into the entire ventricular tissue.

    图 4  单个CRU的钙火花动力学 (a) 钙火花的实验结果, 左图是随机钙火花, 右图是长钙火花, 一个色点(或线)对应一个释放钙的CRU [53]; (b) CRU钙循环的建模, $ c $表示各区域钙浓度, $ j $表示相应的流, $ {j}_{{\mathrm{D}}} $表示区域间浓度扩散流, $ {j}_{{\mathrm{R}}{\mathrm{y}}{\mathrm{R}}} $表示由RyR通道流出的钙离子流, RyR状态跃迁的随机模型示于洋红色虚线框中, $ {k}_{{\mathrm{o}}{\mathrm{c}}} $和$ {k}_{{\mathrm{c}}{\mathrm{o}}} $分别为从打开到闭合和从闭合到打开的跃迁率; (c) 钙火花的数值模拟结果, 左图为随机钙火花, 右图为长钙火花, 下方为钙火花的持续时间统计分布[62]; (d) 细胞质内钙浓度$ {c}_{{\mathrm{i}}} $关于肌浆网钙浓度$ {c}_{{\mathrm{J}}{\mathrm{S}}{\mathrm{R}}} $的函数; (e) CRU钙动力学系统的势阱结构示意

    Fig. 4.  Dynamics of calcium release of a single CRU: (a) The experimental results of calcium spark, the left image shows random calcium sparks, and the right image shows long lasting calcium sparks, each colored dot (or line) corresponds to a CRU that releases calcium[53]; (b) the modeling of a CRU, $ c $ represents the calcium concentration in each compartment, j represents the associated flow, $ {j}_{{\mathrm{D}}} $ represents the concentration diffusion flow between regions, $ {j}_{{\mathrm{R}}{\mathrm{y}}{\mathrm{R}}} $ represents the calcium ion flux flowing out from the RyR channel, the random model of RyR state transition is shown in the magenta dashed box, $ {k}_{{\mathrm{o}}{\mathrm{c}}} $ and $ {k}_{{\mathrm{c}}{\mathrm{o}}} $ are the transition rates from open to closed and from closed to open, respectively; (c) the simulation results of calcium spark, the left image shows random calcium sparks, the right image shows long lasting calcium sparks, and the statistical distribution of the duration of calcium sparks is shown below [62]; (d) the cytosolic calcium concentration $ {c}_{{\mathrm{i}}} $ as a function of junctional SR calcium concentration $ {c}_{{\mathrm{J}}{\mathrm{S}}{\mathrm{R}}}; $ (e) a schematic illustration of bistability of a CRU system.

    图 5  钙波的形成 (a) 小鼠心室肌细胞的钙波实验[76], 自左向右4列图对应逐渐增加的外部钙浓度值, 上栏为钙波时空斑图, 中栏为内钙总量随时间变化, 下栏为CRU集团尺寸的统计; (b) CRU网络的空间结构, 每一个方盒代表一个CRU, 其结构再次示于下侧, $ {j}_{{\mathrm{D}}{\mathrm{i}}{\mathrm{f}}} $是CRU之间的钙扩散流; (c) 钙波的数值模拟结果[76]; (d) 钙波形成的条件及相变机制示意

    Fig. 5.  Formation of intracellular calcium wave: (a) The experimentally observed calcium waves[76], the four columns from left to right correspond to gradually increasing external calcium concentration values, the top row shows the spatiotemporal pattern of calcium waves, the middle row shows the variation of total intracellular calcium with time, and the bottom row shows the statistics of CRU cluster size; (b) the model of the CRU network, each box represents a CRU, and its structure is shown below, $ {j}_{{\mathrm{D}}{\mathrm{i}}{\mathrm{f}}} $ is the calcium diffusion flow between CRUs; (c) the simulated results of calcium waves formation[76]; (d) the illustration of the parametric condition and phase transition of calcium waves.

    图 6  EAD的发生机制 (a) 具有EAD的动作电位(来自兔心室肌细胞实验[86]), 虚线表示正常动作电位; (b) EAD的霍普夫分岔机制示意[97], 黑色线表示每个x值下快子系统的定态解, 分别用p, s, r表示, 实线代表稳定, 虚线代表不稳定, 蓝色曲线是一次动作电位在相空间中的轨道, HB处表示霍普夫分岔, HC处表示同宿轨道分岔; (c) 内钙振荡诱发EAD的实验结果[108]; (d) 内钙振荡诱发EAD的模拟结果[110], 竖直虚线标记钙和电位振荡的相同相位

    Fig. 6.  Mechanism of EAD: (a) An experimental EAD-present action potential (from the rabbit ventricular cell [86]), the dashed line represents the normal action potential; (b) the Hopf bifurcation mechanism of EAD[97], the black line represents the steady-state solution of the fast subsystem at each value of x, denoted by p, s, r, respectively, the solid line represents stable, while the dashed line represents unstable, the blue curve represents the orbit of an action potential in phase space, HB represents Hopf bifurcation, and HC represents homoclinic bifurcation; (c) calcium oscillation-induced EADs in experiment[108]; (d) the simulated result of calcium induced-EADs[110], the vertical dashed line marks the synchronized phase of calcium and voltage oscillation.

    图 7  细致细胞模型的EAD[111] (a) 带EAD的动作电位, 红色“*”号标示EAD诱发的DAD及其激发出的动作电位; (b) 细胞内钙总浓度(即$ {c}_{{\mathrm{i}}} $); (c) 钙波时空斑图; (d) 肌浆网内钙总浓度(即$ {c}_{{\mathrm{J}}{\mathrm{S}}{\mathrm{R}}} $).

    Fig. 7.  EADs of the detailed spatial cell model[111]: (a) Action potentials with EADs, the red “*” indicates the action potential triggered by DAD which is induced by the previous EADs ; (b) trace of intracellular calcium concentration ($ {c}_{{\mathrm{i}}} $); (c) spatiotemporal pattern of calcium waves; (d) trace of calcium concentration in junctional SR ($ {c}_{{\mathrm{J}}{\mathrm{S}}{\mathrm{R}}} $).

    图 8  DAD的随机动力学 (a) 自发TAP和DAD的实验[112], 上下栏分别为动作电位和内钙浓度, 初始两次黑色为周期激发出的正常动作电位, 其后洋红色是自持续TAP, 最后蓝色是DAD; (b) 自发TAP和DAD的数值模拟结果[117], 自上而下分别为钙波斑图、细胞质钙浓度、JSR钙浓度、动作电位; (c) TAP和DAD行为在[Ca]i-V相空间的轨道[117], 黑色闭合轨线为TAP的极限环, 红色为DAD, 左下方黑点是静息态, 内置小图是TAP (右边T势阱)和静息态(左边D势阱)的双吸引子结构示意

    Fig. 8.  Stochastic dynamics of DAD: (a) An experiment of spontaneous TAP and DAD[112], the upper and lower columns represent the action potential and intracellular calcium concentration, respectively, the initial two black traces represent the normal ones excited by the pacing, the following magenta ones represent the self sustained TAPs, and the final blue depolarization is a DAD; (b) the simulated result of TAP and DAD[117], from top to bottom are: calcium wave pattern, cytoplasmic calcium concentration, JSR calcium concentration, and action potential; (c) the orbits of TAP and DAD in [Ca]i-V phase plane[117], the black closed trajectory signifies the limit cycle of TAP, while the red one denotes DAD, the black dot in the lower left corner represents the resting state, the inset schematically illustrates the dual attractor structure of TAP (T potential well on the right) and the resting state (D potential well on the left).

    图 9  早搏的机制 (a) LQTS兔心室肌组织实验的心律失常[89], 上栏和中栏为心肌不同位置记录到的动作电位, 下栏为心电图; (b) 一维空间EAD传播导致早搏的数值模拟结果[44], 自上而下每一条曲线对应一个细胞的动作电位, 上部洋红色代表长, 下部黑色代表短的动作电位; (c) 梯度激发早搏的数值模拟结果[44]; (d) 非均匀一维链定态失稳导致早搏[156], 当参数连续变化(致使梯度连续变化)时, 系统定态经历霍普夫分岔连续发展出早搏

    Fig. 9.  The mechanism of premature ventricular complexes (PVCs): (a) A LQTS rabbit heart experiment of arrhythmia[89], the top and middle columns display the action potentials recorded at different locations within the myocardium, while the bottom column exhibits the electrocardiogram; (b) a simulation of EAD-triggered PVC in a 1D cable[44], each curve from top to bottom corresponds to the action potential of a cell, where the upper magenta ones represent long action potentials and the lower black ones represent short action potentials; (c) a simulation of voltage gradient-induced PVC[44]; (d) PVC due to instability of heterogeneous tissue[156], as the parameters undergo continuous variation, leading to a corresponding change in the gradient, the system’s steady state undergoes Hopf bifurcation, resulting in the continuous emergence of premature beats.

    图 10  早搏和基质导致心律失常的机制 (a) 早搏信号传导被阻断形成折返[55], 4个小图分别对应4个时刻的二维空间中膜电位分布, 颜色代表V值, 红高蓝低. 自左而右分别为早搏(星号位置)、早搏传播遇到复极延长区被阻断、折返形成、螺旋波持续存在对应心律失常; (b) 基质同时导致早搏和折返的斑图演化(模拟自兔心室肌模型[42])

    Fig. 10.  Arrhythmia caused by PVC and substrate: (a) Formation of reentry caused by blockade of propagation of the PVC[55], the four small graphs correspond to the two-dimensional spatial distribution of membrane potential at four successive time points, with colors representing V values, red for high and blue for low, from left to right are premature beats (from the star position), premature beat propagation blocked by delayed repolarization zone, reentry formation, and sustained spiral wave implying arrhythmia; (b) the formation of PVC and reentry caused by a unique substrate (simulated from rabbit ventricular myocyte model[42]).

    图 11  早搏致心律失常的全心室模拟[55] (a) 早搏致心律失常的临床心电图; (b) 全心室模拟的数值结果

    Fig. 11.  Whole heart simulation of PVC induced arrhythmias[55]: (a) The clinical ECG of the arrhythmias; (b) the simulated results of the whole heart model.

    表 1  心律失常的多尺度建模和机制理论的主要进展

    Table 1.  Major progresses of multiscale modelings and mechanisitic theories of arrhythmias.

    临床与实验数据 建模与计算 动力学理论
    微观钙火花[59]
    长钙火花[53]
    钙波[76]
    RyR随机模型[21]
    CRU网络模型[54,78]
    钙火花的势阱逃逸理论[62,68,69]
    钙波的相变理论[76,79,80,121]
    细胞钙电耦合的EAD
    振荡[108,109]
    DAD的随机性[112]
    钙电耦合细致细胞
    模型[2325]
    EAD的霍普夫分岔理论[96,100,104]
    DAD的Kramers随机跃迁
    理论[117]
    组织“冲动+基质”致
    心律失常[41,42,89]
    非均匀可激发
    介质[154,156]
    早搏的动力学稳定性理论[156];
    螺旋波的形成、稳定性、
    调控[137,142,143,158]
    器官R-on-T发展为
    TdP[87]
    全心室多尺度
    模型[51,160]
    TdP的“R-on-T”机制理论[55,158]
    下载: 导出CSV
  • [1]

    Barber M, Nguyen L S, Wassermann J, Spano J P, Funck-Brentano C, Salem J E 2019 Cardiovasc. Res. 115 878Google Scholar

    [2]

    Yoshimoto A, Morikawa S, Kato E, Takeuchi H, Ikegaya Y 2024 Science 384 1361Google Scholar

    [3]

    Trayanova N A, Winslow R 2011 Circ. Res. 108 113Google Scholar

    [4]

    Qu Z L, Hu G, Garfinkel A, Weiss J N 2014 Phys. Rep. 543 61Google Scholar

    [5]

    Sager P T, Gintant G, Turner J R, Pettit S, Stockbridge N 2014 Am. Heart J. 167 292Google Scholar

    [6]

    Gintant G, Sager P T 2016 Nat. Rev. Drug Discov. 15 457Google Scholar

    [7]

    Hodgkin A, Huxley A 1952 J. Physiol. 117 500Google Scholar

    [8]

    Noble D 1962 J. Physiol. 160 317Google Scholar

    [9]

    Beeler G W, Reuter H 1977 J. Physiol. 268 177Google Scholar

    [10]

    Luo C H, Rudy Y 1991 Circ. Res. 68 1501Google Scholar

    [11]

    Zhang H, Holden A V, Kodama I, Honjo H, Lei M, Varghese T, Boyett M R 2000 Am. J. Physiol. Heart Circ. Physiol. 279 397Google Scholar

    [12]

    Luo C H, Rudy Y 1994 Circ. Res. 74 1071Google Scholar

    [13]

    ten Tusscher K H W J, Noble D, Noble P J, Panfilov A V 2004 Am. J. Physiol. Heart Circ. Physiol. 286 H1573Google Scholar

    [14]

    O’Hara T, Virag L, Varro A, Rudy Y 2011 PLoS Comput. Biol. 7 e1002061Google Scholar

    [15]

    Grandi E, Pasqualini F S, Bers D M 2010 J. Mol. Cell Cardiol. 48 112Google Scholar

    [16]

    Mahajan A, Shiferaw Y, Sato D, Baher A, Olcese R, Xie L H, Yang M J, Chen P S, Restrepo J G, Karma A, Garfinkel A, Qu Z L, Weiss J N 2008 Biophys. J. 94 392Google Scholar

    [17]

    Bartolucci C, Forouzandehmehr M, Severi S, Paci M 2022 Front. Physiol. 13 906146Google Scholar

    [18]

    Xia L, Huo M M, Wei Q, Liu F, Crozier S 2005 Phys. Med. Biol. 50 1901Google Scholar

    [19]

    Lu L Y, Zheng Q Q, Xia L, Zhu X W 2019 Comput. Biol. Med. 108 234Google Scholar

    [20]

    Balakina-Vikulova N A, Panfilov A, Solovyova O, Katsnelson L B 2020 J. Physiol. Sci. 70 12Google Scholar

    [21]

    Restrepo J G, Weiss J N, Karma A 2008 Biophys. J. 95 3767Google Scholar

    [22]

    Nivala M, de Lange E, Rovetti R, Qu Z L 2012 Front. Physiol. 3 114Google Scholar

    [23]

    Wilson D, Ermentrout B, Nemec J, Salama G 2017 Chaos 27 093940Google Scholar

    [24]

    Winfree A T 1983 Sci. Am. 248 144Google Scholar

    [25]

    Winfree A T 1987 When Time Breaks Down (Princeton: Princeton University Press

    [26]

    Glass L 1996 Phys. Today 49 40Google Scholar

    [27]

    Keener J, Sneyd J 2009 Mathematical Physiology (2nd Ed.) (Springer

    [28]

    Nolasco J B, Dahlen R W 1968 J. Appl. Physiol. 25 191Google Scholar

    [29]

    Weiss J N, Karma A, Shiferaw Y, Chen P S, Garfinkel A, Qu Z L 2006 Circ. Res. 98 1244Google Scholar

    [30]

    Qu Z L, Weiss J N 2023 Circ. Res. 132 127Google Scholar

    [31]

    Gilmour Jr R 2003 Drug Discov. Today 8 162Google Scholar

    [32]

    Karma A 2013 Annu. Rev. Condens. Matter Phys. 4 313Google Scholar

    [33]

    Panfilov A V, Dierckx H, Volpert V 2019 Physica D 399 1Google Scholar

    [34]

    Qu Z L, Weiss J N 2015 Annu. Rev. Physiol. 77 29Google Scholar

    [35]

    Lakatta E G, Maltsev V A, Vinogradova T M 2010 Circ Res 106 659Google Scholar

    [36]

    Weiss J N, Qu Z L 2020 JACC: Clin. Electrophy. 6 1841Google Scholar

    [37]

    Manoj P, Kim J A, Kim S, Li T, Sewani M, Chelu M G, Li N 2023 Am. J. Physiol. Heart Circ. Physiol. 324 H259Google Scholar

    [38]

    Torrente A G, Zhang R, Zaini A, Giani J F, Kang J, Lamp S T, Philipson K D, Goldbaber J I 2015 PNAS 112 9769Google Scholar

    [39]

    Krogh-Madsen T, Abbott G W, Christini D J 2012 PLoS Comput. Biol. 8 e1002390Google Scholar

    [40]

    Trayanova N A 2014 Circ. Res. 114 1516Google Scholar

    [41]

    Liu W, Kim T Y, Huang X D, Liu M B, Koren G, Choi B R, Qu Z L 2018 J. Physiol. 596 1341Google Scholar

    [42]

    Huang X D, Kim T Y, Koren G, Choi B R, Qu Z L 2016 Am. J. Physiol. 311 H147Google Scholar

    [43]

    Zhang Z, Liu M B, Huang X D, Song Z, Qu Z L 2021 Biophys. J. 120 352Google Scholar

    [44]

    Zhang Z, Qu Z L 2021 Phys. Rev. E 103 062406Google Scholar

    [45]

    Zhang Z, Chen P S, Weiss J N, Qu Z L 2022 Circ. Arrhythm. Electrophysiol. 15 e010365Google Scholar

    [46]

    Wilson L D, Jeyaraj D, Wan X, Hoeker G S, Said T M, Gittinger M, Laurita K R, Rosenbaum D S 2009 Heart Rhythm 6 251Google Scholar

    [47]

    Baher A A, Uy M, Xie F, Garfinkel A, Qu Z L, Weiss J N 2011 Heart Rhythm 8 599Google Scholar

    [48]

    Bak T, Sato D 2024 Heart Rhythm (DOI: 10.1016/j.hrthm. 2024.07.019

    [49]

    Xu A X, Guevara M R 1998 Chaos 8 157Google Scholar

    [50]

    Xie F, Qu Z L, Garfinkel A, Weiss J N 2001 Am. J. Physiol. Heart Circ. Physiol. 280 H1667Google Scholar

    [51]

    Vandersickel N, de Boer T P, Vos M A, Panfilov A V 2016 J. Physiol. 594 6865Google Scholar

    [52]

    Qu Z L, Garfinkel A, Weiss J N, Nivala M 2011 Prog. Biophys. Mol. Biol. 107 21Google Scholar

    [53]

    Zima A V, Picht E, Bers D M, Blatter L A 2008 Biophys. J. 94 1867Google Scholar

    [54]

    Laver D R, Kong C H T, Imtiaz M S, Cannell M B 2013 J. Mol. Cell. Cardiol. 54 98Google Scholar

    [55]

    Liu M B, Vandersickel N, Panfilov A V, Qu Z L 2019 Circ. Arrhythm. Electrophysiol. 12 e007571Google Scholar

    [56]

    Joshi H, Singharoy A B, Sereda Y V, Cheluvaraja S, Ortoleva P J 2011 Prog. Biophys. Mol. Biol. 107 200Google Scholar

    [57]

    Bers D M 2008 Annu. Rev. Physiol. 70 23Google Scholar

    [58]

    Fabiato A 1983 Am. J. Physiol. 245 C1Google Scholar

    [59]

    Cheng H P, Lederer W J, Cannell M B 1993 Science 262 740Google Scholar

    [60]

    Fowler E D, Wang N, Hezzell M, Chanoit G, Hancox J C, Cannell M B 2020 PNAS 117 2687Google Scholar

    [61]

    Qu Z L, Yan D, Song Z 2022 Biomolecules 12 1686Google Scholar

    [62]

    Song Z, Karma A, Weiss J N, Qu Z L 2016 PLoS Comput. Biol. 12 e1004671Google Scholar

    [63]

    Iaparov B I, Zahradnik I, Moskvin A S, Zahradnikova A 2021 J. Gen. Physiol. 153 e202012685Google Scholar

    [64]

    Dixon R E, Navedo M F, Binder M D, Santana L F 2022 Physiol. Rev. 102 1159Google Scholar

    [65]

    Gonzalez A, Kirsch W G, Shirokova N, Pizarro G, Brum G, Pessah I N, Stern M D, Cheng H P, Rios E 2000 PNAS 97 4380Google Scholar

    [66]

    Hui C S, Besch H R Jr, Bidasee K R 2004 Biophys. J. 87 243Google Scholar

    [67]

    Sobie E A, Dilly K W, dos Santos Cruz J, Lederer W J, Jafri M S 2002 Biophys. J. 83 59.Google Scholar

    [68]

    Hinch R 2004 Biophys. J. 86 1293Google Scholar

    [69]

    Stern M D, Rios E, Maltsev V A 2013 J. Gen. Physiol. 142 257Google Scholar

    [70]

    Xiao R P, Valdivia H H, Bogdanov K, Valdivia C, Lakatta E G, Cheng H P 1997 J. Physiol. 500 343Google Scholar

    [71]

    胡岗 1994 随机力与非线性系统(上海: 上海科技教育出版社)

    Hu G 1994 Stochastic Forces and Nonlinear Systems (Shanghai: Shanghai Scientific and Technology Education Publishing House

    [72]

    Lukyanenko V, Gyorke S 1999 J. Physiol. 521 575Google Scholar

    [73]

    Lipp P, Niggli E 1993 Biophys. J. 65 2272Google Scholar

    [74]

    Bovo E, Lipsius S L, Zima A V 2012 J. Physiol. 590 3291Google Scholar

    [75]

    ter Keurs H E D J, Boyden P A 2007 Physiol. Rev. 87 457Google Scholar

    [76]

    Nivala M, Ko C Y, Weiss J N, Qu Z L 2012 Biophys. J. 102 2433Google Scholar

    [77]

    Krogh-Madsen T, Christini D J 2012 Annu. Rev. Biomed. Eng. 14 179Google Scholar

    [78]

    Gao Z X, Li T T, Jiang H Y, He J 2023 Phys. Rev. E 107 024402Google Scholar

    [79]

    Hernandez-Hernandez G, Alvarez-Lacalle E, Shiferaw Y 2015 Phys. Rev. E 92 052715Google Scholar

    [80]

    Shiferaw Y 2016 Phys. Rev. E 94 032405Google Scholar

    [81]

    Xie Y, Yang Y, Galice S, Bers D M, Sato D 2019 Biophys. J. 116 530Google Scholar

    [82]

    Xie W, Brochet D X P, Wei S, Wang X, Cheng H P 2010 J. Gen. Physiol. 136 129Google Scholar

    [83]

    Chen X, Feng Y, Huo Y, Tan W 2018 Front. Physiol. 9 393Google Scholar

    [84]

    Cranefield P F 1977 Circ. Res. 41 415Google Scholar

    [85]

    Rosen M R, Moak J P, Damiano B 1984 Ann. N. Y. Acad. Sci. 427 84Google Scholar

    [86]

    Liu G X, Choi B R, Ziv O, Li W, de Lange E, Qu Z L, Koren G 2012 J. Physiol. 590 1171Google Scholar

    [87]

    Alexander C, Bishop M J, Gilchrist R J, Burton F L, Smith G L, Myles R C 2023 Cardiovasc. Res. 119 465Google Scholar

    [88]

    Tsuji Y, Yamazaki M, Shimojo M, Yanagisawa S, Inden Y, Murohara T 2024 Front. Cardiovasc. Med. 11 1363848Google Scholar

    [89]

    Yan G X, Wu Y, Liu T, Wang J, Marinchak R A, Kowey P R 2001 Circulation 103 2851Google Scholar

    [90]

    January C T, Chau V, Makielski J C 1991 Eur. Heart J. 12 4

    [91]

    January C T, Moscucci A 1992 Ann. N. Y. Acad. Sci. 644 23Google Scholar

    [92]

    Koval O M, Guan X Q, Wu Y J, Joiner M L, Gao Z, Chen B Y, Grumbach I M, Luczak E D, Colbran R J, Song L S, Hund T J, Mohler P J, Anderson M E 2010 PNAS 107 4996Google Scholar

    [93]

    Guo D, Zhao X, Wu Y, Liu T, Kowey P R, Yan G X 2007 J. Cardiovasc. Electrophysiol. 18 196Google Scholar

    [94]

    Zhao Z H, Xie Y F, Wen H R, Xiao D D, Allen C, Fefelova N, Dun W, Boyden P A, Qu Z L, Xie L H 2012 Cardiovasc. Res. 95 308Google Scholar

    [95]

    Tran D, Sato D, Yochelis A, Weiss J N, Garfinkel A, Qu Z L 2009 Phys. Rev. Lett. 102 258103Google Scholar

    [96]

    Qu Z L, Xie L H, Olcese R, Karagueuzian H S, Chen P S, Garfinkel A, Weiss J N 2013 Cardiovasc. Res. 99 6Google Scholar

    [97]

    Huang X D, Song Z, Qu Z L 2018 PLoS Comput. Biol. 14 e1006382Google Scholar

    [98]

    Chang M G, Chang C Y, de Lange E, Xu L, O’Rourke B, Karagueuzian H S, Tung L, Marban E, Garfinkel A, Weiss J N, Qu Z L, Abraham M R 2012 Biophys. J. 102 2706Google Scholar

    [99]

    Xie Y, Izu L T, Bers D M, Sato D 2014 Biophys. J. 106 1391Google Scholar

    [100]

    Kugler P 2016 PLoS ONE 11 e0151178Google Scholar

    [101]

    Kurata Y, Tsumoto K, Hayashi K, Hisatome I, Tanida M, Kuda Y 2017 Am. J. Physiol. Heart Circ. Physiol. 312 H106Google Scholar

    [102]

    Tsumoto K, Kurata Y, Furutani K, Kurachi Y 2017 Sci. Rep. 7 10771Google Scholar

    [103]

    Kim S, Sato D 2018 Front. Phys. 6 117Google Scholar

    [104]

    Kimrey J, Vo T, Bertram R 2020 PLoS Comput. Biol. 16 e1008341Google Scholar

    [105]

    Chu Z K, Yang D P, Huang X D 2020 Chaos 30 043105Google Scholar

    [106]

    Slepukhina E, Ryashko L, Kugler P 2020 Chaos Soliton. Fract. 131 109515Google Scholar

    [107]

    Barrio R, Martinez M A, Pueyo E, Serrano S 2021 Chaos 31 073137Google Scholar

    [108]

    Choi B R, Burton F, Salama G 2002 J. Physiol. 543 615Google Scholar

    [109]

    Zhao Z, Wen H, Fefelova N, Allen C, Baba A, Matsuda T, Xie L H 2012 Am. J. Physiol. Heart Circ. Physiol. 302 H1636Google Scholar

    [110]

    Wang R, Huang X D, Qu Z L 2024 PLoS Comput. Biol. 20 e1011930Google Scholar

    [111]

    Song Z, Ko C Y, Nivala M, Weiss J N, Qu Z L 2015 Biophys. J. 108 1908Google Scholar

    [112]

    Lou Q, Belevych A E, Radwanski P B, Liu B, Kalyanasundaram A, Knollmann B C, Fedorov V V, Gyorke S 2015 J. Physiol. 593 1443Google Scholar

    [113]

    Chen-Izu Y, Ward C W, Stark W, Banyasz T, Wehrens X H T 2007 Am. J. Physiol. Heart Circ. Physiol. 293 H2409Google Scholar

    [114]

    Hoeker G S, Katra R P, Wilson L D, Plummer B N, Laurita K R 2009 Am. J. Physiol. Heart Circ. Physiol. 297 H1235Google Scholar

    [115]

    Ross J L, Howlett S E 2009 Eur. J. Pharmacol. 602 364Google Scholar

    [116]

    Bai Y, Jones P P, Guo J, Zhong X, Clark R B, Zhou Q, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Semeniuk L, Guo A, Song L S, Duff H J, Chen S R 2013 Circ. Res. 113 517Google Scholar

    [117]

    Song Z, Qu Z L, Karma A 2017 PNAS 114 E270Google Scholar

    [118]

    Weiss J N, Garfinkel A, Karagueuzian H S, Qu Z L, Chen P S 1999 Circulation 99 2819Google Scholar

    [119]

    Samie F H, Mandapati R, Gray R A, Watanabe Y, Zuur C, Beaumont J, Jalife J 2000 Circ. Res. 86 684Google Scholar

    [120]

    Wang Y, Li Q, Tao B, Angelini M, Ramadoss S, Sun B, Wang P, Krokhaleva Y, Ma F, Gu Y, Espinoza A, Yamauchi K, Pellegrini M, Novitch B, Olcese R, Qu Z L, Song Z, Deb A 2023 Science 381 1480Google Scholar

    [121]

    Greene D, Kaboudian A, Wasserstrom J A, Fenton F H, Shiferaw Y 2022 Biophys. J. 121 383Google Scholar

    [122]

    Field R J, Burger M 1985 Oscillations and Traveling Waves in Chemical Systems (New York: Wiley

    [123]

    欧阳颀 2010 非线性科学与斑图动力学导论(北京: 北京大学出版社)

    Ouyang Q 2010 An Introductory Book of Nonlinear Science and Pattern Dynamics (Beijing: Beijing University Press

    [124]

    Fenton F H, Cherry E M, Hastings H M, Evans S J 2002 Chaos 12 852Google Scholar

    [125]

    Barkely D 1992 Phys. Rev. Lett. 68 2090Google Scholar

    [126]

    Bar M, Or-Guil M 1999 Phys. Rev. Lett. 82 1160Google Scholar

    [127]

    Xie Y F, Hu G, Sato D, Weiss J N, Garfinkel A, Qu Z L 2007 Phys. Rev. Lett. 99 118101Google Scholar

    [128]

    Alonso S, Panfilov A V 2008 Phys. Rev. Lett. 100 218101Google Scholar

    [129]

    Zhang H, Cao Z, Wu N J, Ying H P, Hu G 2005 Phys. Rev. Lett. 94 188301Google Scholar

    [130]

    Tang G N, Deng M Y, Hu B B, Hu G 2008 Phys. Rev. E 77 046217Google Scholar

    [131]

    Zhang Z Y, Zhang Y H, Qu Z L 2023 Phys. Rev. E 108 064405Google Scholar

    [132]

    Wang X, Gao J, Gu C G, Wu D Y, Liu X S, Shen C S 2023 Phys. Rev. E 108 044205Google Scholar

    [133]

    Pravdin S F, Epanchintsev T I, Panfilov A V 2020 Sci. Rep. 10 20632Google Scholar

    [134]

    Luo J, Li T C, Zhang H 2020 Phys. Rev. E 101 032205Google Scholar

    [135]

    Majumder R, Zykov V S, Bodenschatz E 2022 Phys. Rev. Appl. 17 064033Google Scholar

    [136]

    Das T S, Wilson D 2022 Phys. Rev. E 105 064213Google Scholar

    [137]

    Xia Y X, Zhi X P, Li T C, Pan J T, Panfilov A V, Zhang H 2022 Phys. Rev. E 106 024405Google Scholar

    [138]

    Li Q H, Xia Y X, Xu S X, Song Z, Pan J T, Panfilov A V, Zhang H 2022 Phys. Rev. E 105 044210Google Scholar

    [139]

    Xia Y X, Xie L H, He Y J, Pan J Y, Panfilov A V, Zhang H 2023 Phys. Rev. E 108 064406Google Scholar

    [140]

    Li T C, Pan D B, Zhou K, Jiang R, Jiang C, Zheng B, Zhang H 2018 Phys. Rev. E 98 062405Google Scholar

    [141]

    He Y J, Li Q H, Zhou K S, et al. 2021 Phys. Rev. E 104 014213Google Scholar

    [142]

    He Y J, Xia Y X, Mei J T, Zhou J, Jiang C Y, Pan J T, Zheng D F, Zheng B, Zhang H 2023 Phys. Rev. E 107 014217Google Scholar

    [143]

    Li T C, Li B W, Zheng B, Zhang H, Panfilov A V, Dierckx H 2019 New J. Phys. 21 043012Google Scholar

    [144]

    Gotoh M, Uchida T, Mandel W J, Fishbein M C, Chen P S, Karagueuzian H S 1997 Circulation 95 2141Google Scholar

    [145]

    Roth B 1998 J. Theoret. Biol. 190 389Google Scholar

    [146]

    Pastore J M, Girouard S D, Laurita K R, Akar F G, Rosenbaum D S 1999 Circulation 99 1385Google Scholar

    [147]

    Qu Z L, Garfinkel A, Chen P S, Weiss J N 2000 Circulation 102 1664Google Scholar

    [148]

    You T, Xie Y, Luo C, Zhang K, Zhang H 2023 Physiol. Rep. 11 e15619Google Scholar

    [149]

    Sato D, Xie L H, Sovari A A, Tran D X, Morita N, Xie F, Karagueuzian H S, Garfinkel A, Weiss J N, Qu Z L 2009 PNAS 106 2983Google Scholar

    [150]

    Xie Y, Sato D, Garfinkel A, Qu Z L, Weiss J N 2010 Biophys. J. 99 1408Google Scholar

    [151]

    Maruyama M, Lin S F, Xie Y, Chua S K, Joung B, Han S, Shinohara T, Shen M J, Qu Z L, Weiss J N, Chen P S 2011 Circ. Arrhythm. Electrophysiol. 4 103Google Scholar

    [152]

    Zhang Z Y, Qu Z L 2021 Physiol. Rep. 9 e14883Google Scholar

    [153]

    Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y 2023 Comput. Meth. Prog. Bio. 240 107722Google Scholar

    [154]

    Teplenin A S, Dierckx H, de Vries A A F, Pijnappels D A, Panfilov A V 2018 Phys. Rev. X 8 021077Google Scholar

    [155]

    Heitmann S, Shpak A, Vandenberg J I, Hill A P 2021 PLoS Comput. Biol. 17 e1008683Google Scholar

    [156]

    Lin J, Qu Z L, Huang X D 2023 Phys. Rev. E 107 034402Google Scholar

    [157]

    Neira V, Enriquez A, Simpson C, Baranchuk A 2019 J. Cardiovasc. Electrophysiol. 30 3068Google Scholar

    [158]

    Qu Z L, Liu M B, Olcese R, Karagueuzian H S, Garfinkel A, Chen P S, Weiss J N 2023 Heart Rhythm 19 1369Google Scholar

    [159]

    Liu M B, de Lange E, Garfinkel A, Weiss J N, Qu Z L 2015 Heart Rhythm 12 2115Google Scholar

    [160]

    Sadrieh A, Domanski L, Pitt-Francis J, Mann S A, Hodkinson E C, Ng C A, Perry M D, Taylor J A, Gavaghan D, Subbiah R N, Vandenberg J I, Hill A P 2014 Nat. Commun. 5 5069Google Scholar

    [161]

    Cui X H, Rovetti R J, Yang L, Garfinkel A, Weiss J N, Qu Z L 2009 Phys. Rev. Lett. 103 044102Google Scholar

    [162]

    Fox J J, Bodenschatz E, Gilmour Jr. R F 2002 Phys. Rev. Lett. 89 138101Google Scholar

    [163]

    Huang X D, Qian Y, Zhang X M, Hu G 2010 Phys. Rev. E 81 051903Google Scholar

    [164]

    Song Z, Liu M B, Qu Z L 2018 J. Mol. Cellular Cardiol. 114 288Google Scholar

    [165]

    Song Z, Xie L H, Weiss J N, Qu Z L 2019 Biophys. J. 117 2349Google Scholar

    [166]

    Pandey V, Xie L H, Qu Z L, Song Z 2021 PLoS Comput. Biol. 17 e1008624Google Scholar

    [167]

    Oren R V, Clancy C E 2010 PLoS Comput. Biol. 6 e1001041Google Scholar

    [168]

    Huang X D, Mi Y Y, Qian Y, Hu G 2011 Phys. Rev. E 83 061917Google Scholar

    [169]

    Maltsev A V, Yaniv Y, Maltsev A V, Stern M D, Lakatta E G 2014 J. Pharmacol. Sci. 125 6Google Scholar

    [170]

    Huang X D, Cui X H 2015 PLoS ONE 10 e0118623Google Scholar

    [171]

    Zhao N, Li Q C, Zhang K, Wang K Q, He R N, Yuan Y F, Zhang H G 2020 PLoS Comput. Biol. 16 e1008048Google Scholar

    [172]

    Trayanova N A, Popescu D M, Shade J K 2021 Circ. Res. 128 544Google Scholar

    [173]

    Goldberger A L, Amaral L A N, Hausdorff J M, Ivanov P C, Peng C K, Stanley H E 2002 PNAS 99 2466Google Scholar

    [174]

    Kobayashi M, Musha T 1982 IEEE T. Bio. Eng. BME- 29 456Google Scholar

  • [1] 李惟嘉, 申晓红, 李亚安. 一种无偏差的多通道多尺度样本熵算法. 物理学报, 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [2] 邓凌云, 谢增辉, 王路. 径向电脉冲对钉扎螺旋波的脱钉研究. 物理学报, 2023, 72(6): 068202. doi: 10.7498/aps.72.20221784
    [3] 胡恒儒, 龚志强, 王健, 乔盼节, 刘莉, 封国林. ENSO气温关联网络结构特征差异及成因分析. 物理学报, 2021, 70(24): 249201. doi: 10.7498/aps.70.20210825
    [4] 潘军廷, 何银杰, 夏远勋, 张宏. 极化电场对可激发介质中螺旋波的控制. 物理学报, 2020, 69(8): 080503. doi: 10.7498/aps.69.20191934
    [5] 潘飞, 黎维新, 王小艳, 唐国宁. 用低通滤波方法终止心脏组织中的螺旋波和时空混沌. 物理学报, 2015, 64(21): 218202. doi: 10.7498/aps.64.218202
    [6] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用. 物理学报, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [7] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [8] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究. 物理学报, 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [9] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性. 物理学报, 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [10] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 物理学报, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [11] 董丽芳, 白占国, 贺亚峰. 非均匀可激发介质中的稀密螺旋波. 物理学报, 2012, 61(12): 120509. doi: 10.7498/aps.61.120509
    [12] 王从庆, 吴鹏飞, 周鑫. 基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制. 物理学报, 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [13] 戴瑜, 韦海明, 唐国宁. 非均匀激发介质中螺旋波的演化. 物理学报, 2010, 59(9): 5979-5984. doi: 10.7498/aps.59.5979
    [14] 唐冬妮, 张旭, 任卫, 唐国宁. 可激发介质中环形异质介质导致自维持靶波. 物理学报, 2010, 59(8): 5313-5318. doi: 10.7498/aps.59.5313
    [15] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [16] 戴瑜, 唐国宁. 离散可激发介质激发性降低的几种起因. 物理学报, 2009, 58(3): 1491-1496. doi: 10.7498/aps.58.1491
    [17] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频. 物理学报, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [18] 李新霞, 唐 翌. 阻尼作用下一维体系热传导性质的研究. 物理学报, 2006, 55(12): 6556-6561. doi: 10.7498/aps.55.6556
    [19] 钱 郁, 宋宣玉, 时 伟, 陈光旨, 薛 郁. 可激发介质湍流的耦合同步及控制. 物理学报, 2006, 55(9): 4420-4427. doi: 10.7498/aps.55.4420
    [20] 姜可宇, 蔡志明. 变尺度概率净化法的优化. 物理学报, 2005, 54(10): 4596-4601. doi: 10.7498/aps.54.4596
计量
  • 文章访问数:  1441
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-13
  • 修回日期:  2024-09-08
  • 上网日期:  2024-09-20
  • 刊出日期:  2024-11-05

/

返回文章
返回