搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究

张妮妮 任娟 罗澜茜 刘平平

引用本文:
Citation:

Be掺杂石墨双炔作为锂离子电池负极材料的第一性原理研究

张妮妮, 任娟, 罗澜茜, 刘平平

The Be-doped graphdiyne as anode material for lithium-ion batteries: a first-principles study

Zhang Nini, Ren Juan, Luo Lanxi, Liu Pingping
PDF
导出引用
  • 本文采用基于密度泛函理论的第一性原理方法,研究了Be在不同位置掺杂的石墨双炔作为锂离子电池负极材料的性能.通过计算不同掺杂浓度下石墨双炔的形成能和内聚能,表明Be掺杂的石墨双炔具有很好的实验合成前景.更重要的是,掺Be后的石墨双炔具有良好的导电性能.Be掺杂的石墨双炔对单个锂的吸附能为-4.22 eV,相较于硼,氮掺杂石墨双炔以及本征石墨双炔大幅度提升.随着储锂数量的增加,其对锂的吸附能依旧大于固体锂的内聚能,并且平均开路电压在0-1V之间,充分保证了电池的安全性.除此之外,将储锂容量提升为881 mAh/g,是未掺杂石墨双炔的1.14倍,石墨的2.36倍.同时,锂在Be掺杂的石墨双炔上扩散性能也有所提升,对于CIII位掺杂体系,通过研究低锂浓度、中锂浓度、高锂浓度阶段的离子输运.我们发现随着锂浓度的增加,扩散势垒分别为0.38,0.44,0.77 eV,锂离子的移动变得困难,但依然优于其它元素掺杂的石墨双炔.综上所述,铍掺杂石墨双炔作为优异的锂离子电池负极材料具有很大潜力.
    The performances of beryllium-doped graphdiyne (GDY) as an anode material for lithium-ion batteries at various doping sites are investigated by first-principles methods based on density functional theory. Calculations of the formation and cohesive energies of GDY at different doping concentrations indicate that beryllium-doped GDY has excellent prospects for experimental synthesis. More importantly, the beryllium-doped GDY exhibits good electrical conductivity. The adsorption energy for a single lithium atom on beryllium-doped GDY is -4.22 eV, which is significantly higher than that of boron, nitrogen-doped GDY, and intrinsic GDY. As the number of stored lithium atoms increases, the adsorption energy remains greater than the cohesive energy of solid lithium, and the average open-circuit voltage stays between 0-1 V, ensuring the safety of the battery. Additionally, the lithium storage capacity is increased to 881 mAh/g, which is 1.14 times that of undoped GDY and 2.36 times that of graphite. Meanwhile, the diffusion performance of lithium on beryllium-doped GDY is also enhanced. For the CIII site doping system, by studying the ion transport at low, medium, and high lithium concentrations, we find that as the lithium concentration increases, the diffusion barriers are 0.38, 0.44, and 0.77 eV, respectively, making lithium ion movement more difficult, but still superior to other element-doped GDY. In summary, beryllium-doped GDY has great potential as an outstanding anode material for lithium-ion batteries.
  • [1]

    Erickson E M, Ghanty C, Aurbach D. New horizons for conventional lithium ion battery technology [J]. The Journal of Physical Chemistry Letters, 2014, 5(19): 3313–3324.

    [2]

    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666–669.

    [3]

    Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries [J]. Nano Letters, 2008, 8(8): 2277-2282.

    [4]

    Liu X, Wang C Z, Yao Y X, et al. Bonding and charge transfer by metal adatom adsorption on graphene [J]. Physical Review B, 2011, 83(23): 235411.

    [5]

    Li W, He Y, Wang L, et al. Electron localization in metal-decorated graphene [J]. Physical Review B, 2011, 84(4): 045431.

    [6]

    Liu X, Hupalo M, Wang C-Z, et al. Growth morphology and thermal stability of metal islands on graphene [J]. Physical Review B, 2012, 86(8): 081414.

    [7]

    Baughman R H, Eckhardt H, Kertesz M. Structure-property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms [J]. The Journal of Chemical Physics, 1987, 87(11): 6687–6699.

    [8]

    Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films [J]. Chemical Communications, 2010, 46(19): 3256.

    [9]

    Narita N, Nagai S, Suzuki S, et al. Optimized geometries and electronic structures of graphyne and its family [J]. Physical Review B, 1998, 58(16): 11009–11014.

    [10]

    Zhang H, Xia Y, Bu H, et al. Graphdiyne: a promising anode material for lithium ion batteries with high capacity and rate capability [J]. Journal of Applied Physics, 2013, 113(4): 044309.

    [11]

    He J, Wang N, Cui Z, et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries [J]. Nature Communications, 2017, 8(1): 1172.

    [12]

    Urbain F, Smirnov V, Becker J-P, et al. Fluoride graphdiyne as free-standing electrode displaying ultrastable and extraordinary high Li storage performance [J]. Energy & Environmental Science, 2016, 9(1): 145–154.

    [13]

    Wang N, He J, Tu Z, et al. Synthesis of chlorine‐substituted graphdiyne and applications for lithium‐Ion storage [J]. Angewandte Chemie International Edition, 2017, 56(36): 10740–10745.

    [14]

    Shen X, Li X, Zhao F, et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application [J]. 2D Materials, 2019, 6(3): 035020.

    [15]

    曾雯. 化学掺杂的graphdiyne在超级电容器和锂离子电池上应用的理论计算研究 [D]. 重庆: 重庆大学, 2020.

    [16]

    Wang N, Li X, Tu Z, et al. Synthesis and electronic structure of boron‐graphdiyne with an sp‐hybridized carbon skeleton and its application in sodium storage [J]. Angewandte Chemie International Edition, 2018, 57(15): 3968–3973.

    [17]

    Yang Z, Liu R, Wang N, et al. Triazine-graphdiyne: a new nitrogen-carbonous material and its application as an advanced rechargeable battery anode [J]. Carbon, 2018, 137: 442–450.

    [18]

    Yang Z, Shen X, Wang N, et al. Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion [J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2608–2617.

    [19]

    Hussain A, Ullah S, Farhan M A. Fine tuning the band-gap of graphene by atomic and molecular doping: a density functional theory study [J]. RSC Advances, 2016, 6(61): 55990–56003.

    [20]

    Ullah S, Hussain A, Syed W, et al. Band-gap tuning of graphene by Be doping and Be, B co-doping: a dft study [J]. RSC Advances, 2015, 5(69): 55762–55773.

    [21]

    Kost F, Linsmeier Ch, Oberkofler M, et al. Investigation of chemical phase formation in the ternary system beryllium, carbon and tungsten with depth-resolved photoelectron spectroscopy[J]. Journal of Nuclear Materials, 2009, 390–391: 975–978.

    [22]

    Goldstraß P, Linsmeier C. Combined ion and electron spectroscopy study of the surface reactions of beryllium with carbon[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2000, 161–163: 411–414.

    [23]

    Anghel A, Porosnicu C, Lungu C P, et al. Influence of thermal treatment on beryllium/carbon formation and fuel retention [J]. Journal of Nuclear Materials, 2011, 416(1–2): 9–12.

    [24]

    Ferro Y, Allouche A, Linsmeier C. Absorption and diffusion of beryllium in graphite, beryllium carbide formation investigated by density functional theory [J]. Journal of Applied Physics, 2013, 113(21): 213514.

    [25]

    Campbell A, Cakmak E, Henry B, et al. Be2C synthesis, properties, and ion-beam irradiation damage characterization [R]. ORNL/TM--2023/3011, 1997705, 2023: ORNL/TM--2023/3011, 1997705.

    [26]

    López-Urías F, Terrones M, Terrones H. Beryllium doping graphene, graphene-nanoribbons, C60-fullerene, and carbon nanotubes [J]. Carbon, 2015, 84: 317–326.

    [27]

    Ullah S, Denis P A, Sato F. Beryllium doped graphene as an efficient anode material for lithium-ion batteries with significantly huge capacity: a dft study [J]. Applied Materials Today, 2017, 9: 333–340.

    [28]

    Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Physical Review A, 1988, 38(6): 3098–3100.

    [29]

    DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics, 1990, 92(1): 508-517.

    [30]

    Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868.

    [31]

    Long M, Tang L, Wang D, et al. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions [J]. ACS Nano, 2011, 5(4): 2593–2600.

    [32]

    SUN C, SEARLES D J. Lithium Storage on Graphdiyne Predicted by DFT Calculations [J]. The Journal of Physical Chemistry C, 2012, 116(50): 26222-26226.

    [33]

    Hwang H J, Koo J, Park M, et al. Multilayer graphynes for lithium ion battery anode [J]. The Journal of Physical Chemistry C, 2013, 117(14): 6919–6923.

    [34]

    Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework [J]. Nature Communications, 2014, 5(1): 5261.

    [35]

    Eftekhari A. Low voltage anode materials for lithium-ion batteries [J]. Energy Storage Materials, 2017, 7: 157–180.

    [36]

    蔡梦圆, 唐春梅, 张秋月. Li离子电池负极材料石墨炔在B, N掺杂调控下的储Li性能优化 [J]. 物理学报, 2019, 68(21): 213601.

    [37]

    Jang B, Koo J, Park M, et al. Graphdiyne as a high-capacity lithium ion battery anode material [J]. Applied Physics Letters, 2013, 103(26): 263904.

  • [1] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, doi: 10.7498/aps.70.20210455
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, doi: 10.7498/aps.70.20211619
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, doi: 10.7498/aps.70.20201894
    [4] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, doi: 10.7498/aps.68.20182302
    [5] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, doi: 10.7498/aps.68.20181726
    [6] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, doi: 10.7498/aps.68.20190447
    [7] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, doi: 10.7498/aps.67.20172171
    [8] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, doi: 10.7498/aps.66.238801
    [9] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, doi: 10.7498/aps.65.100201
    [10] 黄亮, 李建远. 基于单粒子模型与偏微分方程的锂离子电池建模与故障监测. 物理学报, doi: 10.7498/aps.64.108202
    [11] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, doi: 10.7498/aps.64.248201
    [12] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, doi: 10.7498/aps.62.098201
    [13] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, doi: 10.7498/aps.61.087101
    [14] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, doi: 10.7498/aps.61.156103
    [15] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, doi: 10.7498/aps.60.038202
    [16] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, doi: 10.7498/aps.60.068202
    [17] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.59.8226
    [18] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, doi: 10.7498/aps.59.2109
    [19] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究. 物理学报, doi: 10.7498/aps.58.6573
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, doi: 10.7498/aps.52.952
计量
  • 文章访问数:  41
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-09-25

/

返回文章
返回