-
共振非弹性X射线散射(resonant inelastic X-ray scattering, RIXS)是一种先进的基于同步辐射和自由电子激光光源的光进光出的谱学探测手段. 在过去的十几年, RIXS的能量分辨不断被提高, 其对凝聚态物质的研究也从最初的晶体场分裂和电荷转移激发, 发展到产生于包括电荷、自旋、轨道、晶格4个量子自由度的集体激发行为及相关的序参量. 本文总结了近几年高分辨软X射线RIXS在量子材料领域, 如铜基和镍基高温超导材料等离子激发及磁激发的研究, 量子材料中的集体轨道激发、激子激发和高阶磁激发, 以及对磁性金属和拓扑磁性材料中磁激发的探测.
-
关键词:
- 共振非弹性X射线散射 /
- 元激发 /
- 高温超导 /
- 一维量子自旋链 /
- 拓扑磁性材料
The essence of quantum materials lies in the intricate coupling among charge, spin, orbital and lattice degrees of freedom. Although X-ray photoemission spectroscopy and inelastic neutron scattering have advantages in detecting fermionic single-particle spectral function and bosonic spin excitations in quantum materials, respectively, probing other bosonic collective excitations especially their coupling is not possible until the establishment of the advanced resonant inelastic X-ray scattering (RIXS). In the past decades, RIXS has flourished with continuously improved energy resolution which made a paradigm shift from measuring crystal-field splitting and the charge-transfer excitation, to probing collective excitations and the order parameters of all degrees of freedom. This review paper summarises the latest research progress of quantum materials studied by the soft X-ray RIXS. For instance, three-dimensional collective charge excitations, plasmons, were discovered experimentally by RIXS in both electron and hole doped cuprate superconductors. The collective orbital excitations and excitons were found in copper and nickel based quantum materials. For the newly discovered nickelate superconductors, RIXS has made substantial contributions to characterising their electronic and magnetic excitations and the related ordering phenomena critical for an in-depth understanding of the underlying superconducting mechanicsm. The RIXS is a unique tool in probing the higher-order spin excitations in quantum materials due to the strong spin-orbit coupling and the core-valence exchange interaction. The RIXS is also found to be superior in probing the Stoner magnetic excitations in magnetic metals and topological magnetic materials. Finally, the development of RIXS technology in Chinese large-scale research facilities is briefly prospected.-
Keywords:
- resonant inelastic X-ray scattering /
- excitation /
- high temperature superconductor /
- one-dimensional quantum spin chains /
- topological magnetic materials
[1] Tokura Y, Kawasaki M, Nagaosa N 2017 Nat. Phys. 13 1056Google Scholar
[2] Yin J X, Lian B, Zahid Hasan M 2022 Nature 612 647Google Scholar
[3] Dresselhaus M S 2011 Annu. Rev. Condens. Matter Phys. 2 1Google Scholar
[4] Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar
[5] Chen S F, Ning Y J, Tang C S, Dai L, Zeng S W, Han K, Zhou J, Yang M, Guo Y Q, Cai C B, Ariando A, Wee A T S, Yin X M 2024 Adv. Electron. Mater. 10 2300730Google Scholar
[6] Wang Q Y, Zhi L, Zhang W H 2012 Chin. Phys. Lett. 29 037402Google Scholar
[7] Ament L J P, van Veenendaal M, Devereaux T P 2011 Rev. Mod. Phys. 83 705Google Scholar
[8] Braicovich L, van den Brink L, Bisogni V, Sala M M, Ament L J P, Brookes N B, De Luca G M, Salluzzo M, Schmitt T, Strocov V N, Ghiringhelli G 2010 Phys. Rev. Lett. 104 077002Google Scholar
[9] Le Tacon M, Ghiringhelli G, Chaloupka J, Sala M M, Hinkov V, Haverkort M W, Minola M, Bakr M, Zhou K J, Blanco-Canosa S, Monney C, Song Y T, Sun G L, Lin C T, De Luca G M, Salluzzo M, Khaliullin G, Schmitt T, Braicovich L, Keimer B 2011 Nat. Phys. 7 725Google Scholar
[10] Zhou K J, Huang Y B, Monney C, Dai X, Strocov V N, Wang N L, Chen Z G, Zhang C L, Dai PC, Patthey L, van den Brink J, Ding H, Schmitt T 2013 Nat. Commun. 4 1470Google Scholar
[11] Haverkort M W 2010 Phys. Rev. Lett. 105 167404Google Scholar
[12] Glawion S, Heidler J, Haverkort M W, Duda L C, Schmitt T, Strocov V N, Monney C, Zhou K J, Ruff A, Sing M, Claessen R 2011 Phys. Rev. Lett. 107 107402Google Scholar
[13] Schlappa J, Wohlfeld K, Zhou K J 2012 Nature 485 82Google Scholar
[14] Benckiser E, Fels L, Ghiringhelli G, Sala M M, Schmitt T, Schlappa J, Strocov V N, Mufti N, Blake G R, Nugroho A A, Palstra T T M, Haverkort M W, Wohlfeld K, Grüninger M 2013 Phys. Rev. B 88 205115Google Scholar
[15] Nomura T, Harada Y, Niwa H, Ishii K, Ishikado M, Shamoto S, Jarrige I 2016 Phys. Rev. B 94 035134Google Scholar
[16] Wang R P, Hariki A, Sotnikov A, Frati F, Okamoto J, Huang H Y, Singh A, Huang D J, Tomiyasu K, Du C H, Kuneš J, de Groot F M F 2018 Phys. Rev. B 98 035149Google Scholar
[17] Moser S, Fatale S, Krüger P, Berger H, Bugnon P, Magrez A, Niwa H, Miyawaki J, Harada Y, Grioni M 2015 Phys. Rev. Lett. 115 096404Google Scholar
[18] Ament L J P, van Veenendaal M, van den Brink J 2011 Euro. Phys. Lett. 95 27008Google Scholar
[19] Ueda H, Garcia-Fernez M, Agrestini S, Romao C P, van den Brink J, Spaldin N A, Zhou K J, Staub U 2023 Nature 618 946Google Scholar
[20] Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C, Brookes N B, De Luca G M, Frano A, Hawthorn D G, He F, Loew T, Sala M M, Peets D C, Salluzzo M, Schierle E, Sutarto R, Sawatzky G A, Weschke E, Keimer B, Braicovich L 2012 Science 337 821Google Scholar
[21] Chaix L, Ghiringhelli G, Peng Y Y, Hashimoto M, Moritz B, Kummer K, Brookes N B, He Y, Chen S, Ishida S, Yoshida Y, Eisaki H, Salluzzo M, Braicovich L, Shen Z X, Devereaux T P, Lee W S 2017 Nat. Phys. 13 952Google Scholar
[22] Li J M, Nag A, Pelliciari J, Robarts H, Walters A, Garcia-Fernandez M, Eisaki H, Song D J, Ding H, Johnston S, Comin R, Zhou K J 2020 PNAS 117 16219Google Scholar
[23] Lee W S, Zhou K J, Hepting M, Li J, Nag A, Walters A C, Garcia-Fernandez M, Robarts H C, Hashimoto M, Lu H, Nosarzewski B, Song D, Eisaki H, Shen Z X, Moritz B, Zaanen J, Devereaux T P 2021 Nat. Phys. 17 53Google Scholar
[24] Comin R, Damascelli A 2016 Annu. Rev. Condens. Matter Phys. 7 369Google Scholar
[25] Zhang F C , Rice T M 1988 Phys. Rev. B 37 3759Google Scholar
[26] Pavarini E, Gasgupta I, Saha-Dasgupta T, Andersen O K 2001 Phys. Rev. Lett. 87 047003Google Scholar
[27] Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2010 Phys. Rev. Lett. 105 057003Google Scholar
[28] Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar
[29] Kresin V Z, Morwitz H 1988 Phys. Rev. B 37 7854Google Scholar
[30] Ishii Y, Ruvalds J 1993 Phys. Rev. B 48 3455Google Scholar
[31] Bill A, Morawitz H, Kresin V Z 2003 Phys. Rev. B 68 144519Google Scholar
[32] Hepting M, Chaix L, Huang E W, Fumagalli R, Peng Y Y, Moritz B, Kummer K, Brookes N B, Lee W C, Hashimoto M, Sarkar T, He J F, Rotundu C R, Lee Y S, Greene R L, Braicovich L, Ghiringhelli G, Shen Z X, Devereaux T P, Lee W S 2018 Nature 563 374Google Scholar
[33] Lin J Q, Yuan J, Jin K, Yin Z P, Li G, Zhou K J, Lu X Y, Dantz M, Schmitt T, Ding H, Guo H Z, Dean M P M, Liu X R 2020 npj Quantum Mater. 5 4Google Scholar
[34] Nag A, Zhu M, Bejas M, Li J, Robarts H C, Yamase H, Petsch A N, Song D, Eisaki H, Walters A C, García-Fernández M, Greco A, Hayden S M, Zhou K J 2020 Phys. Rev. Lett. 125 257002Google Scholar
[35] Singh A, Huang H Y, Lane C, Li J. H, Okamoto J, Komiya S, Markiewicz R S, Bansil A, Lee T K, Fujimori A, Chen C T, Huang D J 2022 Phys. Rev. B 105 235105Google Scholar
[36] Hepting M, Bejas M, Nag A, Yamase H, Coppola N, Betto D, Falter C, Garcia-Fernandez M, Agrestini S, Zhou K J, Minola M, Sacco C, Maritato L, Orgiani P, Wei H I, Shen K M, Schlom D G, Galdi A, Greco A, Keimer B 2022 Phys. Rev. Lett. 129 047001Google Scholar
[37] Nag A, Zinni L, Choi J, Li J, Tu S J, Walters A. C, Agrestini S, Hayden S. M, Bejas M, Lin Z F, Yamase H, Jin K, García-Fernández M, Fink J, Greco A, Zhou K J 2024 arXiv: 2407.15692 [cond-mat.str-el]
[38] Kim C, Matsuura A Y, Shen Z X, Motoyama N, Eisaki H, Uchida S, Tohyama T, Maekawa S 1996 Phys. Rev. Lett. 77 4054Google Scholar
[39] Kim B J, Koh H, Rotenberg E, Oh S J, Eisaki H, Motoyama N, Uchida S, Tohyama T, Maekawa S, Shen Z X, Kim C 2006 Nat. Phys. 2 397Google Scholar
[40] Martinelli L, Wohlfeld K, Pelliciari J, Arpaia R, Brookes N B, Castro D D, Fernandez M G, Kang M G, Krockenberger Y, Kummer K, McNally D E, Paris E, Schmitt T, Yamamoto H, Walters A, Zhou K J, Braicovich L, Comin R, Sala M M, Devereaux T P, Daghofer M, Ghiringhelli G 2024 Phys. Rev. Lett. 132 066004Google Scholar
[41] Kang S, Kim K, Kim B H, Kim J, Sim K I, Lee J U, Lee S, Park K, Yun S, Kim T, Nag A, Walters A, Garcia-Fernandez M, Li J M, Chapon L, Zhou K J, Son Y W, Kim J H, Cheong H, Park J G 2020 Nature 583 785Google Scholar
[42] He W, Shen Y, Wohlfeld K, Sears J, Li J, Pelliciari J, Walicki M, Johnston S, Baldini E, Bisogni V, Mitrano M, Dean M P M 2024 Nat. Commun. 15 3496Google Scholar
[43] Occhialini C A, Tseng Y, Elnaggar H, Song Q, Blei M, Tongay S A, Bisogni V, de Groot F M F, Pelliciari J, Comin R 2024 Phys. Rev. X 14 031007Google Scholar
[44] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar
[45] Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar
[46] Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y B, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, Schmitt T 2016 Nat. Commun. 7 13017Google Scholar
[47] Lu Y, Betto D, Fürsich K, Suzuki H, Kim H H, Cristiani G, Logvenov G, Brookes N B, Benckiser E, Haverkort M W, Khaliullin G, Le Tacon M, Minola M, Keimer B 2018 Phys. Rev. X 8 031014Google Scholar
[48] Rossi M, Lu H, Nag A, Li D, Osada M, Lee K, Wang B Y, Agrestini S, Garcia-Fernandez M, Kas J J, Chuang Y D, Shen Z X, Hwang H Y, Moritz B, Zhou K J, Devereaux T P, Lee W S 2021 Phys. Rev. B 104 L220505Google Scholar
[49] Pan G A, Segedin D F, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Carrizales D C, N’Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, Mundy J A 2022 Nat. Mater. 21 160Google Scholar
[50] Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Jarrige I, He X, Božović I, Mitrano M, Zhang J J, Mitchell J F, Botana A S, Bisogni V, Norman M R, Johnston S, Dean M P M 2022 Phys. Rev. X 12 011055Google Scholar
[51] Ortiz R A, Puphal P, Klett M, Hotz F, Kremer R K, Trepka H, Hemmida M, von Nidda H A K, Isobe M, Khasanov R, Luetkens H, Hansmann P, Keimer B, Schäfer T, Hepting M 2022 Phys. Rev. Res. 4 023093Google Scholar
[52] Lu H, Rossi M, Nag A, Osada M, Li D F, Lee K, Wang B Y, Garcia-Fernandez M, Agrestini S, Shen Z X, Been E M, Moritz B, Devereaux T P, Zaanen J, Hwang H Y, Zhou K J, Lee W S 2021 Science 373 213Google Scholar
[53] Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105 247001Google Scholar
[54] Robarts H C, Garcia-Fernandez M, Li J, Nag A, Walters A C, Headings N E, Hayden S M, Zhou K J 2021 Phys. Rev. B 103 224427Google Scholar
[55] Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H Q, Gao P, García-Fernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar
[56] Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Sala M M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar
[57] Rossi M Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H Y, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar
[58] Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater 23 486Google Scholar
[59] Rossi M, Lu H, Lee K, Goodge B H, Choi J, Osada M, Lee Y, Li D, Wang B Y, Jost D, Agrestini S, Garcia-Fernandez M, Shen Z X, Zhou K J, Been E, Moritz B, Kourkoutis L F, Devereaux T P, Hwang H Y, Lee W S 2024 Phys. Rev. B 109 024512Google Scholar
[60] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar
[61] Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar
[62] Kaneko T, Sakakibara H, Ochi M, Kuroki K 2024 Phys. Rev. B 109 045154Google Scholar
[63] Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar
[64] Kakoki M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702Google Scholar
[65] Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, Chen X H 2024 arXiv: 2402.03952 [cond-mat.supr-con]
[66] Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar
[67] Khasanov R, Hicken T J, Gawryluk D J, Sorel L P, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2024 arXiv: 2402.10485 [cond-mat.supr-con]
[68] Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 arXiv: 2401.12657 [cond-mat.supr-con]
[69] Walters A C, Perring T G, Caux J S, Savici A T, Gu G D, Lee C C, Ku W, Zaliznyak I A 2009 Nat. Phys. 5 867Google Scholar
[70] Mourigal m, Enderle M, Klöpperpieper A, Caux J S, Stunault A, Rønnow H M 2013 Nat. Phys. 9 435Google Scholar
[71] Schlappa J, Kumar U, Zhou K J, Singh S, Mourigal M, Strocov V N, Revcolevschi A, Patthey L, Rønnow H M, Johnston S, Schmitt T 2018 Nat. Commun. 9 5394Google Scholar
[72] Kumar U, Nag A, Li J M, Robarts H C, Walters A C, García-Fernández M, Saint-Martin R, Revcolevschi A, Schlappa J, Schmitt T, Johnston S, Zhou K J 2022 Phys. Rev. B 106 L060406Google Scholar
[73] Nag A, Nocera A, Agrestini S, Garcia-Fernandez M, Walters A C, Cheong S W, Johnston S, Zhou K J 2022 Nat. Commun. 13 2327Google Scholar
[74] Xu G, Broholm C, Soh Y A, Aeppli G, DiTusa J F, Chen Y, Kenzelmann M, Frost C. D, Ito T, Oka K, Takagi H. 2007 Science 317 1049Google Scholar
[75] Nag A, Robarts H C, Wenzel F, Li J, Elnaggar H, Wang R P, Walters A C, García-Fernández M, de Groot F M F, Haverkort M W, Zhou K J 2020 Phys. Rev. Lett. 124 067202Google Scholar
[76] Li J M, Gu Y H, Takahashi Y, Higashi K, Kim T, Cheng Y, Yang F Y, Kuneš J, Pelliciari J, Hariki A, Bisogni V 2023 Phys. Rev. X 13 011012Google Scholar
[77] Elnaggar H, Nag A, Haverkort M W, Garcia-Fernandez M, Walters A, Wang R P, Zhou K J, de Groot F 2023 Nat. Commun. 14 2749Google Scholar
[78] Poelchen G, Hellwig J, Peters M, Usachov D Y, Kliemt K, Laubschat C, Echenique P M, Chulkov E V, Krellner C, Parkin S S P, Vyalikh D V, Ernst A, Kummer K 2023 Nat. Commun. 14 5422Google Scholar
[79] Brookes N B, Betto D, Cao K, Lu Y, Kummer K, Giustino F 2020 Phys. Rev. B 102 064412Google Scholar
[80] Pelliciari J, Lee S, Gilmore K, Li J M, Gu Y H, Barbour A, Jarrige I, Ahn C H, Walker F J, Bisogni V 2021 Nat. Mater. 20 188Google Scholar
[81] Bernevig B A, Felser C, Beldenkopf H 2022 Nature 603 41Google Scholar
[82] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G, Zhang Z Y 2018 Phys. Rev. Lett. 121 096401Google Scholar
[83] Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G, Comin R 2020 Nat. Commun. 11 4004Google Scholar
[84] Liu Z H, Li M, Wang Q, Wang G W, Wen CH P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C, Wang S C 2020 Nat. Commun. 11 4002Google Scholar
[85] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H B, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z Q, Neupert T, Jia S, Lei H C, Hasan M Z 2019 Nat. Phys. 15 443Google Scholar
[86] Nag A, Peng Y R, Li J M, Agrestini S, Robarts H C, García-Fernández M, Walters A C, Wang Q, Yin Q W, Lei H C, Yin Z P, Zhou K J 2022 Nat. Commun. 13 7317Google Scholar
[87] Fatuzzo C G, Dantz M, Fatale S, Olalde-Velasco P, Shaik N E, Piazza B D, Toth S, Pelliciari J, Fittipaldi R, Vecchione A, Kikugawa N, Brooks J S, Rønnow H M, Grioni M, Rüegg Ch, Schmitt T, Chang J 2015 Phys. Rev. B 91 155104Google Scholar
[88] Das L, Forte F, Fittipaldi R, Fatuzzo C G, Granata V, Ivashko O, Horio M, Schindler F, Dantz M, Tseng Y, McNally D E, Rønnow H M, Wan W, Christensen N B, Pelliciari J, Olalde-Velasco P, Kikugawa N, Neupert T, Vecchione A, Schmitt T, Cuoco M, Chang J 2018 Phys. Rev. X 8 011048Google Scholar
[89] Lebert B W, Kim S, Bisogni V, Jarrige I, Barbour A M, Kim Y J 2020 J. Phys. Condens. Matter. 32 144001Google Scholar
[90] Occhialini C A, Bisogni V, You H, Barbour A, Jarrige I, Mitchell J F, Comin R, Jonathan Pelliciari 2021 Phys. Rev. Res. 3 033214Google Scholar
[91] von Arx K, Forte F, Horio M, Granata V, Wang Q, Das L, Sassa Y, Fittipaldi R, Fatuzzo C G, Ivashko O, Tseng Y, Paris E, Vecchione A, Schmitt T, Cuoco M, Chang J 2020 Phys. Rev. B 102 235104Google Scholar
[92] Lu X Y, Olalde-Velasco P, Huang Y B, Bisogni V, Pelliciari J, Fatale S, Dantz M, Vale J G, Hunter E C, Chang J, Strocov V N, Perry R S, Grioni M, McMorrow D F, Rønnow H M, Schmitt T 2018 Phys. Rev. B 97 041102Google Scholar
[93] Ament L J P, Khaliullin van den Brink J 2011 Phys. Rev. B 84 020403Google Scholar
[94] Moretti Sala M, Rossi M, Boseggia S, Akimitsu J, Brookes N B, Isobe M, Minola M, Okabe H, Rønnow H M, Simonelli L, McMorrow D F, Monaco G 2014 Phys. Rev. B 89 121101Google Scholar
[95] Zimmermann V, Kuma Yogi A, Wong D, Schulz C, Bartkowiak M, Habicht K, Wang L C, Isobe M, Minola M, Khaliullin G, Keimer B, Hepting N 2023 npj Quantum Mater. 8 53Google Scholar
[96] Paris E, Tseng Y, Pärschke E M, Zhang W L, Upton M H, Efimenko A, Rolfs K, McNally D E, Maurel L, Naamneh M, Caputo M, Strocov V N, Wang Z M, Casa D, Schneider C W, Pomjakushina E, Wohlfeld K, RadovicM, Schmitt T 2020 PNAS 117 24764Google Scholar
[97] Suzuki H, Gretarsson H, Ishikawa H, Ueda K, Yang Z, Liu H, Kim H, Kukusta D, Yaresko A, Minola M, Sears J A, Francoual S, Wille H C, Nuss J, Takagi H, Kim B J, Khaliullin G, Yavaş H, Keimer B. 2019 Nat. Mater. 18 563Google Scholar
[98] Yang Z C, Wang L C, Zhao D, Luo M D, Laha S, Güth A, Taniguchi T, Watanabe K, Lotsch B V, Smet J H, Minola M, Gretarsson H, Keimer B 2023 Phys. Rev. B 108 L041406Google Scholar
[99] Takahashi H, Suzuki H, Bertinshaw J, Bette S, Mühle C, Nuss J, Dinnebier R, Yaresko A, Khaliullin G, Gretarsson H, Takayama T, Takagi H, Keimer B 2021 Phys. Rev. Lett. 127 227201Google Scholar
[100] Qamar A, Braun P M, Walia S, Balendhran S, Rahman F, Kurmaev E Z, Moewes A 2022 Phys. Rev. Mater. 6 074003Google Scholar
[101] Kim J, Casa D, Upton M H, Gog T, Kim Y J, Mitchell J F, van Veenendaal M, Daghofer M, van den Brink J, Khaliullin G, Kim B J 2012 Phys. Rev. Lett. 108 177003Google Scholar
[102] Gretarsson H, Clancy J P, Liu X, Hill J P, Bozin E, Singh Y, Manni S, Gegenwart P, Kim J, Said A H, Casa D, Gog T, Upton M H, Kim H S, Yu J, Katukuri V M, Hozoi L, van den Brink J, Kim Y J 2013 Phys. Rev. Lett. 110 076402Google Scholar
[103] Kim J, Said A H, Casa D, Upton M H, Gog T, Daghofer M, Jackeli G, van den Brink J, Khaliullin G, Kim B J 2012 Phys. Rev. Lett. 109 157402Google Scholar
[104] Yuan B, Clancy J P, Cook A M, Thompson C M, Greedan J, Cao G, Jeon B C, Noh T W, Upton M H, Casa D, Gog T, Paramekanti A, Kim Y J 2017 Phys. Rev. B 95 235114Google Scholar
[105] Revelli A, Moretti Sala M, Monaco G, Becker P, Bohatý L, Hermanns M, Koethe T C, Fröhlich T, Warzanowski P, Lorenz T, Streltsov S V, van Loosdrecht P H M, Khomskii D I, van den Brink J, Grüninger M 2019 Sci. Adv. 5 aav4020Google Scholar
[106] Amorese A, Stockert O, Kummer K, Brookes N B, Kim D J, Fisk Z, Haverkort M W, Thalmeier O, Tjeng L H, Severing A 2019 Phys. Rev. B 100 241107Google Scholar
[107] Amorese A, Hansmann P, Marino A, Körner P, Willers T, Walters A, Zhou K J, Kummer K, Brookes N B, Lin H J, Chen C T, Lejay P, Haverkort M W, Tjeng L H, Severing A 2023 Phys. Rev. B 107 115164Google Scholar
[108] Kvashnina K O, Butorin S M, Martin P, Glatzel P 2013 Phys. Rev. Lett. 111 253002Google Scholar
[109] Lander G H, Sundermann M, Springell R, Walters A C, Nag A, Garcia-Fernandez M, Zhou K J, van der Laan G, Caciuffo R 2021 J. Phys. Condens. Matter. 33 06LT01Google Scholar
[110] de Groot F M F, Haverkort M W, Elnaggar H 2024 Nat. Rev. Methods Primers 4 45Google Scholar
[111] Brookes N B, Yakhou-Harris F, Kummer K 2018 NIMA 903 175Google Scholar
[112] Zhou K J, Walters A, Garcia-Fernandez M 2022 J. Synchrotron Radiat. 29 563Google Scholar
[113] Dvorak J, Jarrige I, Bisogni V 2016 Rev. Sci. Instrum. 87 115109Google Scholar
[114] Singh A, Huang H Y, Chu Y Y 2021 J. Synchrotron Radiat. 28 977Google Scholar
-
图 1 空穴掺杂铜氧超导体La1.84Sr0.16CuO4和Bi2Sr1.6La0.4CuO6+d中三维类声学支等离子激发[32] (a)单层铜氧化物的结构示意图及RIXS散射几何结构; (b)单层铜氧化物的声学支等离子激发三维色散关系示意图; (c)空穴掺杂铜氧超导体La1.84Sr0.16CuO4中类声学支等离子激发在l = 1.0时沿着h方向的色散关系, 其中绿色圆点和红色方块分别代表着等离子激发谱和双磁子激发谱的峰值; (d), (e)空穴掺杂铜氧超导体La1.84Sr0.16CuO4和Bi2Sr1.6La0.4CuO6+d中类声学支等离子激发在h = 0.05时沿着l方向的色散关系, 其中绿色圆点和红色虚线分别代表等离子激发谱和双磁子激发谱的峰值
Fig. 1. Three-dimensional acoustic-like plasmons in hole-doped cuprate superconductors La1.84Sr0.16CuO4 and Bi2Sr1.6La0.4CuO6+d[32]: (a) Schematic crystal structure of a single-layered cuprate and the experimental geometry of RIXS; (b) the schematic view of three-dimensional acoustic-like plasmons in (E, q)-space in a single-layered cuprate superconductor; (c) the acoustic-like plasmon dispersion in the hole-doped La1.84Sr0.16CuO4 along h direction at a fixed l = 1.0, where green dots and red squares represent the peak positions of plasmons and bi-magnons respectively; (d), (e) the acoustic-like plasmon dispersion in the hole-doped La1.84Sr0.16CuO4 and Bi2Sr1.6La0.4CuO6+d along l direction at a fixed h = 0.05, green dots and red dashed lines represent the peak positions of plasmons and bi-magnons respectively.
图 2 低维铜氧化物中的集体轨道激发 (a)一维铜氧化物Sr2CuO3的RIXS实验谱, 0—0.8 eV能量范围为双自旋子连续激发, 2—3 eV为轨道子激发[13]; (b) 二维铜氧化物CaCuO2的RIXS实验谱, dxy和dxz/dyz轨道激发呈现色散行为[40]; (c) 二维铜氧化物CaCuO2的RIXS实验谱(图(b))二阶求导结果, dxy表现出50 meV左右的色散[40]; (d) 二维铜晶格中纯粹轨道超交换机制[40]
Fig. 2. Collective orbital excitations in the low-dimensional copper-oxides: (a) Representative RIXS spectrum of a one-dimensional cuprate Sr2CuO3, the mode within 0–0.8 eV is the two-spinon continuum, the mode within 2–3 eV is the orbiton[13]; (b) RIXS spectra of two-dimensional cuprate CaCuO2 in which dxy and dxz/dyz orbitals disperse in (E, q) space[40]; (c) the second derivative of CaCuO2 RIXS spectra shown in panel (b), the bandwidth of the dxy orbital dispersion is about 50 meV[40]; (d) pure orbital superexchange mechanism in two-dimensional copper lattice[40].
图 3 NiPS3和NiBr2中集体激子激发 (a) NiPS3中自旋单重态激子激发1A1g沿着H方向的色散行为[42]; (b) NiPS3中自旋单重态激子激发1A1g沿着K方向的色散行为[42]; (c) NiBr2中自旋单重态激子激发1A1g沿着H方向的色散行为[43]
Fig. 3. Collective exciton excitations in NiPS3 and NiBr2: (a) Dispersion behaviour of the spin-singlet exciton 1A1g in NiPS3 along H direction[42]; (b) the dispersion behaviour of the spin-singlet exciton 1A1g in NiPS3 along K direction[42]; (c) the dispersion behaviour of the spin-singlet exciton 1A1g in NiBr2 along H direction[43].
图 4 NdNiO2的电子结构 (a) NdNiO2的费米能级附近态密度示意图[45]; (b) NdNiO2的Ni L3-RIXS实验谱, 黑线为Ni L3-XAS实验谱, 黑色虚线长方形标出Ni 3d- Nd 5d杂化dd峰[45]; (c) Nd1–xSrxNiO2 (x = 0, 0.225) Ni L3-XAS实验结果[48]; (d) Nd1–xSrxNiO2自旋单重态和自旋三重态示意图; (e) Nd1–xSrxNiO2自旋单重态和自旋三重态理论计算结果[48]
Fig. 4. Electronic structure of NdNiO2: (a) Schematic view of the density of states near Fermi level in NdNiO2[45]; (b) Ni L3- energy-dependent RIXS spectra. The black solid line represents Ni L3-XAS spectrum, and the black dashed rectangle highlights the hybridized dd peak between Ni 3d and Nd 5d orbitals[45]; (c) the Ni L3-XAS experimental spectra of Nd1–xSrxNiO2 (x = 0, 0.225)[48]; (d) schematic view of the spin-singlet and spin-triplet state in Nd1–xSrxNiO2; (e) the theoretical calculation of the spin-singlet and spin-triplet XAS in Nd1–xSrxNiO2[48].
图 5 (a) NdNiO2和(b) La2CuO4中集体磁激发沿着动量空间高对称线的色散关系, 其中红色和蓝色实心圆点为磁激发拟合峰值, 虚线为线性自旋波拟合结果, 磁激发拟合峰值数据来源于文献[52,54]
Fig. 5. (a) NdNiO2 and (b) La2CuO4 magnon dispersion along the high-symmetry direction in the momentum space. The red dots and blue dots represent the fitted peak positions of magnons. Dotted lines stand for the fitting result of the linear spin-wave theory[52,54] .
图 6 La3Ni2O7的XAS和RIXS结果 [68] (a), (b) La3Ni2O7和参考样品(NdNiO3, NiO)O K边和Ni L3边的XAS谱对比, 所有的吸收谱均采用了σ线偏振入射光; (c), (d) Ni L3边入射能量依赖的RIXS谱, 其中白色实线为对应线偏振模式下的XAS吸收谱; (e) Ni L3边RIXS集体磁激发沿着动量空间高对称线的色散关系, 插图中的红色箭头标出了动量空间的高对称线, 图中红色实心圆点为磁激发拟合峰值
Fig. 6. Experimental XAS and RIXS spectra of La3Ni2O7[68]: (a), (b) The O K-XAS and Ni L3-RIXS of La3Ni2O7 as well as those from the references, all XAS spectra were taken using polarized X-rays; (c), (d) the Ni L3-edge energy-dependent RIXS spectra using σ and πpolarization, the white solid lines represent the XAS spectra taken by the corresponding linear polarization in each configuration; (e) Ni L3-RIXS magnon dispersion along the high-symmetry direction in the momentum space, the red arrows in the inset represent the scanning path, the red dots show the fitted peak positions of the magnons[68].
图 7 La3Ni2O7的磁结构模型及自旋密度波[68] (a)自旋-电荷条纹相模型; (b)双自旋条纹相模型, 为简化模型, 示意图只显示了镍离子, 实线方格子为面内四方相晶格, 灰色立方体代表NiO6八面体, 蓝色、红色、黑色圆点分别代表自旋向上Ni2+、自旋向下Ni2+以及Ni3+. 图中显示出的J1S, J2S, JzS(垂直于双NiO2面的超交换作用)为基于各个模型并结合RIXS磁激发的最佳拟合结果; (c)自旋密度波倒空间沿着(H, H)方向在不同线偏振入射光下的散射结果; (d)自旋密度波强度的温度依赖关系; (e)自旋密度波面内相干长度的温度依赖关系
Fig. 7. Magnetic structure of La3Ni2O7 and the spin-density-wave (SDW) results[68]: (a) Spin-charge stripe (Stripe-1); (b) double spin stripe (Stripe-2), to simplify the models, only Ni ions are shown in the schematic view, solid squares represent the in-plane tetragonal lattice, grey shaded cubes stand for NiO6 octahedra, blue, red, and black dots represent spin-up Ni2+, spin-down Ni2+, and spinless Ni3+, respectively, J1S, J2S, JzS which is the superexchange interaction perpendicular to the layer are also shown in the figure following the optimized fitting to the experimental data; (c) SDW along (H, H) direction probed by σ and πlinear polarized X-rays; (d) temperature dependence of SDW order parameter; (e) the correlation length of CDW as function of temperature.
图 8 SrCuO2一维自旋链RIXS磁激发 [72] (a) SrCuO2一维自旋链的结构及RIXS实验示意图, 入射光采用π线偏振光, RIXS散射角固定在146°; (b1), (b2) 氧K边及铜 L3边RIXS实验谱, (b3), (b4)氧K边及铜 L3边基于t-J哈密顿量和RIXS Kramer-Heisenberg散射截面理论计算结果; (c1), (c2)铜 L3边基于t-J哈密顿量和RIXS Kramer-Heisenberg散射截面理论得出的SC及NSC两个通道的磁激发结果, (c3)对应的为多重磁激发积分谱权重(图(c1), (c2)红色虚线部分为积分区域), (c4) NSC和SC理论多重激发谱加权平均结果与实验对比; (d)磁激发谱在UCL近似下展开后其一阶项(d1), (d2)和二阶项(d3), (d4)结果
Fig. 8. RIXS magnon results in the one-dimensional SrCuO2[72]: (a) Schematic view of the lattice structure of SrCuO2 and RIXS experimental geometry. Incident X-rays are πlinearly polarized. The scattering angle is fixed to 146°; (b1), (b2) O K- and Cu L3- RIXS experimental spectra, (b3), (b4) theoretical calculations based on the Kramer-Heisenberg formula and t-J Hamiltonian; (c1), (c2) spin-conserving and Non-spin-conserving channels of calculated Cu L3- RIXS spectra based on the Kramer-Heisenberg formula and t-J Hamiltonian, (c3) the spectral weight of multi-spinons in both SC and NSC channels integrated over the dotted red regions, (c4) the optimized sum of spectra weight with respect to the experimental data; (d) the first-order (d1), (d2) and the second-order (d3), (d4) component of the calculated spectra under the UCL approximation.
图 9 Y2BaNiO5一维自旋链RIXS磁激发 [73] (a) Y2BaNiO5一维自旋链沿着c轴链方向的Ni L3边RIXS磁激发实验谱, 入射光采用π线偏振光, RIXS散射角固定在154°, 虚线为偶极磁激发色散关系$\omega^{2}(q_{//})=\varDelta_{\rm{H}}^{2}+v^{2} \sin ^{2} q_{//}+\alpha^{2} \cos ^{2}(q_{//}/2) $, 其中J = 24 meV, ΔH = 0.41 J, v = 2.55 J, α = 1.1 J; (b)—(d)分别为基于密度矩阵重整化群理论计算得出的偶极磁激发ΔS1, 四极磁激发 ΔS2, 及自旋翻转为零多重磁激发ΔS0, 其中(c)中的蓝色虚线标出了两个不相干的三重态激发的连续谱边界; (e) RIXS偶极磁激发和四极磁激发的示意图; (f) 一维Ni2+反铁磁自旋链的基态和偶极、四极、自旋翻转为零多重磁激发的示意图
Fig. 9. Ni L3-RIXS magnon in one-dimensional spin-chain compound Y2BaNiO5[73]: (a) Momentum-dependent RIXS experimental spectra along the c-axis chain direction, incident X-rays are πpolarized, RIXS scattering angle is fixed at 154°, dotted line represents the dipolar magnon with a dispersion relationship $\omega^{2}(q_{/ /})=\varDelta_{\rm{H}}^{2}+v^{2} \sin ^{2} q_{/ /}+\alpha^{2} \cos ^{2}(q_{/ /}/2) $ in which J = 24 meV, ΔH = 0.41 J, v = 2.55 J, α = 1.1 J; (b)–(d) the calculated dipolar-magnon spectra ΔS1, quadrupolar-magnon spectra ΔS2, and the multi-magnon spectra ΔS0, respectively, the blue dashed lines highlight the boundary of the two independent spin-triplet excitations; (e) the schematic view of the creation of dipolar and quadrupolar magnons in the RIXS process; (f) the schematic view of the ground state, the dipolar-magnon, the quadrupolar magnon, and the multiple magnon with net zero spin-flips in the one-dimensional Ni2+ antiferromagnetic spin chain.
图 10 铁磁金属LaCo2P2和CeCo2P2中Co L3边RIXS磁激发 [78] (a) 铁磁金属LaCo2P2和CeCo2P2的晶体结构示意图, 紫色箭头为自旋方向; (b) 铁磁金属中自旋波与自旋翻转的斯托纳激发在能量-动量空间的色散关系, 当自旋波与斯托纳激发相互作用时发生展宽; (c) LaCo2P2和CeCo2P2有代表性的RIXS磁激发实验结果
Fig. 10. Co L3-RIXS magnon experimental spectra in ferromagnetic LaCo2P2 and CeCo2P2[78]: (a) Schematic view of the crystal structure of ferromagnetic LaCo2P2 and CeCo2P2, the purple arrows represent the spin direction; (b) spin-wave and the spin-flipped Stoner excitations in the energy-momentum space. Spin-wave becomes broadened when interacting with the Stoner excitations; (c) representative RIXS experimental spectra in LaCo2P2 and CeCo2P2.
图 11 笼目晶格铁磁外尔半金属Co3Sn2S2中Co L3边RIXS自旋翻转平带斯托纳激发[86] (a) Co3Sn2S2中六角CoSn平面结构、倒空间及RIXS实验示意图, 箭头标注Co自旋方向, 加粗实线标注了RIXS在动量空间的扫描路径, 入射光采用π线偏振光; (b) Co3Sn2S2基于密度泛函理论计算得出的自旋向下的能带结构; (c) 自旋极化能带及自旋翻转斯托纳激发过程; (d) 对应于图(c)中自旋极化能带的自旋波和自旋翻转斯托纳激发谱示意图, 当能带变得扁平时, 对应的斯托纳激发也相应变窄; (e), (f) Co3Sn2S2中Co L3边RIXS自旋翻转平带斯托纳激发沿着h方向和l方向的色散关系; (g), (h)对应于图(e), (f)的基于密度泛函和动力学平均场理论得出的动态自旋关联函数
Fig. 11. Near flat-band Stoner excitations probed by Co L3-RIXS in Kagome ferromagnetic Weyl metal Co3Sn2S2: (a) The in-plane hexagonal CoSn structure, the corresponding reciprocal space, and the RIXS experimental geometry, the arrow on Co atoms represents the spin direction, the thick solid lines highlight the RIXS scanning path in the momentum space, the incident X-rays are π linearly polarized; (b) spin-down polarized band structure of Co3Sn2S2 calculated by density functional theory; (c) schematic view of spin-polarized bands and the allowed spin-flip excitations in the momentum space; (d) the corresponding spin-flipped Stoner excitations, when the band becomes flat the corresponding Stoner excitations gets narrow; (e), (f) Co3Sn2S2 Co L3-RIXS experimental near flat-band Stoner excitations along h and l directions, respectively; (g), (h) the theoretical spin-spin dynamical susceptibility (spin-spin correlation function) along h and l directions calculated based on density functional theory and dynamical mean-field theory.
-
[1] Tokura Y, Kawasaki M, Nagaosa N 2017 Nat. Phys. 13 1056Google Scholar
[2] Yin J X, Lian B, Zahid Hasan M 2022 Nature 612 647Google Scholar
[3] Dresselhaus M S 2011 Annu. Rev. Condens. Matter Phys. 2 1Google Scholar
[4] Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar
[5] Chen S F, Ning Y J, Tang C S, Dai L, Zeng S W, Han K, Zhou J, Yang M, Guo Y Q, Cai C B, Ariando A, Wee A T S, Yin X M 2024 Adv. Electron. Mater. 10 2300730Google Scholar
[6] Wang Q Y, Zhi L, Zhang W H 2012 Chin. Phys. Lett. 29 037402Google Scholar
[7] Ament L J P, van Veenendaal M, Devereaux T P 2011 Rev. Mod. Phys. 83 705Google Scholar
[8] Braicovich L, van den Brink L, Bisogni V, Sala M M, Ament L J P, Brookes N B, De Luca G M, Salluzzo M, Schmitt T, Strocov V N, Ghiringhelli G 2010 Phys. Rev. Lett. 104 077002Google Scholar
[9] Le Tacon M, Ghiringhelli G, Chaloupka J, Sala M M, Hinkov V, Haverkort M W, Minola M, Bakr M, Zhou K J, Blanco-Canosa S, Monney C, Song Y T, Sun G L, Lin C T, De Luca G M, Salluzzo M, Khaliullin G, Schmitt T, Braicovich L, Keimer B 2011 Nat. Phys. 7 725Google Scholar
[10] Zhou K J, Huang Y B, Monney C, Dai X, Strocov V N, Wang N L, Chen Z G, Zhang C L, Dai PC, Patthey L, van den Brink J, Ding H, Schmitt T 2013 Nat. Commun. 4 1470Google Scholar
[11] Haverkort M W 2010 Phys. Rev. Lett. 105 167404Google Scholar
[12] Glawion S, Heidler J, Haverkort M W, Duda L C, Schmitt T, Strocov V N, Monney C, Zhou K J, Ruff A, Sing M, Claessen R 2011 Phys. Rev. Lett. 107 107402Google Scholar
[13] Schlappa J, Wohlfeld K, Zhou K J 2012 Nature 485 82Google Scholar
[14] Benckiser E, Fels L, Ghiringhelli G, Sala M M, Schmitt T, Schlappa J, Strocov V N, Mufti N, Blake G R, Nugroho A A, Palstra T T M, Haverkort M W, Wohlfeld K, Grüninger M 2013 Phys. Rev. B 88 205115Google Scholar
[15] Nomura T, Harada Y, Niwa H, Ishii K, Ishikado M, Shamoto S, Jarrige I 2016 Phys. Rev. B 94 035134Google Scholar
[16] Wang R P, Hariki A, Sotnikov A, Frati F, Okamoto J, Huang H Y, Singh A, Huang D J, Tomiyasu K, Du C H, Kuneš J, de Groot F M F 2018 Phys. Rev. B 98 035149Google Scholar
[17] Moser S, Fatale S, Krüger P, Berger H, Bugnon P, Magrez A, Niwa H, Miyawaki J, Harada Y, Grioni M 2015 Phys. Rev. Lett. 115 096404Google Scholar
[18] Ament L J P, van Veenendaal M, van den Brink J 2011 Euro. Phys. Lett. 95 27008Google Scholar
[19] Ueda H, Garcia-Fernez M, Agrestini S, Romao C P, van den Brink J, Spaldin N A, Zhou K J, Staub U 2023 Nature 618 946Google Scholar
[20] Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C, Brookes N B, De Luca G M, Frano A, Hawthorn D G, He F, Loew T, Sala M M, Peets D C, Salluzzo M, Schierle E, Sutarto R, Sawatzky G A, Weschke E, Keimer B, Braicovich L 2012 Science 337 821Google Scholar
[21] Chaix L, Ghiringhelli G, Peng Y Y, Hashimoto M, Moritz B, Kummer K, Brookes N B, He Y, Chen S, Ishida S, Yoshida Y, Eisaki H, Salluzzo M, Braicovich L, Shen Z X, Devereaux T P, Lee W S 2017 Nat. Phys. 13 952Google Scholar
[22] Li J M, Nag A, Pelliciari J, Robarts H, Walters A, Garcia-Fernandez M, Eisaki H, Song D J, Ding H, Johnston S, Comin R, Zhou K J 2020 PNAS 117 16219Google Scholar
[23] Lee W S, Zhou K J, Hepting M, Li J, Nag A, Walters A C, Garcia-Fernandez M, Robarts H C, Hashimoto M, Lu H, Nosarzewski B, Song D, Eisaki H, Shen Z X, Moritz B, Zaanen J, Devereaux T P 2021 Nat. Phys. 17 53Google Scholar
[24] Comin R, Damascelli A 2016 Annu. Rev. Condens. Matter Phys. 7 369Google Scholar
[25] Zhang F C , Rice T M 1988 Phys. Rev. B 37 3759Google Scholar
[26] Pavarini E, Gasgupta I, Saha-Dasgupta T, Andersen O K 2001 Phys. Rev. Lett. 87 047003Google Scholar
[27] Sakakibara H, Usui H, Kuroki K, Arita R, Aoki H 2010 Phys. Rev. Lett. 105 057003Google Scholar
[28] Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar
[29] Kresin V Z, Morwitz H 1988 Phys. Rev. B 37 7854Google Scholar
[30] Ishii Y, Ruvalds J 1993 Phys. Rev. B 48 3455Google Scholar
[31] Bill A, Morawitz H, Kresin V Z 2003 Phys. Rev. B 68 144519Google Scholar
[32] Hepting M, Chaix L, Huang E W, Fumagalli R, Peng Y Y, Moritz B, Kummer K, Brookes N B, Lee W C, Hashimoto M, Sarkar T, He J F, Rotundu C R, Lee Y S, Greene R L, Braicovich L, Ghiringhelli G, Shen Z X, Devereaux T P, Lee W S 2018 Nature 563 374Google Scholar
[33] Lin J Q, Yuan J, Jin K, Yin Z P, Li G, Zhou K J, Lu X Y, Dantz M, Schmitt T, Ding H, Guo H Z, Dean M P M, Liu X R 2020 npj Quantum Mater. 5 4Google Scholar
[34] Nag A, Zhu M, Bejas M, Li J, Robarts H C, Yamase H, Petsch A N, Song D, Eisaki H, Walters A C, García-Fernández M, Greco A, Hayden S M, Zhou K J 2020 Phys. Rev. Lett. 125 257002Google Scholar
[35] Singh A, Huang H Y, Lane C, Li J. H, Okamoto J, Komiya S, Markiewicz R S, Bansil A, Lee T K, Fujimori A, Chen C T, Huang D J 2022 Phys. Rev. B 105 235105Google Scholar
[36] Hepting M, Bejas M, Nag A, Yamase H, Coppola N, Betto D, Falter C, Garcia-Fernandez M, Agrestini S, Zhou K J, Minola M, Sacco C, Maritato L, Orgiani P, Wei H I, Shen K M, Schlom D G, Galdi A, Greco A, Keimer B 2022 Phys. Rev. Lett. 129 047001Google Scholar
[37] Nag A, Zinni L, Choi J, Li J, Tu S J, Walters A. C, Agrestini S, Hayden S. M, Bejas M, Lin Z F, Yamase H, Jin K, García-Fernández M, Fink J, Greco A, Zhou K J 2024 arXiv: 2407.15692 [cond-mat.str-el]
[38] Kim C, Matsuura A Y, Shen Z X, Motoyama N, Eisaki H, Uchida S, Tohyama T, Maekawa S 1996 Phys. Rev. Lett. 77 4054Google Scholar
[39] Kim B J, Koh H, Rotenberg E, Oh S J, Eisaki H, Motoyama N, Uchida S, Tohyama T, Maekawa S, Shen Z X, Kim C 2006 Nat. Phys. 2 397Google Scholar
[40] Martinelli L, Wohlfeld K, Pelliciari J, Arpaia R, Brookes N B, Castro D D, Fernandez M G, Kang M G, Krockenberger Y, Kummer K, McNally D E, Paris E, Schmitt T, Yamamoto H, Walters A, Zhou K J, Braicovich L, Comin R, Sala M M, Devereaux T P, Daghofer M, Ghiringhelli G 2024 Phys. Rev. Lett. 132 066004Google Scholar
[41] Kang S, Kim K, Kim B H, Kim J, Sim K I, Lee J U, Lee S, Park K, Yun S, Kim T, Nag A, Walters A, Garcia-Fernandez M, Li J M, Chapon L, Zhou K J, Son Y W, Kim J H, Cheong H, Park J G 2020 Nature 583 785Google Scholar
[42] He W, Shen Y, Wohlfeld K, Sears J, Li J, Pelliciari J, Walicki M, Johnston S, Baldini E, Bisogni V, Mitrano M, Dean M P M 2024 Nat. Commun. 15 3496Google Scholar
[43] Occhialini C A, Tseng Y, Elnaggar H, Song Q, Blei M, Tongay S A, Bisogni V, de Groot F M F, Pelliciari J, Comin R 2024 Phys. Rev. X 14 031007Google Scholar
[44] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar
[45] Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar
[46] Bisogni V, Catalano S, Green R J, Gibert M, Scherwitzl R, Huang Y B, Strocov V N, Zubko P, Balandeh S, Triscone J M, Sawatzky G, Schmitt T 2016 Nat. Commun. 7 13017Google Scholar
[47] Lu Y, Betto D, Fürsich K, Suzuki H, Kim H H, Cristiani G, Logvenov G, Brookes N B, Benckiser E, Haverkort M W, Khaliullin G, Le Tacon M, Minola M, Keimer B 2018 Phys. Rev. X 8 031014Google Scholar
[48] Rossi M, Lu H, Nag A, Li D, Osada M, Lee K, Wang B Y, Agrestini S, Garcia-Fernandez M, Kas J J, Chuang Y D, Shen Z X, Hwang H Y, Moritz B, Zhou K J, Devereaux T P, Lee W S 2021 Phys. Rev. B 104 L220505Google Scholar
[49] Pan G A, Segedin D F, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Carrizales D C, N’Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, Mundy J A 2022 Nat. Mater. 21 160Google Scholar
[50] Shen Y, Sears J, Fabbris G, Li J, Pelliciari J, Jarrige I, He X, Božović I, Mitrano M, Zhang J J, Mitchell J F, Botana A S, Bisogni V, Norman M R, Johnston S, Dean M P M 2022 Phys. Rev. X 12 011055Google Scholar
[51] Ortiz R A, Puphal P, Klett M, Hotz F, Kremer R K, Trepka H, Hemmida M, von Nidda H A K, Isobe M, Khasanov R, Luetkens H, Hansmann P, Keimer B, Schäfer T, Hepting M 2022 Phys. Rev. Res. 4 023093Google Scholar
[52] Lu H, Rossi M, Nag A, Osada M, Li D F, Lee K, Wang B Y, Garcia-Fernandez M, Agrestini S, Shen Z X, Been E M, Moritz B, Devereaux T P, Zaanen J, Hwang H Y, Zhou K J, Lee W S 2021 Science 373 213Google Scholar
[53] Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105 247001Google Scholar
[54] Robarts H C, Garcia-Fernandez M, Li J, Nag A, Walters A C, Headings N E, Hayden S M, Zhou K J 2021 Phys. Rev. B 103 224427Google Scholar
[55] Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H Q, Gao P, García-Fernández M, Qiao L, Zhou K J 2022 Nat. Mater. 21 1116Google Scholar
[56] Krieger G, Martinelli L, Zeng S, Chow L E, Kummer K, Arpaia R, Sala M M, Brookes N B, Ariando A, Viart N, Salluzzo M, Ghiringhelli G, Preziosi D 2022 Phys. Rev. Lett. 129 027002Google Scholar
[57] Rossi M Osada M, Choi J, Agrestini S, Jost D, Lee Y, Lu H Y, Wang B Y, Lee K, Nag A, Chuang Y D, Kuo C T, Lee S J, Moritz B, Devereaux T P, Shen Z X, Lee J S, Zhou K J, Hwang H Y, Lee W S 2022 Nat. Phys. 18 869Google Scholar
[58] Parzyck C T, Gupta N K, Wu Y, Anil V, Bhatt L, Bouliane M, Gong R, Gregory B Z, Luo A, Sutarto R, He F, Chuang Y D, Zhou T, Herranz G, Kourkoutis L F, Singer A, Schlom D G, Hawthorn D G, Shen K M 2024 Nat. Mater 23 486Google Scholar
[59] Rossi M, Lu H, Lee K, Goodge B H, Choi J, Osada M, Lee Y, Li D, Wang B Y, Jost D, Agrestini S, Garcia-Fernandez M, Shen Z X, Zhou K J, Been E, Moritz B, Kourkoutis L F, Devereaux T P, Hwang H Y, Lee W S 2024 Phys. Rev. B 109 024512Google Scholar
[60] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar
[61] Luo Z H, Hu X W, Wang M, Wú W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar
[62] Kaneko T, Sakakibara H, Ochi M, Kuroki K 2024 Phys. Rev. B 109 045154Google Scholar
[63] Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar
[64] Kakoki M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702Google Scholar
[65] Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, Chen X H 2024 arXiv: 2402.03952 [cond-mat.supr-con]
[66] Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar
[67] Khasanov R, Hicken T J, Gawryluk D J, Sorel L P, Bötzel S, Lechermann F, Eremin I M, Luetkens H, Guguchia Z 2024 arXiv: 2402.10485 [cond-mat.supr-con]
[68] Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 arXiv: 2401.12657 [cond-mat.supr-con]
[69] Walters A C, Perring T G, Caux J S, Savici A T, Gu G D, Lee C C, Ku W, Zaliznyak I A 2009 Nat. Phys. 5 867Google Scholar
[70] Mourigal m, Enderle M, Klöpperpieper A, Caux J S, Stunault A, Rønnow H M 2013 Nat. Phys. 9 435Google Scholar
[71] Schlappa J, Kumar U, Zhou K J, Singh S, Mourigal M, Strocov V N, Revcolevschi A, Patthey L, Rønnow H M, Johnston S, Schmitt T 2018 Nat. Commun. 9 5394Google Scholar
[72] Kumar U, Nag A, Li J M, Robarts H C, Walters A C, García-Fernández M, Saint-Martin R, Revcolevschi A, Schlappa J, Schmitt T, Johnston S, Zhou K J 2022 Phys. Rev. B 106 L060406Google Scholar
[73] Nag A, Nocera A, Agrestini S, Garcia-Fernandez M, Walters A C, Cheong S W, Johnston S, Zhou K J 2022 Nat. Commun. 13 2327Google Scholar
[74] Xu G, Broholm C, Soh Y A, Aeppli G, DiTusa J F, Chen Y, Kenzelmann M, Frost C. D, Ito T, Oka K, Takagi H. 2007 Science 317 1049Google Scholar
[75] Nag A, Robarts H C, Wenzel F, Li J, Elnaggar H, Wang R P, Walters A C, García-Fernández M, de Groot F M F, Haverkort M W, Zhou K J 2020 Phys. Rev. Lett. 124 067202Google Scholar
[76] Li J M, Gu Y H, Takahashi Y, Higashi K, Kim T, Cheng Y, Yang F Y, Kuneš J, Pelliciari J, Hariki A, Bisogni V 2023 Phys. Rev. X 13 011012Google Scholar
[77] Elnaggar H, Nag A, Haverkort M W, Garcia-Fernandez M, Walters A, Wang R P, Zhou K J, de Groot F 2023 Nat. Commun. 14 2749Google Scholar
[78] Poelchen G, Hellwig J, Peters M, Usachov D Y, Kliemt K, Laubschat C, Echenique P M, Chulkov E V, Krellner C, Parkin S S P, Vyalikh D V, Ernst A, Kummer K 2023 Nat. Commun. 14 5422Google Scholar
[79] Brookes N B, Betto D, Cao K, Lu Y, Kummer K, Giustino F 2020 Phys. Rev. B 102 064412Google Scholar
[80] Pelliciari J, Lee S, Gilmore K, Li J M, Gu Y H, Barbour A, Jarrige I, Ahn C H, Walker F J, Bisogni V 2021 Nat. Mater. 20 188Google Scholar
[81] Bernevig B A, Felser C, Beldenkopf H 2022 Nature 603 41Google Scholar
[82] Lin Z Y, Choi J H, Zhang Q, Qin W, Yi S, Wang P D, Li L, Wang Y F, Zhang H, Sun Z, Wei L M, Zhang S B, Guo T F, Lu Q Y, Cho J H, Zeng C G, Zhang Z Y 2018 Phys. Rev. Lett. 121 096401Google Scholar
[83] Kang M G, Fang S A, Ye L D, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G, Comin R 2020 Nat. Commun. 11 4004Google Scholar
[84] Liu Z H, Li M, Wang Q, Wang G W, Wen CH P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C, Wang S C 2020 Nat. Commun. 11 4002Google Scholar
[85] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H B, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z Q, Neupert T, Jia S, Lei H C, Hasan M Z 2019 Nat. Phys. 15 443Google Scholar
[86] Nag A, Peng Y R, Li J M, Agrestini S, Robarts H C, García-Fernández M, Walters A C, Wang Q, Yin Q W, Lei H C, Yin Z P, Zhou K J 2022 Nat. Commun. 13 7317Google Scholar
[87] Fatuzzo C G, Dantz M, Fatale S, Olalde-Velasco P, Shaik N E, Piazza B D, Toth S, Pelliciari J, Fittipaldi R, Vecchione A, Kikugawa N, Brooks J S, Rønnow H M, Grioni M, Rüegg Ch, Schmitt T, Chang J 2015 Phys. Rev. B 91 155104Google Scholar
[88] Das L, Forte F, Fittipaldi R, Fatuzzo C G, Granata V, Ivashko O, Horio M, Schindler F, Dantz M, Tseng Y, McNally D E, Rønnow H M, Wan W, Christensen N B, Pelliciari J, Olalde-Velasco P, Kikugawa N, Neupert T, Vecchione A, Schmitt T, Cuoco M, Chang J 2018 Phys. Rev. X 8 011048Google Scholar
[89] Lebert B W, Kim S, Bisogni V, Jarrige I, Barbour A M, Kim Y J 2020 J. Phys. Condens. Matter. 32 144001Google Scholar
[90] Occhialini C A, Bisogni V, You H, Barbour A, Jarrige I, Mitchell J F, Comin R, Jonathan Pelliciari 2021 Phys. Rev. Res. 3 033214Google Scholar
[91] von Arx K, Forte F, Horio M, Granata V, Wang Q, Das L, Sassa Y, Fittipaldi R, Fatuzzo C G, Ivashko O, Tseng Y, Paris E, Vecchione A, Schmitt T, Cuoco M, Chang J 2020 Phys. Rev. B 102 235104Google Scholar
[92] Lu X Y, Olalde-Velasco P, Huang Y B, Bisogni V, Pelliciari J, Fatale S, Dantz M, Vale J G, Hunter E C, Chang J, Strocov V N, Perry R S, Grioni M, McMorrow D F, Rønnow H M, Schmitt T 2018 Phys. Rev. B 97 041102Google Scholar
[93] Ament L J P, Khaliullin van den Brink J 2011 Phys. Rev. B 84 020403Google Scholar
[94] Moretti Sala M, Rossi M, Boseggia S, Akimitsu J, Brookes N B, Isobe M, Minola M, Okabe H, Rønnow H M, Simonelli L, McMorrow D F, Monaco G 2014 Phys. Rev. B 89 121101Google Scholar
[95] Zimmermann V, Kuma Yogi A, Wong D, Schulz C, Bartkowiak M, Habicht K, Wang L C, Isobe M, Minola M, Khaliullin G, Keimer B, Hepting N 2023 npj Quantum Mater. 8 53Google Scholar
[96] Paris E, Tseng Y, Pärschke E M, Zhang W L, Upton M H, Efimenko A, Rolfs K, McNally D E, Maurel L, Naamneh M, Caputo M, Strocov V N, Wang Z M, Casa D, Schneider C W, Pomjakushina E, Wohlfeld K, RadovicM, Schmitt T 2020 PNAS 117 24764Google Scholar
[97] Suzuki H, Gretarsson H, Ishikawa H, Ueda K, Yang Z, Liu H, Kim H, Kukusta D, Yaresko A, Minola M, Sears J A, Francoual S, Wille H C, Nuss J, Takagi H, Kim B J, Khaliullin G, Yavaş H, Keimer B. 2019 Nat. Mater. 18 563Google Scholar
[98] Yang Z C, Wang L C, Zhao D, Luo M D, Laha S, Güth A, Taniguchi T, Watanabe K, Lotsch B V, Smet J H, Minola M, Gretarsson H, Keimer B 2023 Phys. Rev. B 108 L041406Google Scholar
[99] Takahashi H, Suzuki H, Bertinshaw J, Bette S, Mühle C, Nuss J, Dinnebier R, Yaresko A, Khaliullin G, Gretarsson H, Takayama T, Takagi H, Keimer B 2021 Phys. Rev. Lett. 127 227201Google Scholar
[100] Qamar A, Braun P M, Walia S, Balendhran S, Rahman F, Kurmaev E Z, Moewes A 2022 Phys. Rev. Mater. 6 074003Google Scholar
[101] Kim J, Casa D, Upton M H, Gog T, Kim Y J, Mitchell J F, van Veenendaal M, Daghofer M, van den Brink J, Khaliullin G, Kim B J 2012 Phys. Rev. Lett. 108 177003Google Scholar
[102] Gretarsson H, Clancy J P, Liu X, Hill J P, Bozin E, Singh Y, Manni S, Gegenwart P, Kim J, Said A H, Casa D, Gog T, Upton M H, Kim H S, Yu J, Katukuri V M, Hozoi L, van den Brink J, Kim Y J 2013 Phys. Rev. Lett. 110 076402Google Scholar
[103] Kim J, Said A H, Casa D, Upton M H, Gog T, Daghofer M, Jackeli G, van den Brink J, Khaliullin G, Kim B J 2012 Phys. Rev. Lett. 109 157402Google Scholar
[104] Yuan B, Clancy J P, Cook A M, Thompson C M, Greedan J, Cao G, Jeon B C, Noh T W, Upton M H, Casa D, Gog T, Paramekanti A, Kim Y J 2017 Phys. Rev. B 95 235114Google Scholar
[105] Revelli A, Moretti Sala M, Monaco G, Becker P, Bohatý L, Hermanns M, Koethe T C, Fröhlich T, Warzanowski P, Lorenz T, Streltsov S V, van Loosdrecht P H M, Khomskii D I, van den Brink J, Grüninger M 2019 Sci. Adv. 5 aav4020Google Scholar
[106] Amorese A, Stockert O, Kummer K, Brookes N B, Kim D J, Fisk Z, Haverkort M W, Thalmeier O, Tjeng L H, Severing A 2019 Phys. Rev. B 100 241107Google Scholar
[107] Amorese A, Hansmann P, Marino A, Körner P, Willers T, Walters A, Zhou K J, Kummer K, Brookes N B, Lin H J, Chen C T, Lejay P, Haverkort M W, Tjeng L H, Severing A 2023 Phys. Rev. B 107 115164Google Scholar
[108] Kvashnina K O, Butorin S M, Martin P, Glatzel P 2013 Phys. Rev. Lett. 111 253002Google Scholar
[109] Lander G H, Sundermann M, Springell R, Walters A C, Nag A, Garcia-Fernandez M, Zhou K J, van der Laan G, Caciuffo R 2021 J. Phys. Condens. Matter. 33 06LT01Google Scholar
[110] de Groot F M F, Haverkort M W, Elnaggar H 2024 Nat. Rev. Methods Primers 4 45Google Scholar
[111] Brookes N B, Yakhou-Harris F, Kummer K 2018 NIMA 903 175Google Scholar
[112] Zhou K J, Walters A, Garcia-Fernandez M 2022 J. Synchrotron Radiat. 29 563Google Scholar
[113] Dvorak J, Jarrige I, Bisogni V 2016 Rev. Sci. Instrum. 87 115109Google Scholar
[114] Singh A, Huang H Y, Chu Y Y 2021 J. Synchrotron Radiat. 28 977Google Scholar
计量
- 文章访问数: 839
- PDF下载量: 54
- 被引次数: 0