搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于深层组织分子成像的小型化光声/超声内窥成像探头

张嘉禧 李凌峰 钟洪文 肖嘉莹

引用本文:
Citation:

用于深层组织分子成像的小型化光声/超声内窥成像探头

张嘉禧, 李凌峰, 钟洪文, 肖嘉莹

Miniaturized photoacoustic/ultrasound endoscopic imaging probe for molecular imaging of deep tissues

Zhang Jia-Xi, Li Ling-Feng, Zhong Hong-Wen, Xiao Jia-Ying
PDF
HTML
导出引用
  • 结直肠癌是全球癌症死亡的主要原因之一, 常用的光学或超声消化道内镜仍然存在穿透深度低、对比度差、功能/分子成像能力不足等问题. 本文介绍了一种小型化的手持式光声/超声双模态内窥探头, 旨在克服现有技术在穿透深度和分子成像能力方面的限制. 实验结果表明, 该探头在组织12 mm深度下分别达到了345 μm的光声横向分辨率和185 μm的超声横向分辨率, 并具有良好的对复杂结构目标成像的能力. 本文还利用泵浦探测技术排除了血液背景的干扰, 实现了肿瘤深层组织内亚甲基蓝分子的高特异性成像. 这种小型化手持式光声/超声双模态内窥探头兼具大成像深度、高空间分辨和高特异性分子成像的特点, 有望成为结直肠癌等消化道肿瘤诊断的重要工具, 为早期诊断和治疗监测提供强有力的支持.
    Colorectal cancer is one of the leading causes of cancer-related deaths worldwide. Traditional gastrointestinal endoscopes for colorectal cancer mainly rely on optical endoscope and ultrasound endoscope. Owing to significant light scattering in tissues the optical endoscope is limited to superficial tissue imaging, while the ultrasound endoscope, despite deeper penetration, provides limited molecular imaging capabilities. In this work, we build a miniaturized handheld photoacoustic/ultrasound dual-modality endoscopic probe to address these problems. It has a small size of 8 mm, and presents the dual advantages of high penetration depth and superior molecular imaging capability, marking a significant advancement over traditional methods. Results show that this probe achieves a high lateral resolution of 345 μm for photoacoustic imaging and 185 μm for ultrasound imaging at a depth of 12 mm within tissues. It also exhibits the ability to effectively image complex structural targets, as demonstrated by the imaging of a phantom with an embedded metal mesh. Furthermore, the probe adopts an innovative pump-probe method, which effectively mitigates interference from blood and other background tissues, thereby achieving high-specificity photoacoustic molecular imaging. This ability is first confirmed by imaging the distribution of methylene blue (MB) in a phantom, and then by observing the distribution of MB in the depth of tumor in mice. This handheld photoacoustic/ultrasound endoscopic probe has the advantages of small size, high penetration depth, high spatial resolution, and superior molecular imaging ability, and is expected to become an important diagnostic tool for colorectal cancer and other gastrointestinal cancer. This study can provide strong support for early diagnosis and treatment monitoring, potentially revolutionizing the detection and management of these diseases.
      通信作者: 肖嘉莹, jiayingxiao@csu.edu.cn
      Corresponding author: Xiao Jia-Ying, jiayingxiao@csu.edu.cn
    [1]

    Bray F, Laversanne M, Sung H, Ferlay J, Siegel R L, Soerjomataram I, Jemal A 2024 CA-Cancer J. Clin. 74 229263Google Scholar

    [2]

    Gora M J, Suter M J, Tearney G J, Li X 2017 Biomed. Opt. Express 8 2405Google Scholar

    [3]

    Rex D K, Boland C R, Dominitz J A, Giardiello F M, Johnson D A, Kaltenbach T, Levin T R, Lieberman D, Robertson D J 2017 Am. J. Gastroenterol. 112 10161030Google Scholar

    [4]

    Gora M J, Simmons L H, Quénéhervé L, Grant C N, Carruth R W, Lu W, Tiernan A, Dong J, Walker-Corkery B, Soomro A, Rosenberg M, Metlay J P, Tearney G J 2016 J. Biomed. Opt. 21 104001Google Scholar

    [5]

    Pahlevaninezhad H, Khorasaninejad M, Huang Y W, Shi Z, Hariri L P, Adams D C, Ding V, Zhu A, Qiu C W, Capasso F, Suter M J 2018 Nat. Photonics 12 540547Google Scholar

    [6]

    Krill T, Baliss M, Roark R, Sydor M, Samuel R, Zaibaq J, Guturu P, Parupudi S 2019 J. Thorac. Dis. 11 16021609Google Scholar

    [7]

    Wang X, Seetohul V, Chen R, Zhang Z, Qian M, Shi Z, Yang G, Mu P, Wang C, Huang Z, Zhou Q, Zheng H, Cochran S, Qiu W 2017 IEEE Trans. Med. Imaging 36 19221929Google Scholar

    [8]

    Lin L, Wang L V 2022 Nat. Rev. Clin. Oncol. 19 365384Google Scholar

    [9]

    Attia A B E, Balasundaram G, Moothanchery M, Dinish U S, Bi R, Ntziachristos V, Olivo M 2019 Photoacoustics 16 100144Google Scholar

    [10]

    Li Y, Lu G X, Zhou Q F, Chen Z P 2021 Photonics 8 281Google Scholar

    [11]

    Wang L V, Hu S 2012 Science 335 14581462Google Scholar

    [12]

    Guo H, Li Y, Qi W, Xi L 2020 J. Biophotonics 13 e202000217Google Scholar

    [13]

    Xia J, Yao J, Wang L V 2014 Progr. Electromagnet. Res. 147 122Google Scholar

    [14]

    Yang J M, Favazza C, Chen R, Yao J, Cai X, Maslov K, Zhou Q, Shung K K, Wang L V 2012 Nat. Med. 18 12971302Google Scholar

    [15]

    Leng X, Chapman W, Rao B, Nandy S, Chen R, Rais R, Gonzalez I, Zhou Q, Chatterjee D, Mutch M, Zhu Q 2018 Biomed. Opt. Express 9 51595172Google Scholar

    [16]

    Vu T, Razansky D, Yao J 2019 J. Opt. 21 103001Google Scholar

    [17]

    Wang L V 2009 Nat. Photonics 3 503509Google Scholar

    [18]

    He H, Wissmeyer G, Ovsepian S V., Buehler A, Ntziachristos V 2016 Opt. Lett. 41 27082710Google Scholar

    [19]

    Xiao J, Jiang J, Zhang J, Wang Y, Wang B 2022 Opt. Express 30 35014Google Scholar

    [20]

    Tan J W Y, Lee C H, Kopelman R, Wang X 2018 Sci. Rep. 8 9290Google Scholar

  • 图 1  手持式声聚焦光声/超声内窥系统 (a) 系统总体示意图; (b) 数据采集时序; (c) 探头前端结构

    Fig. 1.  Illustration of the AR-PAE system: (a) Schematic of the system; (b) the timing diagram of data acquisition sequence; (c) the structure of AR-PAE probe.

    图 2  光声/超声分辨率测试实验结果 (a)—(d) 传统B-mode重建算法和IBP重建算法仿真结果对比; (e)—(f) 不同深度下点目标重建的光声/超声图像; (g) 从图(b), (e)中提取的光声模态下不同深度的FWHM; (h) 从图(d), (f)中提取的超声模态下不同深度的FWHM; (i) 在12 mm处获得的光声/超声横向轮廓及其横向分辨率

    Fig. 2.  Field test experimental result: (a)–(d) Simulation comparison of traditional B-mode and IBP reconstruction algorithms; (e)–(f) the photoacoustic/ultrasound images of different depth of the point target; (g) FWHM in photoacoustic at different depth obtained from panel (b), (e); (h) FWHM in ultrasound at different depth obtained from panel (d), (f); (i) photoacoustic/ultrasound lateral profiles of the point target obtained at 12 mm.

    图 3  金属网格三维光声/超声成像实验结果 (a)—(c) 不同视角下金属网格的光声图像; (d)—(f) 相应的超声图像; (g) 不同区域的光声/超声图像的PSNR; (h) 在光声/超声图像中提取的金属丝轮廓信号的横向分布

    Fig. 3.  Experimental results of 3D photoacoustic/ultrasound imaging of a metal grid: (a)–(c) Photoacoustic images of metal grid from different perspectives; (d)–(f) corresponding ultrasound images of the same areas as in panel (a)–(c); (g) PSNR comparison of photoacoustic and ultrasound images in different regions; (h) contours of metal grid extracted from the photoacoustic/ultrasound images.

    图 4  光声泵浦仿体成像实验结果 (a)—(d) 分别为Spump-probe, Spump, Sprobe, STTD重建的光声图像, 其中左侧管内为MB溶液, 右侧为牛血红蛋白溶液

    Fig. 4.  Pump-probe photoacoustic imaging of phantom: (a)–(d) Reconstructed images of Spump-probe, Spump, Sprobe, and STTD. In the setup, the left tube contains methylene blue solution, while the right contains bovine hemoglobin solution.

    图 5  小鼠活体肿瘤光声泵浦成像实验结果 (a)—(d)分别为利用Spump-probe, Spump, Sprobe, STTD信号重建并与超声融合后的图像   

    Fig. 5.  Pump-probe photoacoustic imaging of in vivo mouse tumor: (a)–(d) Reconstructed images of Spump-probe, Spump, Sprobe, and STTD.

  • [1]

    Bray F, Laversanne M, Sung H, Ferlay J, Siegel R L, Soerjomataram I, Jemal A 2024 CA-Cancer J. Clin. 74 229263Google Scholar

    [2]

    Gora M J, Suter M J, Tearney G J, Li X 2017 Biomed. Opt. Express 8 2405Google Scholar

    [3]

    Rex D K, Boland C R, Dominitz J A, Giardiello F M, Johnson D A, Kaltenbach T, Levin T R, Lieberman D, Robertson D J 2017 Am. J. Gastroenterol. 112 10161030Google Scholar

    [4]

    Gora M J, Simmons L H, Quénéhervé L, Grant C N, Carruth R W, Lu W, Tiernan A, Dong J, Walker-Corkery B, Soomro A, Rosenberg M, Metlay J P, Tearney G J 2016 J. Biomed. Opt. 21 104001Google Scholar

    [5]

    Pahlevaninezhad H, Khorasaninejad M, Huang Y W, Shi Z, Hariri L P, Adams D C, Ding V, Zhu A, Qiu C W, Capasso F, Suter M J 2018 Nat. Photonics 12 540547Google Scholar

    [6]

    Krill T, Baliss M, Roark R, Sydor M, Samuel R, Zaibaq J, Guturu P, Parupudi S 2019 J. Thorac. Dis. 11 16021609Google Scholar

    [7]

    Wang X, Seetohul V, Chen R, Zhang Z, Qian M, Shi Z, Yang G, Mu P, Wang C, Huang Z, Zhou Q, Zheng H, Cochran S, Qiu W 2017 IEEE Trans. Med. Imaging 36 19221929Google Scholar

    [8]

    Lin L, Wang L V 2022 Nat. Rev. Clin. Oncol. 19 365384Google Scholar

    [9]

    Attia A B E, Balasundaram G, Moothanchery M, Dinish U S, Bi R, Ntziachristos V, Olivo M 2019 Photoacoustics 16 100144Google Scholar

    [10]

    Li Y, Lu G X, Zhou Q F, Chen Z P 2021 Photonics 8 281Google Scholar

    [11]

    Wang L V, Hu S 2012 Science 335 14581462Google Scholar

    [12]

    Guo H, Li Y, Qi W, Xi L 2020 J. Biophotonics 13 e202000217Google Scholar

    [13]

    Xia J, Yao J, Wang L V 2014 Progr. Electromagnet. Res. 147 122Google Scholar

    [14]

    Yang J M, Favazza C, Chen R, Yao J, Cai X, Maslov K, Zhou Q, Shung K K, Wang L V 2012 Nat. Med. 18 12971302Google Scholar

    [15]

    Leng X, Chapman W, Rao B, Nandy S, Chen R, Rais R, Gonzalez I, Zhou Q, Chatterjee D, Mutch M, Zhu Q 2018 Biomed. Opt. Express 9 51595172Google Scholar

    [16]

    Vu T, Razansky D, Yao J 2019 J. Opt. 21 103001Google Scholar

    [17]

    Wang L V 2009 Nat. Photonics 3 503509Google Scholar

    [18]

    He H, Wissmeyer G, Ovsepian S V., Buehler A, Ntziachristos V 2016 Opt. Lett. 41 27082710Google Scholar

    [19]

    Xiao J, Jiang J, Zhang J, Wang Y, Wang B 2022 Opt. Express 30 35014Google Scholar

    [20]

    Tan J W Y, Lee C H, Kopelman R, Wang X 2018 Sci. Rep. 8 9290Google Scholar

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] 方振, 余游, 赵秋烨, 张昱冬, 王治强, 张祖兴. 基于泵浦强度调制的超快光纤激光器中孤子分子光谱脉动动力学研究. 物理学报, 2024, 73(1): 014202. doi: 10.7498/aps.73.20231030
    [3] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [4] 王柯俭, 滕浩, 邢笑伟, 董朔, 曹凯强, 江昱佼, 赵昆, 朱江峰, 刘文军, 魏志义. 长距离泵浦-探测系统的阿秒精度锁定. 物理学报, 2024, 73(19): 194201. doi: 10.7498/aps.73.20241061
    [5] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [6] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析. 物理学报, 2023, 72(21): 218101. doi: 10.7498/aps.72.20231041
    [7] 张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究. 物理学报, 2023, 72(10): 105203. doi: 10.7498/aps.72.20222424
    [8] 李纲, 郭仪, 曾小明, 谢娜, 邵忠喜, 黄征, 孙立, 蒋东镔, 卢峰, 朱斌, 周凯南, 粟敬钦. 皮秒短脉冲光参量啁啾脉冲放大中泵浦信号高精度同步主动控制技术研究. 物理学报, 2022, 71(7): 074203. doi: 10.7498/aps.71.20211961
    [9] 胥守振, 谢实梦, 吴丹, 迟子惠, 黄林. 基于声学扫描振镜的超声/光声双模态成像技术. 物理学报, 2022, 71(5): 050701. doi: 10.7498/aps.71.20211394
    [10] 孙凡, 文峰, 武保剑, Tan Ming-Ming, 凌云, 邱昆. 基于双向正交泵浦半导体光放大器结构的全光相位保持幅度再生技术. 物理学报, 2022, 71(20): 204204. doi: 10.7498/aps.71.20220703
    [11] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [12] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211394
    [13] 谢实梦, 黄林, 王雪, 迟子惠, 汤永辉, 郑铸, 蒋华北. 基于镂空阵列探头的反射式光声/热声双模态组织成像. 物理学报, 2021, 70(10): 100701. doi: 10.7498/aps.70.20202012
    [14] 严江余, 张全虎, 霍勇刚. 基于散射和次级诱发中子的缪子多模态成像. 物理学报, 2021, 70(19): 191401. doi: 10.7498/aps.70.20210804
    [15] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距. 物理学报, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [16] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [17] 殷杰, 陶超, 刘晓峻. 多参量光声成像及其在生物医学领域的应用. 物理学报, 2015, 64(9): 098102. doi: 10.7498/aps.64.098102
    [18] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究. 物理学报, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [19] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭. 物理学报, 1996, 45(12): 2010-2015. doi: 10.7498/aps.45.2010
    [20] 王祖赓, 李敏. 光学泵浦的锂分子激光. 物理学报, 1988, 37(10): 1640-1645. doi: 10.7498/aps.37.1640
计量
  • 文章访问数:  328
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-02
  • 修回日期:  2024-08-29
  • 上网日期:  2024-09-07

/

返回文章
返回