搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子精密光谱与核结构信息

管桦 戚晓秋 陈邵龙 史庭云 高克林

引用本文:
Citation:

锂离子精密光谱与核结构信息

管桦, 戚晓秋, 陈邵龙, 史庭云, 高克林
cstr: 32037.14.aps.73.20241128

Precision spectroscopy and nuclear structure information of Li+ ions

Guan Hua, Qi Xiao-Qiu, Chen Shao-Long, Shi Ting-Yun, Gao Ke-Lin
cstr: 32037.14.aps.73.20241128
PDF
HTML
导出引用
  • 锂离子精密光谱为束缚态量子电动力学的验证以及原子核结构的研究提供了独特的平台. 本文综述了实验和理论联合研究团队近年来对6,7Li+离子$\,^3{\rm{S}}_1$和$\,^3{\rm{P}}_J$态超精细劈裂的高精度理论计算与实验测量的研究成果. 在理论方面, 理论团队采用束缚态量子电动力学方法对$\,^3{\rm{S}}_1$和$\,^3{\rm{P}}_J$态的超精细劈裂进行了计算, 精确至$m\alpha^6$阶. 在实验方面, 实验团队分别通过饱和荧光光谱法和光学Ramsey方法对7Li+6Li+离子的超精细劈裂进行了高精度测量, 并由此提取了6,7Li核的Zemach半径. 结果显示, 6Li的Zemach半径与核模型计算值存在显著差异, 揭示了6Li核的奇异特性. 这不仅为原子核结构的探索提供了重要信息, 也将进一步推动少电子原子和分子的精密光谱研究.
    Precision spectroscopy of lithium ions offers a unique research platform for exploring bound state quantum electrodynamics and investigating the structure of atomic nuclei. This paper overviews our recent efforts dedicated to the precision theoretical calculations and experimental measurements of the hyperfine splittings of 6,7Li+ ions in the $\,^3{\rm{S}}_1$ and $\,^3{\rm{P}}_J$ states. In our theoretical research, we utilize bound state quantum electrodynamics to calculate the hyperfine splitting of the $\,^3{\rm{S}}_1$ and $\,^3{\rm{P}}_J$ states with remarkable precision, achieving an accuracy on the order of $m\alpha^6$. Using Hylleraas basis sets, we first solve the non-relativistic Hamiltonian of the three-body system to derive high-precision energy and wave functions. Subsequently, we consider various orders of relativity and quantum electrodynamics corrections by using the perturbation method, with accuracy of the calculated hyperfine splitting reaching tens of kHz. In our experimental efforts, we developed a low-energy metastable lithium-ion source that provides a stable and continuous ion beam in the $\,^3{\rm{S}}_1$ state. Using this ion beam, we utilize the saturated fluorescence spectroscopy to enhance the precision of hyperfine structure splittings of 7Li+ in the $\,^3{\rm{S}}_1$ and $\,^3{\rm{P}}_J$ states to about 100 kHz. Furthermore, by utilizing the optical Ramsey method, we obtain the most precise values of the hyperfine splittings of 6Li+, with the smallest uncertainty of about 10 kHz. By combining theoretical calculations and experimental measurements, our team have derived the Zemach radii of the 6,7Li nuclei, revealing a significant discrepancy between the Zemach radius of 6Li and the values predicted by the nuclear model. These findings elucidate the distinctive properties of the 6Li nucleus, promote further investigations of atomic nuclei, and advance the precise spectroscopy of few-electron atoms and molecules.
      通信作者: 史庭云, tyshi@wipm.ac.cn ; 高克林, klgao@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11934014, 92265206, 12393823, 12121004, 12274423, 12204412)、中国科学院项目(批准号: YSBR-085, YSBR-055)、湖北省自然科学基金(批准号: 2022CFA013)和浙江理工大学科学基金(批准号: 21062349-Y)资助的课题.
      Corresponding author: Shi Ting-Yun, tyshi@wipm.ac.cn ; Gao Ke-Lin, klgao@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 92265206, 12393823, 12121004, 12274423, 12204412), the Chinese Academy of Sciences (Grant Nos. YSBR-085, YSBR-055), the Natural Science Foundation of Hubei Province, Province (Grant No. 2022CFA013), and the Science Foundation of Zhejiang Sci-Tech University, China (Grant No. 21062349-Y).
    [1]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [2]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [3]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001Google Scholar

    [4]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Kühl T, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002Google Scholar

    [6]

    Ewald G, Nörtershäuser W, Dax A, Götte S, Kirchner R, Kluge H J, Kühl T, Sanchez R, Wojtaszek A, Bushaw B A, Drake G W F, Yan Z C, Zimmermann C 2004 Phys. Rev. Lett. 93 113002Google Scholar

    [7]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013 Rev. Mod. Phys. 85 1383Google Scholar

    [8]

    Kubota Y, Corsi A, Authelet G, Baba H, Caesar C, Calvet D, Delbart A, Dozono M, Feng J, Flavigny F, Gheller J M, Gibelin J, Giganon A, Gillibert A, Hasegawa K, Isobe T, Kanaya Y, Kawakami S, Kim D, Kikuchi Y, Kiyokawa Y, Kobayashi M, Kobayashi N, Kobayashi T, Kondo Y, Korkulu Z, Koyama S, Lapoux V, Maeda Y, Marqués F, M, Motobayashi T, Miyazaki T, Nakamura T, Nakatsuka N, Nishio Y, Obertelli A, Ogata K, Ohkura A, Orr N A, Ota S, Otsu H, Ozaki T, Panin V, Paschalis S, Pollacco E C, Reichert S, Roussé J Y, Saito A T, Sakaguchi S, Sako M, Santamaria C, Sasano M, Sato H, Shikata M, Shimizu Y, Shindo Y, Stuhl L, Sumikama T, Sun Y L, Tabata M, Togano Y, Tsubota J, Yang Z H, Yasuda J, Yoneda K, Zenihiro J, Uesaka T 2020 Phys. Rev. Lett. 125 252501Google Scholar

    [9]

    Drake G W F, Dhindsa H S, Marton V J, 2021 Phys. Rev. A 104 L060801Google Scholar

    [10]

    Knight R D, Prior M H 1980 Phys. Rev. A 21 179Google Scholar

    [11]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, zu Putlitz G 1983 Hyperfine Interact. 15 159Google Scholar

    [12]

    Drake G W F 1971 Phys. Rev. A 3 908Google Scholar

    [13]

    Schüler H 1924 Naturwissenschaften 12 579

    [14]

    Herzberg G, Moore H R 1959 Can. J. Phys. 37 1293Google Scholar

    [15]

    Heisenberg W 1926 Z. Phys. 39 499Google Scholar

    [16]

    Güttinger P, Pauli W 1931 Z. Phys. 67 743Google Scholar

    [17]

    Güttinger P 1930 Z. Physik A 64 749Google Scholar

    [18]

    Macek J 1969 Phys. Rev. Lett. 23 1Google Scholar

    [19]

    Berry H G, Subtil J L 1971 Phys. Rev. Lett. 27 1103Google Scholar

    [20]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [21]

    Fan B, Grischkowsky D, Lurio A 1979 Opt. Lett. 4 233Google Scholar

    [22]

    Fan B, Lurio A, Grischkowsky D 1978 Phys. Rev. Lett. 41 1460Google Scholar

    [23]

    Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K, zu Putlitz G 1981 Z. Phys. A: Hadrons Nucl. 300 25

    [24]

    Englert M, Kowalski J, Mayer F, Neumann R, Noehte S, Schwarzwald P, Suhr H, Winkler K, zu Putlitz G 1982 Sov. J. Quantum Electron. 12 664Google Scholar

    [25]

    Rong H, GrafströM S, Kowalski J, zu Putlitz G, Jastrzebski W, Neumann R 1993 Opt. Commun. 100 268Google Scholar

    [26]

    Riis E, Berry H G, Poulsen O, Lee S A, Tang S Y 1986 Phys. Rev. A 33 3023Google Scholar

    [27]

    Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C, Levick A P 1994 Phys. Rev. A 49 207Google Scholar

    [28]

    Clarke J J, van Wijngaarden W A 2003 Phys. Rev. A 67 012506Google Scholar

    [29]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [30]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001Google Scholar

    [31]

    Yerokhin V A 2008 Phys. Rev. A 78 012513Google Scholar

    [32]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [33]

    Guan H, S. Chen, Qi X Q, S. Liang, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801Google Scholar

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [35]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [36]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510Google Scholar

    [37]

    Pachucki K, Yerokhin V A, Cancio Pastor P 2012 Phys. Rev. A 85 042517Google Scholar

    [38]

    Patkóš V C V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510Google Scholar

    [39]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101 022501Google Scholar

    [40]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [41]

    Pachucki K 2006 Phys. Rev. A 74 022512Google Scholar

    [42]

    Yerokhin V A, Pachucki K 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [43]

    Karshenboim S G, Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [44]

    McKenzie D K, Drake G W F 1991 Phys. Rev. A 44 R6973Google Scholar

    [45]

    Yan Z C, Drake G W F 2000 Phys. Rev. A 61 022504Google Scholar

    [46]

    Zemach A C 1956 Phys. Rev. 104 1771Google Scholar

    [47]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88 032519Google Scholar

    [48]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112Google Scholar

    [49]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [50]

    Brown R C, Wu S J, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N, Gillaspy J D 2013 Phys. Rev. A 87 032504Google Scholar

    [51]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [52]

    Ramsey N F 1950 Phys. Rev. 78 695Google Scholar

    [53]

    Zhou P P, Sun W, Liang S Y, Chen S L, Zhou Z Q, Huang Y, Guan H, Gao K L 2021 Appl. Opt. 60 6097Google Scholar

    [54]

    Stone N 2016 At. Data Nucl. Data Tables 111 1

    [55]

    Pachucki K, Patkóš V, Yerokhin V A 2023 Phys. Rev. A 108 052802Google Scholar

  • 图 1  6, 7Li+的$2\, ^3{\rm{S}}_1$和$2\, ^3{\rm{P}}_J$态的超精细劈裂能级示意图, 单位 MHz[34]

    Fig. 1.  Hyperfine energy levels of the $2\, ^3{\rm{S}}_1$ and $2\, ^3{\rm{P}}_J$ states of 6, 7Li+, in MHz[34].

    图 2  Li+能级图. 图中仅列出了最低的几个S和P态能级, 并取Li+的基态$1\, ^1{\rm{S}}_0$作为能级参考点

    Fig. 2.  Energy level diagram of Li+. Only a few of the lowest S and P states are displayed, with the ground state $1\, ^1{\rm{S}}_0$ of Li+ designated as the reference point for energy levels.

    图 3  Li+离子束源装置图

    Fig. 3.  Schematic of Li+ ion beam source.

    图 4  饱和荧光光谱方案示意图[33]

    Fig. 4.  Schematic of the saturated fluorescence spectroscopy setup[33]

    图 5  7Li+离子${2\, ^3{\rm{P}}_{2}}$态中F = 1/2和F = 3/2的超精细劈裂测量[33] (a)纯净的Lamb凹陷信号及其Voigt-Fano线形拟合; (b)测量值的统计分布; (c)测量数据的直方图

    Fig. 5.  Measurement of the hyperfine splitting of the ${2\, ^3{\rm{P}}_{2}}$ state for 7Li+ between F = 1/2 and F = 3/2[33]: (a) The pure Lamb dip signal and its Voigt-Fano line shape fitting; (b) statistical distribution of the measured values; (c) histogram of the measurement data.

    图 6  Li+离子Ramsey光谱实验装置图[35]

    Fig. 6.  Schematic of the experimental setup for the Ramsey spectroscopy of Li+ ion[35]

    图 7  6Li+离子超精细结构劈裂$^3{\rm{P}}_1^{0-1}$的测量[35] (a)某条跃迁的单次Ramsey光谱, 红实线表示由高斯函数与正弦函数乘积构成的线型对实验数据的拟合; (b)6Li+离子超精细结构劈裂$^3{\rm{P}}_1^{0-1}$的实验结果

    Fig. 7.  Measurement of the $^3{\rm{P}}_1^{0-1}$ interval in 6Li+[35]: (a) Ramsey spectrum from a single scan of one of the measured transitions. The solid red line is an experimental data fit to a Gaussian-damped sinusoidal function. Residuals of the fit are shown in the lower panel. (b) Experimental results for the $^3{\rm{P}}_1^{0-1}$ interval of 6Li+.

    图 8  6Li+离子超精细结构劈裂$ {^3{\rm{P}}_1^{1-2}} $测量结果对激光相对于探测器极化角度的依赖. (a)和(b)分别是通过高斯和Fano-Voigt函数拟合获得的数据

    Fig. 8.  Dependence of the measured hyperfine interval $ {^3{\rm{P}}_1^{1-2}} $ of 6Li+ on laser polarization angle relative to the direction of the photodetector. (a) and (b) are obtained by fitting the envelope with a Gaussian and Fano-Voigt function, respectively.

    图 9  6, 7Li核的Zemach半径比较, 单位 fm

    Fig. 9.  Comparison of the Zemach radii of 6, 7Li, in fm.

    表 1  Li+ 离子$ 2\, ^3{\rm{P}}_2 $态中F = 3/2和F = 5/2之间超精细劈裂误差表, 单位为 kHz[33]

    Table 1.  Uncertainty budget for the hyperfine splitting between F = 3/2 and F = 5/2 in $ 2\, ^3{\rm{P}}_2 $ of Li+, in kHz[33]

    误差来源 $ \delta\nu $
    统计误差 44
    1阶Doppler效应 < 1
    2阶Doppler效应 < 1
    激光功率 11
    激光频率测量 5
    Zeeman效应 1
    量子干涉效应 27
    总误差 53
    下载: 导出CSV

    表 2  6Li+离子$2\, ^3{\rm{S}}_1$和 $2\, ^3{\rm{P}}_{1, 2}$态超精细劈裂测量值及误差, 单位kHz[35]

    Table 2.  The measured values and errors of the hyperfine splittings in the $2\, ^3{\rm{S}}_1$ and $2\, ^3{\rm{P}}_{1, 2}$ states of 6Li+ ions, in units of kHz[35].

    误差来源$2\, { ^{3}{\rm{S}}_{1}^{0-1}}$${2\, ^{3}{\rm{S}}_{1}^{1-2}}$${2\, ^{3}{\rm{P}}_{1}^{0-1}}$${2\, ^{3}{\rm{P}}_{1}^{1-2}}$${2\, ^{3}{\rm{P}}_{2}^{1-2}}$${2\, ^{3}{\rm{P}}_{2}^{2-3}}$
    统计误差3001783(6)6003618(4)1317652(6)288423(4)2858019(6)4127891(4)
    一阶Doppler效应(3.5)(3.5)(3.5)(3.5)(3.5)(3.5)
    二阶Doppler效应0.27(1)0.54(3)0.12(1)0.26(1)0.26(1)0.37(2)
    激光功率(5.0)(5.0)(5.0)(5.0)(5.0)(5.0)
    Zeeman效应(6.3)(0.3)(1.6)(3.2)(3.2)(1.6)
    量子干涉效应(8)(8)(8)(8)(8)(8)
    总误差3001783(13)6003619(11)1317652(12)288423(11)2858019(12)4127891(11)
    下载: 导出CSV

    表 3  6Li+离子$2\, ^3{\rm{S}}_1$和$2\, ^3{\rm{P}}_J$态的超精细劈裂, 单位 MHz[34,35]. 理论计算中使用的核电四极矩为–0.0806(6) fm2[54], Zemach半径为2.44(2) fm

    Table 3.  Hyperfine splittings in the $2\, ^3{\rm{S}}_1$ and $2\, ^3{\rm{P}}_J$ states of 6Li+, in MHz[34,35]. The nuclear electric quadrupole moment used in theory is –0.0806(6) fm2[54] and the Zemach radius used is 2.44(2) fm

    实验 理论
    Kowalski et al.[11] Clarke et al.[28] Sun et al.[35] Drake et al.[27] Qi et al.[34] Sun et al.[35]
    $2\, ^3{\rm{S}}_1^{0-1}$ 3001.780(50) 3001.83(47) 3001.782(18) 3001.765(38)
    $2\, ^3{\rm{S}}_1^{1-2}$ 6003.600(50) 6003.66(51) 6003.620(8) 6003.614(24)
    $2\, ^3{\rm{P}}_1^{0-1}$ 1316.06(59) 1317.647(40) 1317.649(46) 1317.732(31) 1317.736(15)
    $2\, ^3{\rm{P}}_1^{1-2}$ 2888.98(63) 2888.429(21) 2888.327(29) 2888.379(20) 2888.391(10)
    $2\, ^3{\rm{P}}_2^{1-2}$ 2857.00(72) 2858.028(27) 2858.002(60) 2857.962(43) 2857.972(21)
    $2\, ^3{\rm{P}}_2^{2-3}$ 4127.16(76) 4127.886(13) 4127.882(43) 4127.924(31) 4127.937(15)
    下载: 导出CSV

    表 4  7Li+离子2 3S1和$ 2\, ^3{\rm{P}}_J $态的超精细劈裂, 单位 MHz[33,34]. 理论计算中使用的核电四极矩为–4.00(3) fm2 [54], Zemach半径为3.38(3) fm

    Table 4.  Hyperfine splittings in the 2 3S1 and $ 2\, ^3{\rm{P}}_J $ states of 7Li+, in MHz[33,34]. The nuclear electric quadrupole moment used is –4.00(3) fm2 [54] and the Zemach radius used is 3.38(3) fm

    实验 理论
    Kötz et al.[11,23] Clarke et al.[28] Guan et al.[33] Drake et al.[27] Qi et al.[34]
    $ 2\, ^3{\rm{S}}_1^{1/2-3/2} $ 11890.018(40) 11891.22(60) 11890.088(65) 11890.013(38)
    $ 2\, ^3{\rm{S}}_1^{3/2-5/2} $ 19817.673(40) 19817.90(93) 19817.696(42) 19817.680(25)
    $ 2\, ^3{\rm{P}}_1^{1/2-3/2} $ 4237.8(10) 4239.11(54) 4238.823(111) 4238.86(20) 4238.920(49)
    $ 2\, ^3{\rm{P}}_1^{3/2-5/2} $ 9965.2(6) 9966.30(69) 9966.655(102) 9966.14(13) 9966.444(34)
    $ 2\, ^3{\rm{P}}_2^{1/2-3/2} $ 6203.6(5) 6204.52(80) 6203.319(67) 6203.27(30) 6203.408(95)
    $ 2\, ^3{\rm{P}}_2^{3/2-5/2} $ 9608.7(20) 9608.90(49) 9608.220(54) 9608.12(15) 9608.311(54)
    $ 2\, ^3{\rm{P}}_2^{5/2-7/2} $ 11775.8(5) 11774.04(94) 11772.965(74) 11773.05(18) 11773.003(55)
    下载: 导出CSV

    表 5  通过2 3S1态的超精细劈裂确定的Zemach半径, 单位 fm

    Table 5.  Determination of the Zemach radii by the hyperfine splittings of the 2 3S1 state, in fm

    6Li+ 7Li+
    $A_{\rm{the}}/{\mathrm{kHz}} $[55] 2997908.1(1.4) 7917508.1(1.3)
    $A_{\rm{exp}}/{\mathrm{kHz}} $(Guan et al.)[33] 3001805.1(7) 7926990.1(2.3)
    $a_\mathrm{e} + \delta_{\rm QED} $[55] 0.0015709(5) 0.0015749(5)
    $\delta_{\rm{HO}}=A_{\rm{exp}}/A_{\rm the}-1$ 0.0012999(24) 0.0011976(29)
    $\delta_{\rm{ZM}}$ –0.0002710(24) –0.0003773(30)
    $R_{\rm{em}} $ (Pachucki et al.)[55] 2.39(2) 3.33(3)
    $R_{\rm{em}} $ (Sun et al.)[35] 2.44(2)
    $R_{\rm{em}} $ (Qi et al.)[34] 2.47(8) 3.38(3)
    $R_{\rm{em}} $ (Qi et al.)[34] 2.40(16) 3.33(7)
    $R_{\rm{em}} $ (Puchalski et al.)[30] 2.29(4) 3.23(4)
    $R_{\rm{em}} $ (核模型值)[31] 3.71(16) 3.42(6)
    $R_{\rm{em}} $ (Li et al.)[30,32] 2.44(6)
    下载: 导出CSV
  • [1]

    Zheng X, Sun Y R, Chen J J, Jiang W, Pachucki K, Hu S M 2017 Phys. Rev. Lett. 118 063001Google Scholar

    [2]

    Pachucki K, Patkóš V, Yerokhin V A 2017 Phys. Rev. A 95 062510Google Scholar

    [3]

    Heydarizadmotlagh F, Skinner T D G, Kato K, George M C, Hessels E A 2024 Phys. Rev. Lett. 132 163001Google Scholar

    [4]

    Yan Z C, Drake G W F 1995 Phys. Rev. Lett. 74 4791Google Scholar

    [5]

    Sánchez R, Nörtershäuser W, Ewald G, Albers D, Behr J, Bricault P, Bushaw B A, Dax A, Dilling J, Dombsky M, Drake G W F, Götte S, Kirchner R, Kluge H J, Kühl T, Lassen J, Levy C D P, Pearson M R, Prime E J, Ryjkov V, Wojtaszek A, Yan Z C, Zimmermann C 2006 Phys. Rev. Lett. 96 033002Google Scholar

    [6]

    Ewald G, Nörtershäuser W, Dax A, Götte S, Kirchner R, Kluge H J, Kühl T, Sanchez R, Wojtaszek A, Bushaw B A, Drake G W F, Yan Z C, Zimmermann C 2004 Phys. Rev. Lett. 93 113002Google Scholar

    [7]

    Lu Z T, Mueller P, Drake G W F, Nörtershäuser W, Pieper S C, Yan Z C 2013 Rev. Mod. Phys. 85 1383Google Scholar

    [8]

    Kubota Y, Corsi A, Authelet G, Baba H, Caesar C, Calvet D, Delbart A, Dozono M, Feng J, Flavigny F, Gheller J M, Gibelin J, Giganon A, Gillibert A, Hasegawa K, Isobe T, Kanaya Y, Kawakami S, Kim D, Kikuchi Y, Kiyokawa Y, Kobayashi M, Kobayashi N, Kobayashi T, Kondo Y, Korkulu Z, Koyama S, Lapoux V, Maeda Y, Marqués F, M, Motobayashi T, Miyazaki T, Nakamura T, Nakatsuka N, Nishio Y, Obertelli A, Ogata K, Ohkura A, Orr N A, Ota S, Otsu H, Ozaki T, Panin V, Paschalis S, Pollacco E C, Reichert S, Roussé J Y, Saito A T, Sakaguchi S, Sako M, Santamaria C, Sasano M, Sato H, Shikata M, Shimizu Y, Shindo Y, Stuhl L, Sumikama T, Sun Y L, Tabata M, Togano Y, Tsubota J, Yang Z H, Yasuda J, Yoneda K, Zenihiro J, Uesaka T 2020 Phys. Rev. Lett. 125 252501Google Scholar

    [9]

    Drake G W F, Dhindsa H S, Marton V J, 2021 Phys. Rev. A 104 L060801Google Scholar

    [10]

    Knight R D, Prior M H 1980 Phys. Rev. A 21 179Google Scholar

    [11]

    Kowalski J, Neumann R, Noehte S, Scheffzek K, Suhr H, zu Putlitz G 1983 Hyperfine Interact. 15 159Google Scholar

    [12]

    Drake G W F 1971 Phys. Rev. A 3 908Google Scholar

    [13]

    Schüler H 1924 Naturwissenschaften 12 579

    [14]

    Herzberg G, Moore H R 1959 Can. J. Phys. 37 1293Google Scholar

    [15]

    Heisenberg W 1926 Z. Phys. 39 499Google Scholar

    [16]

    Güttinger P, Pauli W 1931 Z. Phys. 67 743Google Scholar

    [17]

    Güttinger P 1930 Z. Physik A 64 749Google Scholar

    [18]

    Macek J 1969 Phys. Rev. Lett. 23 1Google Scholar

    [19]

    Berry H G, Subtil J L 1971 Phys. Rev. Lett. 27 1103Google Scholar

    [20]

    Wing W H, Ruff G A, Lamb W E, Spezeski J J 1976 Phys. Rev. Lett. 36 1488Google Scholar

    [21]

    Fan B, Grischkowsky D, Lurio A 1979 Opt. Lett. 4 233Google Scholar

    [22]

    Fan B, Lurio A, Grischkowsky D 1978 Phys. Rev. Lett. 41 1460Google Scholar

    [23]

    Kötz U, Kowalski J, Neumann R, Noehte S, Suhr H, Winkler K, zu Putlitz G 1981 Z. Phys. A: Hadrons Nucl. 300 25

    [24]

    Englert M, Kowalski J, Mayer F, Neumann R, Noehte S, Schwarzwald P, Suhr H, Winkler K, zu Putlitz G 1982 Sov. J. Quantum Electron. 12 664Google Scholar

    [25]

    Rong H, GrafströM S, Kowalski J, zu Putlitz G, Jastrzebski W, Neumann R 1993 Opt. Commun. 100 268Google Scholar

    [26]

    Riis E, Berry H G, Poulsen O, Lee S A, Tang S Y 1986 Phys. Rev. A 33 3023Google Scholar

    [27]

    Riis E, Sinclair A G, Poulsen O, Drake G W F, Rowley W R C, Levick A P 1994 Phys. Rev. A 49 207Google Scholar

    [28]

    Clarke J J, van Wijngaarden W A 2003 Phys. Rev. A 67 012506Google Scholar

    [29]

    Johnson W R, Cheng K T, Plante D R 1997 Phys. Rev. A 55 2728Google Scholar

    [30]

    Puchalski M, Pachucki K 2013 Phys. Rev. Lett. 111 243001Google Scholar

    [31]

    Yerokhin V A 2008 Phys. Rev. A 78 012513Google Scholar

    [32]

    Li R, Wu Y, Rui Y, Li B, Jiang Y, Ma L, Wu H 2020 Phys. Rev. Lett. 124 063002Google Scholar

    [33]

    Guan H, S. Chen, Qi X Q, S. Liang, Sun W, Zhou P, Huang Y, Zhang P P, Zhong Z X, Yan Z C, Drake G W F, Shi T Y, Gao K 2020 Phys. Rev. A 102 030801Google Scholar

    [34]

    Qi X Q, Zhang P P, Yan Z C, Drake G W F, Zhong Z X, Shi T Y, Chen S L, Huang Y, Guan H, Gao K L 2020 Phys. Rev. Lett. 125 183002Google Scholar

    [35]

    Sun W, Zhang P P, Zhou P P, Chen S L, Zhou Z Q, Huang Y, Qi X Q, Yan Z C, Shi T Y, Drake G W F, Zhong Z X, Guan H, Gao K L 2023 Phys. Rev. Lett. 131 103002Google Scholar

    [36]

    Puchalski M, Pachucki K 2009 Phys. Rev. A 79 032510Google Scholar

    [37]

    Pachucki K, Yerokhin V A, Cancio Pastor P 2012 Phys. Rev. A 85 042517Google Scholar

    [38]

    Patkóš V C V, Yerokhin V A, Pachucki K 2019 Phys. Rev. A 100 042510Google Scholar

    [39]

    Haidar M, Zhong Z X, Korobov V I, Karr J P 2020 Phys. Rev. A 101 022501Google Scholar

    [40]

    Pachucki K, Yerokhin V A 2010 Phys. Rev. Lett. 104 070403Google Scholar

    [41]

    Pachucki K 2006 Phys. Rev. A 74 022512Google Scholar

    [42]

    Yerokhin V A, Pachucki K 2015 J. Phys. Chem. Ref. Data 44 031206Google Scholar

    [43]

    Karshenboim S G, Ivanov V G 2002 Eur. Phys. J. D 19 13Google Scholar

    [44]

    McKenzie D K, Drake G W F 1991 Phys. Rev. A 44 R6973Google Scholar

    [45]

    Yan Z C, Drake G W F 2000 Phys. Rev. A 61 022504Google Scholar

    [46]

    Zemach A C 1956 Phys. Rev. 104 1771Google Scholar

    [47]

    Zhang P P, Zhong Z X, Yan Z C 2013 Phys. Rev. A 88 032519Google Scholar

    [48]

    Chen S L, Liang S Y, Sun W, Huang Y, Guan H, Gao K L 2019 Rev. Sci. Instrum. 90 043112Google Scholar

    [49]

    Artoni M, Carusotto I, Minardi F 2000 Phys. Rev. A 62 023402Google Scholar

    [50]

    Brown R C, Wu S J, Porto J V, Sansonetti C J, Simien C E, Brewer S M, Tan J N, Gillaspy J D 2013 Phys. Rev. A 87 032504Google Scholar

    [51]

    Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Grinin A, Lamour T, Yost D C, Hänsch T W, Kolachevsky N, Udem T 2017 Science 358 79Google Scholar

    [52]

    Ramsey N F 1950 Phys. Rev. 78 695Google Scholar

    [53]

    Zhou P P, Sun W, Liang S Y, Chen S L, Zhou Z Q, Huang Y, Guan H, Gao K L 2021 Appl. Opt. 60 6097Google Scholar

    [54]

    Stone N 2016 At. Data Nucl. Data Tables 111 1

    [55]

    Pachucki K, Patkóš V, Yerokhin V A 2023 Phys. Rev. A 108 052802Google Scholar

  • [1] 刘鑫, 汶伟强, 李冀光, 魏宝仁, 肖君. 高电荷态类硼离子2P3/22P1/2跃迁的实验和理论研究进展. 物理学报, 2024, 73(20): 203102. doi: 10.7498/aps.73.20241190
    [2] 杜小娇, 魏龙, 孙羽, 胡水明. 自由电子激光制备高强度亚稳态氦原子和类氦离子. 物理学报, 2024, 73(15): 150201. doi: 10.7498/aps.73.20240554
    [3] 肖峥嵘, 张恒之, 华林强, 唐丽艳, 柳晓军. 极紫外波段的少电子原子精密光谱测量. 物理学报, 2024, 73(20): 204205. doi: 10.7498/aps.73.20241231
    [4] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现. 物理学报, 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [5] 朱兴龙, 王伟民, 余同普, 何峰, 陈民, 翁苏明, 陈黎明, 李玉同, 盛政明, 张杰. 极强激光场驱动超亮伽马辐射和正负电子对产生的研究进展. 物理学报, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [6] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [7] 孙婷, 王宇, 郭任彤, 卢知为, 栗建兴. 强激光驱动高能极化正负电子束与偏振伽马射线的研究进展. 物理学报, 2021, 70(8): 087901. doi: 10.7498/aps.70.20210009
    [8] 郑昕, 孙羽, 陈娇娇, 胡水明. 氦原子2 3S–2 3P精密光谱研究. 物理学报, 2018, 67(16): 164203. doi: 10.7498/aps.67.20180914
    [9] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [10] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [11] 孟建宇, 王培月, 冯伟, 杨国建, 李新奇. 关于电路量子电动力学系统中光子自由度的消除方案. 物理学报, 2012, 61(18): 180302. doi: 10.7498/aps.61.180302
    [12] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [13] 陈翔, 米贤武. 量子点腔系统中抽运诱导受激辐射与非谐振腔量子电动力学特性的研究. 物理学报, 2011, 60(4): 044202. doi: 10.7498/aps.60.044202
    [14] 余晓光, 王兵兵, 程太旺, 李晓峰, 傅盘铭. 高阶阈值上电离的量子电动力学理论. 物理学报, 2005, 54(8): 3542-3547. doi: 10.7498/aps.54.3542
    [15] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [16] 袁晓利, 施 毅, 杨红官, 卜惠明, 吴 军, 赵 波, 张 荣, 郑有钭. 硅量子点中电子的荷电动力学特征. 物理学报, 2000, 49(10): 2037-2040. doi: 10.7498/aps.49.2037
    [17] 刘 辽. 时空泡沫结构与量子电动力学中发散的消除. 物理学报, 1998, 47(3): 363-367. doi: 10.7498/aps.47.363
    [18] 倪光炯, 徐建军. 含Chern-Simons项的(2+1)维标量量子电动力学. 物理学报, 1991, 40(8): 1217-1221. doi: 10.7498/aps.40.1217
    [19] 陈宗蕴, 周义昌, 黄念宁. 关于标量量子电动力学有效势的泛函算法. 物理学报, 1982, 31(5): 660-663. doi: 10.7498/aps.31.660
    [20] 张宗燧. 在经典电动力学中纵场的消除. 物理学报, 1955, 11(6): 453-468. doi: 10.7498/aps.11.453
计量
  • 文章访问数:  1234
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-13
  • 修回日期:  2024-09-02
  • 上网日期:  2024-09-07
  • 刊出日期:  2024-10-20

/

返回文章
返回