搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于监控标记单光子源的量子密钥分发协议

罗一振 马洛嘉 孙铭烁 吴思睿 邱丽华 王禾 王琴

引用本文:
Citation:

基于监控标记单光子源的量子密钥分发协议

罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴
cstr: 32037.14.aps.73.20241269

Source monitoring quantum key distribution protocol based on heralded single photon source

Luo Yi-Zhen, Ma Luo-Jia, Sun Ming-Shuo, Wu Si-Rui, Qiu Li-Hua, Wang He, Wang Qin
cstr: 32037.14.aps.73.20241269
PDF
HTML
导出引用
  • 现有量子密钥分发系统的光源主要是弱相干态光源, 但是由于该类光源中含有大量的真空态脉冲, 并且在光源调制过程中可能存在一定信息泄漏, 从而限制了量子密钥分发系统的最远安全传输距离. 为克服这一局限, 本文提出了一种基于监控标记单光子源的量子密钥分发协议. 一方面, 通过借助标记单光子源中极低的真空态概率, 提升了系统的极限传输距离; 另一方面, 在系统发射端添加了Hong-Ou-Mandel (HOM)光源监控模块, 通过测量HOM干涉可见度的大小来精确刻画出源端可能泄漏信息量的大小, 从而更加准确地估算出系统可提取密钥率的大小. 此外, 将本工作与其他同类协议进行数值仿真对比, 仿真结果显示, 本协议在传输距离和密钥率等方面具有更加优越的性能. 因此, 本工作为未来发展更安全可靠的量子通信网络提供了重要的参考价值.
    The security of quantum key distribution (QKD) is based on the basic principles of quantum mechanics, and therefore has unconditional security in theory. In existing quantum key distribution systems, weakly coherent sources (WCSs) are often used as light sources due to a high probability of vacuum pulses in these sources, resulting in limited transmission distances. Besides, there inevitably exist equipment defects in actual QKD systems, such as certain defects in phase modulators and intensity modulators, which lead to distinguishability of quantum states in higher dimensions and result in side-channel vulnerabilities. An eavesdropper can carry out corresponding attacks, thereby threatening the actual security of QKD systems. To overcome the above limitations, we propose an improved protocol on quantum key distribution based on monitoring heralded single-photon sources. Due to the simultaneity of parametric down-conversion photon pairs, we can accurately predict the arrival of one photon by measuring the arrival time of another photon. Through this way, we can greatly reduce the probability of vacuum states in the signal light, and increase the longest transmission distance of the QKD system. Moreover, a light source monitoring module is inserted into the sender’s side. By randomly selecting a certain period of time through the source monitoring module to measure the Hong-Ou-Mandel interference between the signal light and the idle light , we can estimate the side-channel information leakage of the source and then obtain the key generation rate.Compared with the QKD protocol based on monitoring weak coherent sources, our present protocol can give a better performance in either the transmission distance or the key generation rate, especially when the interference error is large. In addition, in principle, our present protocol can also be extended to other quantum key distribution protocols, such as the measurement-device-independent protocols, to further improve the security and practicability of QKD systems. Therefore, our present work can provide valuable references for realizing the large-scale application of quantum communication networks in the near future.
      通信作者: 王琴, qinw@njupt.edu.cn
    • 基金项目: 江苏省重点研发计划产业前瞻与关键核心技术项目 (批准号: BE2022071)、江苏省自然科学基金前沿技术项目 (批准号: BK20192001)、国家自然科学基金 (批准号: 12074194) 和江苏省研究生科研创新计划项目(批准号: KYCX22_0954)资助的课题.
      Corresponding author: Wang Qin, qinw@njupt.edu.cn
    • Funds: Project supported by the Industrial Prospect and Key Core Technology Projects of Key R & D Program of Jiangsu Province, China (Grant No. BE2022071), the Leading-edge Technology Program of the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20192001), the National Natural Science Foundation of China (Grant No. 12074194), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX22_0954).
    [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) p175

    [2]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar

    [3]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [4]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [5]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [6]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 3903Google Scholar

    [7]

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Yao, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [8]

    Tamaki K, Curty M, Lucamarini M 2016 New J. Phys. 18 065008Google Scholar

    [9]

    Xu F H, Wei K J, Sajeed S, Kaiser S, Sun S, Tang Z Y, Qian L, Makarov V, Lo H K 2015 Phys. Rev. A 92 032305Google Scholar

    [10]

    Sun S H, Gao M, Jiang M S, Li C Y, Liang L M 2012 Phys. Rev. A 85 032304Google Scholar

    [11]

    Nauerth S, Fürst M, Schmitt-Manderbach T, Weier H, Weinfurter H 2009 New J. Phys. 11 065001Google Scholar

    [12]

    Comandar L, Lucamarini M, Fröhlich B, Dynes J F, Yuan Z L, Shields A J 2016 Opt. Express 24 17849Google Scholar

    [13]

    Mauerer W, Avenhaus, Helwig W, Silberhorn C 2009 Phys. Rev. A 80 053815Google Scholar

    [14]

    Faruque I I, Sinclair G F, Bonneau D, Ono T, Silberhorn C, Thompson M G, Rarity J G 2019 Phys. Rev. Appl. 12 054029Google Scholar

    [15]

    Wang J, Zhang C H, Liu J Y, Qian X R, Li J, Wang Q 2021 Chin. Phys. B 30 070304Google Scholar

    [16]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337Google Scholar

    [17]

    Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 052325Google Scholar

    [18]

    Alexander D, Denis S 2021 Phys. Rev. A 104 012601Google Scholar

    [19]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312Google Scholar

    [20]

    Ma Z, Zhang F L, Chen J L 2009 Phys. Lett. A 373 3407Google Scholar

    [21]

    Wang X B 2005 Phys. Rev. Lett. 94 230503Google Scholar

    [22]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [23]

    Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3 634Google Scholar

    [24]

    Lucamarini M, Choi I, Ward M B, Dynes J F, Yuan Z L, Shields A J 2015 Phys. Rev. X 5 031030Google Scholar

    [25]

    Sun M S, Wang W L, Zhou X Y, Zhang C H, Wang Q 2023 Phys. Rev. Res. 5 043179Google Scholar

    [26]

    Zhan X H, Zhong Z Q, Wang S, Yin Z Q, Chen W, He D Y, Guo G C, Han Z F 2023 Phys. Rev. Appl. 20 034069Google Scholar

  • 图 1  基于监控标记单光子源的QKD实验装置结构示意图

    Fig. 1.  Schematic diagram of QKD experimental device structure based on monitoring marker single photon source.

    图 2  不同干涉误差下基于监控HSPS协议和基于监控WCS协议的密钥率对比

    Fig. 2.  Comparison of the key rates based on monitoring HSPS protocol and monitoring WCS protocol under different interference errors.

    图 3  不同干涉误差下基于监控HSPS协议和基于监控WCS协议的平均误码率对比

    Fig. 3.  Comparison of the average bit error rates between monitoring HSPS protocol and monitoring WCS protocol under different interference errors.

    图 4  不同干涉误差下基于监控HSPS协议和基于监控WCS协议的信号光平均增益对比

    Fig. 4.  Comparison of the average gain of signal light between monitoring HSPS protocol and monitoring WCS protocol under different interference errors.

    表 1  基于监控标记单光子源的量子密钥分发协议仿真使用的参数列表

    Table 1.  List of the parameters used in the source monitoring quantum key distribution protocol based on heralded single photon source.

    N α/(dB·km–1) dA ηA Y0 ed ηB
    1010 0.2 10–6 0.75 6.02×10–6 0.015 0.145
    下载: 导出CSV
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) p175

    [2]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656Google Scholar

    [3]

    Bennett C H, Brassard G, Mermin N D 1992 Phys. Rev. Lett. 68 557Google Scholar

    [4]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [5]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A J 2018 Nature 557 400Google Scholar

    [6]

    Zeng P, Zhou H Y, Wu W J, Ma X F 2022 Nat. Commun. 13 3903Google Scholar

    [7]

    Xie Y M, Lu Y S, Weng C X, Cao X Y, Jia Z Y, Bao Y, Wang Y, Fu Yao, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [8]

    Tamaki K, Curty M, Lucamarini M 2016 New J. Phys. 18 065008Google Scholar

    [9]

    Xu F H, Wei K J, Sajeed S, Kaiser S, Sun S, Tang Z Y, Qian L, Makarov V, Lo H K 2015 Phys. Rev. A 92 032305Google Scholar

    [10]

    Sun S H, Gao M, Jiang M S, Li C Y, Liang L M 2012 Phys. Rev. A 85 032304Google Scholar

    [11]

    Nauerth S, Fürst M, Schmitt-Manderbach T, Weier H, Weinfurter H 2009 New J. Phys. 11 065001Google Scholar

    [12]

    Comandar L, Lucamarini M, Fröhlich B, Dynes J F, Yuan Z L, Shields A J 2016 Opt. Express 24 17849Google Scholar

    [13]

    Mauerer W, Avenhaus, Helwig W, Silberhorn C 2009 Phys. Rev. A 80 053815Google Scholar

    [14]

    Faruque I I, Sinclair G F, Bonneau D, Ono T, Silberhorn C, Thompson M G, Rarity J G 2019 Phys. Rev. Appl. 12 054029Google Scholar

    [15]

    Wang J, Zhang C H, Liu J Y, Qian X R, Li J, Wang Q 2021 Chin. Phys. B 30 070304Google Scholar

    [16]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337Google Scholar

    [17]

    Zhang C H, Zhang C M, Wang Q 2019 Phys. Rev. A 99 052325Google Scholar

    [18]

    Alexander D, Denis S 2021 Phys. Rev. A 104 012601Google Scholar

    [19]

    Wang Q, Wang X B, Guo G C 2007 Phys. Rev. A 75 012312Google Scholar

    [20]

    Ma Z, Zhang F L, Chen J L 2009 Phys. Lett. A 373 3407Google Scholar

    [21]

    Wang X B 2005 Phys. Rev. Lett. 94 230503Google Scholar

    [22]

    Lo H K, Ma X F, Chen K 2005 Phys. Rev. Lett. 94 230504Google Scholar

    [23]

    Tomamichel M, Lim C C W, Gisin N, Renner R 2012 Nat. Commun. 3 634Google Scholar

    [24]

    Lucamarini M, Choi I, Ward M B, Dynes J F, Yuan Z L, Shields A J 2015 Phys. Rev. X 5 031030Google Scholar

    [25]

    Sun M S, Wang W L, Zhou X Y, Zhang C H, Wang Q 2023 Phys. Rev. Res. 5 043179Google Scholar

    [26]

    Zhan X H, Zhong Z Q, Wang S, Yin Z Q, Chen W, He D Y, Guo G C, Han Z F 2023 Phys. Rev. Appl. 20 034069Google Scholar

  • [1] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [2] 徐耀坤, 孙仕海, 曾瑶源, 杨俊刚, 盛卫东, 刘伟涛. 基于双光子干涉的量子全息理论框架. 物理学报, 2023, 72(21): 214207. doi: 10.7498/aps.72.20231242
    [3] 翟艺伟, 李旺. 基于SSA-BP网络模型的Hong-Ou-Mandel干涉时延测量研究及其在量子陀螺仪中的应用. 物理学报, 2023, 72(13): 138503. doi: 10.7498/aps.72.20230283
    [4] 田颖, 蔡吾豪, 杨子祥, 陈峰, 金锐博, 周强. 强聚焦泵浦产生纠缠光子的Hong-Ou-Mandel干涉. 物理学报, 2022, 71(5): 054201. doi: 10.7498/aps.71.20211783
    [5] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议. 物理学报, 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [6] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [7] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [8] 李银海, 许昭怀, 王双, 许立新, 周志远, 史保森. 两个独立全光纤多通道光子纠缠源的Hong-Ou-Mandel干涉. 物理学报, 2017, 66(12): 120302. doi: 10.7498/aps.66.120302
    [9] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析. 物理学报, 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [10] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析. 物理学报, 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [11] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [12] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发. 物理学报, 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [13] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [14] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [15] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案. 物理学报, 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [16] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用. 物理学报, 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [17] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [18] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [19] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, 2005, 54(11): 5014-5017. doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  270
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-09
  • 修回日期:  2024-11-09
  • 上网日期:  2024-11-25
  • 刊出日期:  2024-12-20

/

返回文章
返回