搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于干式制冷的低温扫描探针显微镜研究进展

黄远志 杨传浩 何颂平 马瑞松 郇庆

引用本文:
Citation:

基于干式制冷的低温扫描探针显微镜研究进展

黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆
cstr: 32037.14.aps.73.20241367

Advances in dry low-temperature scanning probe microscopy system development

Huang Yuan-Zhi, Yang Chuan-Hao, He Song-Ping, Ma Rui-Song, Huan Qing
cstr: 32037.14.aps.73.20241367
PDF
HTML
导出引用
  • 21世纪以来, 扫描探针显微镜(scanning probe microscope, SPM)在微纳尺度形貌表征、物性测量及微纳加工等领域发挥着越来越重要的作用. 为了使扫描探针显微镜获得更稳定的运行环境、更高的能量分辨率, 人们研发了具备超高真空(ultra high vacuum, UHV)和低温(low temperature, LT)环境的SPM系统(UHV-LT-SPM). 目前, 大多数的UHV-LT-SPM系统通过向连续流式低温恒温器或低温杜瓦中输送液态氦-4(4He), 使SPM的温度达到约4.2 K. 然而由于4He元素在自然界中含量低且因需求日益增长, 导致液氦价格急剧飙升, 严重影响到了4He相关低温设备的正常运行. 为应对上述问题, 干式制冷技术成为新一代低温技术的发展方向. 在此背景下, 将干式制冷技术与扫描探针显微镜相结合, 搭建干式低温扫描探针显微镜, 成为了目前扫描探针仪器领域的研究重点之一. 本文主要从扫描探针显微镜系统设计、降温设计、减振方法以及其设备性能等方面, 介绍目前已经报道的几种干式LT-SPM系统. 最后总结了干式LT-SPM系统目前所遇见的问题和挑战, 探讨了该技术未来的发展方向.
    Since the beginning of the 21st century, scanning probe microscopy (SPM) has played an increasingly important role in investigating the micro- and nanoscale surface characterization, physical property measurement, and micro/nano fabrication. To provide a more stable operating environment and higher energy resolution for SPM, researchers have developed low-temperature scanning probe microscopy (LT-SPM) systems that operate under the conditions of ultra-high vacuum and low temperature. Currently, most of LT-SPM systems have achieved temperatures around 4.2 K by supplying liquid helium-4 (4He) to continuous flow cryostats or low-temperature Dewars. However, due to the low natural abundance of 4He and its increasing demand, the significant increase in the price of liquid helium has seriously affected the normal operation of 4He-based low temperature equipment. To solve this problem, dry (cryogen-free) refrigeration technology has emerged as a promising alternative to the next-generation low-temperature systems. In this context, the integration of dry refrigeration technology with SPM to construct Dry-LT-SPM systems has become a key research focus in the field of scanning probe instruments.This paper mainly discusses several reported closed-cycle Dry-LT-SPM systems, focusing on aspects such as system design, refrigeration schemes, vibration reduction methods, and overall performance. Finally, this paper summarizes the current challenges and problems faced by Dry-LT-SPM systems and explores potential future developments in this field.

    更正: 基于干式制冷的低温扫描探针显微镜研究进展 [物理学报 ]

    黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 更正: 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报. doi: 10.7498/aps.73.249901
      通信作者: 马瑞松, mars@iphy.ac.cn ; 郇庆, huanq@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: T2125014, 11927808, 12004417)和中国科学院关键技术研发团队项目 (批准号: GJJSTD20200005)资助的课题.
      Corresponding author: Ma Rui-Song, mars@iphy.ac.cn ; Huan Qing, huanq@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. T2125014, 11927808, 12004417) and the CAS Key Technology Research and Development Team Project (Grant No. GJJSTD20200005).
    [1]

    Wu Z B, Gao Z Y, Chen X Y, et al. 2018 Rev. Sci. Instrum. 89 113705Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Method. Prime. 1 36Google Scholar

    [3]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [4]

    Watkins N J, Long J P, Kafafi Z H, Mäkinen A J 2007 Rev. Sci. Instrum. 78 053707Google Scholar

    [5]

    Grafström S 2002 J. Appl. Phys. 91 1717Google Scholar

    [6]

    Flores S M, Toca-Herrera J L 2009 Nanoscale 1 40Google Scholar

    [7]

    Bharat B 2004 Handbook of Nanotechnology (Springer

    [8]

    Baykara M Z, Morgenstern M, Schwarz A, Schwarz U D 2017 Handbook of Nanotechnology (Berlin: Springer) pp769–808

    [9]

    Behler S, Rose M K, Dunphy J C, Ogletree D F, Salmeron M, Chapelier C 1997 Rev. Sci. Instrum. 68 2479Google Scholar

    [10]

    Stipe B C, Rezaei M A, Ho W 1999 Rev. Sci. Instrum. 70 137Google Scholar

    [11]

    Meyer G 1996 Rev. Sci. Instrum. 67 2960Google Scholar

    [12]

    Elrod S A, Lozanne A L D, Quate C F 1984 Applied Physics Letters 45 1240Google Scholar

    [13]

    He G, Wei Z X, Feng Z P, Yu X D, Zhu B Y, Liu L, Jin K, Yuan J, Huan Q 2020 Rev. Sci. Instrum. 91 013904Google Scholar

    [14]

    Chaudhary S, Panda J J, Mundlia S, Mathimalar S, Ahmedof A, Raman K V 2021 Rev. Sci. Instrum. 92 023906Google Scholar

    [15]

    Zhao Z, Wang C 2019 Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press

    [16]

    Wong D, Jeon S, Nuckolls K P, Oh M, Kingsley S C J, Yazdani A 2020 Rev. Sci. Instrum. 91 023703Google Scholar

    [17]

    Hackley J D, Kislitsyn D A, Beaman D K, Ulrich S, Nazin G V 2014 Rev. Sci. Instrum. 85 103704Google Scholar

    [18]

    Zhang S, Huang D, Wu S W 2016 Rev. Sci. Instrum. 87 063701Google Scholar

    [19]

    Kasai J, Koyama T, Yokota M, Iwaya K 2022 Rev. Sci. Instrum. 93 043711Google Scholar

    [20]

    Huang H M, Shuai M M, Yang Y L, Song R, Liao Y H, Yin L M, Shen J 2022 Rev. Sci. Instrum. 93 073703Google Scholar

    [21]

    Meng W J, Wang J H, Hou Y B, et al. 2019 Ultramicroscopy 205 20Google Scholar

    [22]

    Coe A M, Li G H, Andrei E Y 2024 Rev. Sci. Instrum. 95 083702Google Scholar

    [23]

    Ma R S, Li H, Shi C S, et al. 2023 Rev. Sci. Instrum. 94 093701Google Scholar

  • 图 1  主流低温SPM设备所采用的降温方式 (a)基于连续流式低温恒温器的SPM设备; (b)基于低温杜瓦恒温器的SPM设备

    Fig. 1.  Cooling methods used in mainstream low temperature SPM equipment: (a) SPM system based on a continuous flow heat exchanger; (b) SPM system based on a low-temperature Dewar cryostat.

    图 2  干式制冷部分实物图[17] (a) GM机与SPM部分的连接部分照片, 该方案采用橡胶波纹管连接制冷机和STM上方的二级热交换器; (b) LT-STM系统部分系统实物图, 低温恒温器安装在LT-STM系统上方的刚性支架上, 刚性支架与LT-STM系统没有刚性接触

    Fig. 2.  Photograph of Dry refrigeration[17]: (a) Photo of the connection part between the GM cryocooler cold head and the SPM part, this solution uses rubber bellows to connect the refrigerator and cold finger above the STM; (b) photo of the LT-STM system, the cryostat is mounted on a rigid support above the LT-STM system, the rigid support has no rigid contact with the LT-STM system.

    图 3  STM扫描探头悬挂在屏蔽罩内[17] (a)带有屏蔽罩的STM前视图; (b) STM的侧视图, 内部屏蔽罩直接与二级热交换器相连

    Fig. 3.  The STM scanner is suspended in the shielding[17]: (a) Front view of STM with shield; (b) side view of the STM, with the internal shield directly connected to the cold finger.

    图 4  Dry-LT-STM获得的若干图像[17] (a) Au(111)原子分辨; (b) NaCl(100)原子分辨

    Fig. 4.  STM images obtained by the Dry-LT-STM[17]: (a) Atomic resolution of Au(111); (b) atomic resolution of NaCl(100).

    图 5  (a) Dry-LT-STM系统示意图[18], 制冷机(蓝色)安装在刚性支架上, LT-STM系统放在含有气腿(橙色)的实验台上, 两者通过橡胶波纹管与LT-STM系统连接; (b)闭循环制冷部分示意图, 氦气在制冷机(紫色)和热交换器界面(青色)之间, 氦气由两级橡胶管(黑色)密封; (c) STM扫描探头示意图, 激光通过两种透镜聚焦在STM上, 并通过雪崩光电二极管或光谱仪从STM收集光信号

    Fig. 5.  (a) Schematic diagram of the Dry-LT-STM system[18], the cryocooler (blue) is mounted on a rigid frame and the LT-STM system is placed on the vibration isolation table containing the gas legs (orange), both of which are connected to the LT-STM system via rubber bellows; (b) schematic diagram of the closed-cycle refrigeration section, helium gas is filled between the cryocooler (purple) and stage interfaces (cyan), the helium is sealed by two-stage rubber bellow (black); (c) schematic of the STM scanning head. The laser is focused on the STM by two lenses and the optical signal is collected from the STM by means of a APD or a spectrometer.

    图 6  (a)石墨表面的原子分辨图像, 样品温度为16.8 K; (b)石墨表面的dI/dV谱; (c) CO分子的I/V谱, dI/dV谱和IETS谱[18]

    Fig. 6.  (a) Atomic-resolution image of graphite surface, the sample temperature is 16.8 K; (b) dI/dV spectrum of graphite surface; (c) I/V spectrum, dI/dV spectrum and IETS spectrum of CO molecules[18].

    图 7  (a)日本UNISOKU公司的LT-STM系统示意图; (b) PT制冷机和SPM扫描探头的示意图, PT制冷机两级冷台、PTFE波纹管和低温恒温器围成的区域充满氦气, 扫描腔则保持在超高真空状态[19]

    Fig. 7.  (a) Schematic diagram of the LT-STM system of Japanese UNISOKU company; (b) schematic of PT refrigerator (cryocooler) and SPM scanner, the area enclosed by the cooling stages, PTFE bellows and cryostat is filled with helium, while the SPM chamber is maintained in ultra-high vacuum condition[19].

    图 8  (a)搭建Dry-LT-SPM设备整体系统设计示意图[20]. 1-涡旋泵, 2-氦气罐, 3-氦气管道, 4-干式制冷超导磁体, 5-刚性支架, 6-PT制冷机, 7-低温恒温器, 8-STM腔体, 9-氩离子源, 10-MBE腔体, 11-MBE蒸发源, 12-快速进样腔, 13-传输杆, 14-主动减振平台. (b)制冷系统(左)和扫描探头(右)示意图, 1-PT制冷机, 2-金属焊接波纹管, 3-低温恒温器接口, 4-氦气, 5-液氦, 6-针阀, 7-AFM的前置放大器, 8-屏蔽罩, 9-扫描探头, 10-干式制冷超导磁体, 11-毛细管, 12-加热器–1, 13-排气阀, 14-1 K池, 15-加热器–2, 16-弹簧, 17-信号线插口, 18-磁阻尼铜板

    Fig. 8.  (a) Schematic diagram of the overall system design of the dry SPM equipment[20]. 1-scroll pump, 2-helium tank, 3-helium pipeline, 4-cryogen-free superconducting magnet, 5-supporting frame, 6-PT refrigerator, 7-cryostat, 8-STM chamber, 9-argon ion beam bombardment, 10-MBE chamber, 11-MBE evaporation sources, 12-load-lock chamber, 13-transfer rod, 14-active air damping. (b) Schematic diagram of the refrigeration system (left) and scanner (right), 1-PT cryocooler, 2-vibration-isolated bellows, 3-cryostat interface, 4-helium gas, 5-LHe, 6-needle valve, 7-the preamplifier of AFM, 8-thermal shield, 9-scanning head, 10-superconducting magnet, 11-pumping pipe, 12-heater-1, 13-exhaust valve, 14-1 K-pot, 15-heater-2, 16-spring, 17-socket, 18-copper plate for eddy current damping.

    图 9  Ir(111)表面Fe原子所形成HCP岛skyrmion超晶格的SP-STM和MExFM图像[20]

    Fig. 9.  SP-STM and MExFM images of the HCP island skyrmion superlattice formed by Fe atoms on the Ir(111) surface[20].

    图 10  搭建Dry-LT-SPM设备采用的8 T干式超导磁体结构及其横截面示意图[21]

    Fig. 10.  Structure and cross-sectional view of the 8 T dry superconducting magnet used in Dry-LT-SPM equipment[21].

    图 11  基于干式超导磁体的STM结构设计图[21] (a) STM探头部分的构型图; (b) STM扫描探头构形图

    Fig. 11.  Cryogen-free STM design based on cryogen-free superconducting magnets[21]: (a) Diagram of the STM probe configuration; (b) diagram of the STM scanner.

    图 12  NbSe2的原子分辨和添加磁场后的图像[21]

    Fig. 12.  Atomic-resolution STM image of NbSe2 with sweeping magnetic field[21].

    图 13  (a)飞梭扫描探头与在UHV插件横截面; (b) UHV插件横截面, 未按比例绘制[22]

    Fig. 13.  (a) Shuttle-style STM head and UHV plug cross-section; (b) UHV plug cross-section, not to scale[22].

    图 14  (a)在4.6 K下, HOPG表面的原子分辨; (b)在20 K, 5 T的磁场下, HOPG显示出朗道能级[22]

    Fig. 14.  (a) Atomic resolution of the HOPG surface at 4.6 K; (b) Landau levels of HOPG at 20 K with 5 T magnetic field applied[22]

    图 15  制冷机在SPM腔体顶部的Dry-LT-STM系统

    Fig. 15.  Dry-LT-STM system with refrigerator on top of SPM chamber.

    图 16  制冷机与SPM腔体分离的LT-STM系统示意图[23]

    Fig. 16.  Schematic diagram of the LT-STM system with the dry refrigerator and SPM chamber separated[23].

    图 17  基于远端液化方案的Dry-LT-STM系统的三维模型[23]

    Fig. 17.  Three-dimensional model of the cryogen-free LT-STM system based on the remote liquefaction scheme[23].

    图 18  搭建Dry-LT-SPM的成像和隧道谱性能表征[23] (a) Au(111)表面的鱼骨形重构; (b) Au(111)表面的原子分辨; (c)金原子沿图(b)中红线的线剖面图; (d) Au(111)表面FCC和HCP位点的dI/dV谱; (e) Ag(110)表面的大范围STM 图像; (f) Ag(110)表面的原子分辨STM图像; (g) Ag原子沿图(f)中红线的线剖面图; (h) Ag(110)表面的dI/dV

    Fig. 18.  Imaging and tunneling spectrum performance characterization of the Dry-LT-SPM[23]: (a) Herringbone reconstruction of the Au(111) surface; (b) atomic resolution of the Au(111) surface; (c) line profile of gold atoms along the red line shown in panel (b); (d) dI/dV spectra of FCC and HCP sites on Au(111) surface; (e) large-scale STM image of the Ag(110) surface; (f) atomic-resolved STM image of the Ag(110) surface; (g) line profile of Ag atoms along the red line shown in panel (f); (h) dI/dV spectrum of Ag(110) surface.

    图 19  基于远端液化方案的SPM系统的谱学成像表征[23] (a) CO分子沉积在Ag(110)表面; (b)能够被探针捡起; (c)能获得高质量的IETS谱; (d)—(f)在CO分子上取得隧道电流谱, STS谱以及IETS谱学图像, 成像参数为110 pA, 9.6 mV

    Fig. 19.  Spectroscopic imaging performance of the SPM system based on the remote liquefaction scheme[23]: (a) CO molecules are deposited on the Ag(110) surface; (b) can be picked up by the probe; (c) high-quality IETS spectra can be obtained; (d)–(f) tunnelling current spectrum, STS spectrum and IETS spectroscopy images on CO molecules with setpoint of 110 pA and 9.6 mV.

  • [1]

    Wu Z B, Gao Z Y, Chen X Y, et al. 2018 Rev. Sci. Instrum. 89 113705Google Scholar

    [2]

    Bian K, Gerber C, Heinrich A J, Müller D J, Scheuring S, Jiang Y 2021 Nat. Rev. Method. Prime. 1 36Google Scholar

    [3]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [4]

    Watkins N J, Long J P, Kafafi Z H, Mäkinen A J 2007 Rev. Sci. Instrum. 78 053707Google Scholar

    [5]

    Grafström S 2002 J. Appl. Phys. 91 1717Google Scholar

    [6]

    Flores S M, Toca-Herrera J L 2009 Nanoscale 1 40Google Scholar

    [7]

    Bharat B 2004 Handbook of Nanotechnology (Springer

    [8]

    Baykara M Z, Morgenstern M, Schwarz A, Schwarz U D 2017 Handbook of Nanotechnology (Berlin: Springer) pp769–808

    [9]

    Behler S, Rose M K, Dunphy J C, Ogletree D F, Salmeron M, Chapelier C 1997 Rev. Sci. Instrum. 68 2479Google Scholar

    [10]

    Stipe B C, Rezaei M A, Ho W 1999 Rev. Sci. Instrum. 70 137Google Scholar

    [11]

    Meyer G 1996 Rev. Sci. Instrum. 67 2960Google Scholar

    [12]

    Elrod S A, Lozanne A L D, Quate C F 1984 Applied Physics Letters 45 1240Google Scholar

    [13]

    He G, Wei Z X, Feng Z P, Yu X D, Zhu B Y, Liu L, Jin K, Yuan J, Huan Q 2020 Rev. Sci. Instrum. 91 013904Google Scholar

    [14]

    Chaudhary S, Panda J J, Mundlia S, Mathimalar S, Ahmedof A, Raman K V 2021 Rev. Sci. Instrum. 92 023906Google Scholar

    [15]

    Zhao Z, Wang C 2019 Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press

    [16]

    Wong D, Jeon S, Nuckolls K P, Oh M, Kingsley S C J, Yazdani A 2020 Rev. Sci. Instrum. 91 023703Google Scholar

    [17]

    Hackley J D, Kislitsyn D A, Beaman D K, Ulrich S, Nazin G V 2014 Rev. Sci. Instrum. 85 103704Google Scholar

    [18]

    Zhang S, Huang D, Wu S W 2016 Rev. Sci. Instrum. 87 063701Google Scholar

    [19]

    Kasai J, Koyama T, Yokota M, Iwaya K 2022 Rev. Sci. Instrum. 93 043711Google Scholar

    [20]

    Huang H M, Shuai M M, Yang Y L, Song R, Liao Y H, Yin L M, Shen J 2022 Rev. Sci. Instrum. 93 073703Google Scholar

    [21]

    Meng W J, Wang J H, Hou Y B, et al. 2019 Ultramicroscopy 205 20Google Scholar

    [22]

    Coe A M, Li G H, Andrei E Y 2024 Rev. Sci. Instrum. 95 083702Google Scholar

    [23]

    Ma R S, Li H, Shi C S, et al. 2023 Rev. Sci. Instrum. 94 093701Google Scholar

  • [1] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 更正: 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报, 2024, 73(24): 249901. doi: 10.7498/aps.73.249901
    [2] 田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森. “针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性. 物理学报, 2023, 72(20): 207501. doi: 10.7498/aps.72.20230954
    [3] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [4] 史慧敏, 胡静, 王成会, 凤飞龙, 莫润阳. 有限长管内包膜微泡在磁-声复合场作用下的振动行为. 物理学报, 2021, 70(21): 214303. doi: 10.7498/aps.70.20210559
    [5] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性. 物理学报, 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [6] 刘国栋, 许新科, 刘炳国, 陈凤东, 胡涛, 路程, 甘雨. 基于振动抑制高精度宽带激光扫频干涉测量方法. 物理学报, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [7] 丁琨, 武雪飞, 窦秀明, 孙宝权. 电驱动金刚石对顶砧低温连续加压装置. 物理学报, 2016, 65(3): 037701. doi: 10.7498/aps.65.037701
    [8] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究. 物理学报, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [9] 胡格丽, 倪志鹏, 王秋良. 结合振动控制的柱面纵向梯度线圈目标场设计方法. 物理学报, 2014, 63(1): 018301. doi: 10.7498/aps.63.018301
    [10] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [11] 张富翁, 王立, 刘传平, 吴平. 竖直振动管中颗粒的上升运动. 物理学报, 2014, 63(1): 014501. doi: 10.7498/aps.63.014501
    [12] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, 2013, 62(18): 187302. doi: 10.7498/aps.62.187302
    [13] 何永周, 周巧根. 上海光源低温波荡器永磁铁在低温下的磁特性研究. 物理学报, 2013, 62(4): 044106. doi: 10.7498/aps.62.044106
    [14] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [15] 华宝成, 钱建强, 王曦, 姚骏恩. 应用于扫描探针显微镜的石英音叉机械模型研究. 物理学报, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [16] 冯海冉, 李鹏, 郑雨军, 丁世良. 用李代数方法解析研究线性三原子分子振动的动力学纠缠. 物理学报, 2010, 59(8): 5246-5250. doi: 10.7498/aps.59.5246
    [17] 厉旭杰, 聂秋华, 戴世勋, 徐铁峰, 沈 祥, 章向华. 低温下Er3+/Yb3+共掺碲酸盐玻璃的发光特性研究. 物理学报, 2008, 57(5): 3001-3005. doi: 10.7498/aps.57.3001
    [18] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [19] 姜泽辉, 陆坤权, 厚美瑛, 陈 唯, 陈相君. 振动颗粒混合物中的三明治式分离. 物理学报, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
    [20] 张廷庆, 刘传洋, 刘家璐, 王剑屏, 黄智, 徐娜军, 何宝平, 彭宏论, 姚育娟. 低温低剂量率下金属-氧化物-半导体器件的辐照效应. 物理学报, 2001, 50(12): 2434-2438. doi: 10.7498/aps.50.2434
计量
  • 文章访问数:  1086
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-28
  • 修回日期:  2024-10-19
  • 上网日期:  2024-10-31
  • 刊出日期:  2024-11-20

/

返回文章
返回