-
激光选区熔化技术有望实现复杂形状非晶合金部件的制造,但晶化现象难以避免.基板是激光选区熔化装置的重要部件,对打印件质量及微观结构有不容忽视的影响,但关于其对打印样品影响的研究还不多见.本文利用分子动力学模拟,在原子尺度探究了Fe50Cu25Ni25非晶合金激光选区熔化过程中基板温度对晶化及原子团簇的影响.研究发现,基板温度低于750 K时,FCC晶相结构的特征键对1421含量及相应的<0,4,4,6>面心立方团簇含量随基板温度升高而明显增加;基板温度接近玻璃转变温度时,键对和团簇的演变同时受玻璃形成能力、熔体和冷却速率等的共同影响.本研究揭示了铁基非晶合金激光选区熔化过程中原子团簇随基板温度的演变及其原子尺度的晶化,为理解与调控非晶晶化提供了新的思路.Selective Laser Melting (SLM) is expected to realize the fabrication of amorphous alloy parts with complex shapes, however, the almost inevitable crystallization makes it very difficult to obtain parts with excellent performance. Most of previous studies have been focusing on properties improvements by parameters optimization such as laser power, scanning speed, scanning strategy, etc. It is known that the substrate is an essential part in SLM device, which supports and contacts the initial powder and melting pool directly, affects the absorption and transmission of heat, the formation and cooling of the melting pool, and therefore exerts a significant influence on the quality and microstructure of printed parts, however related study of its effects is still rare. It is important and necessary to understand the effects of substrate temperature on crystallization behavior during the SLM of Fe-based amorphous alloy, molecular dynamics (MD) simulations can provide direct evidence for the evolution of clusters and band pairs, which helps make clear the crystallization mechanism and therefore alleviate the crystallization. By using MD simulations, this study investigates the effects of substrate temperature on the crystallization and evolution of atomic clusters in Fe50Cu25Ni25 amorphous alloy during SLM at atomic scale, with different substrate temperature (300 ~ 900 K), laser power (500 ~ 800 eV/ps), and scanning speed (0.1 ~ 1.0 nm/ps). It is found that when the substrate temperature is lower than 750 K, the content of characteristic bond pair 1421 and the corresponding <0,4,4,6> cluster increase with the substrate temperature, increasing face-centered cubic bond pair and cluster thus promotes the crystallization. When the substrate temperature is raised to close to the glass transition temperature, the evolution of bond pairs and clusters becomes complexed, which is affected by the collaborative and competitive effects of glass formation ability, melting and cooling rate, etc. This study reveals the evolution of atomic clusters, band pairs, and the initiation of crystal phase with varied substrate temperature during the SLM of Fe-based amorphous alloy, which provides new ideas for understanding and regulating the crystallization.
-
Keywords:
- Fe-based amorphous alloy /
- selective laser melting /
- molecular dynamics simulation /
- substrate temperature /
- crystallization
-
[1] Zhang J Q, Qin Y J, Fang Z, Fan X Z, Yang H Y, Kuang F L, Zhai Y, Miao Y L, Zhao Z X, He J J, Ye H Q, Fang Y Z 2022Acta Phys. Sin. 71 247501(in Chinese)[张建强, 秦彦军, 方铮, 范晓珍, 杨慧, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟2022物理学报71 247501]
[2] Zou Y M, Qiu Z G, Zheng Z G, Wang G, Yan X C, Yin S, Liu M, Zeng D C 2021Tribol. Int. 162 107112
[3] Suryanarayana C, Inoue A 2013Int. Mater. Rev. 58 131
[4] Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024Acta Phys. Sin. 73 098801(in Chinese) [余秀冬, 刘海顺, 薛琳, 张响, 杨卫明2024物理学报73 098801]
[5] Inoue A, Takeuchi A 2004Materials Science and Engineering: A 375–377 16
[6] Li H S, Jiang Y Y, Yang D F, Jiang Q, Yang W M 2023Journal of Materials Research and Technology 26 3070-3089
[7] Liu H S, Jiang Q, Huo J T, Zhang Y, Yang W M, Li X P 2020Addit. Manuf. 36 101568
[8] Li X P, Roberts M P, O’Keeffe S, Sercombe T B 2016Materials & Design 112 217
[9] Li X P, Kang C W, Huang H, Sercombe T B 2014Materials & Design 63 407
[10] Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013Mater. Today 16 37
[11] Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018Appl. Mater. Today 11 264
[12] Nong X D, Zhou X L, Ren Y X 2019Opt. Laser Technol. 109 20
[13] Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019J. Alloys Compd. 771 769
[14] Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020Materials Characterization 162 110206
[15] Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015Mater. Design 86 703
[16] Li N, Zhang J, Xing W, Ouyang D, Liu L 2018Mater. Design 143 285
[17] Lei M X, Hu L, Wu B W, Long Q, Wei B B 2024Acta Phys. Sin. 73097102(in Chinese) [糜晓磊, 胡亮, 武博文, 龙强, 魏炳波2024物理学报73097102]
[18] Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth J P 2014J. Manuf. Sci. Eng. 136 061026
[19] Malý M, Koutný D, Pantělejev L, Pambaguian L, Paloušek D 2022J. Manuf. Processes 73 924
[20] Mertens R, Dadbakhsh S, Humbeeck J V, Kruth J P 2018Procedia CIRP 74 5
[21] Wang W H, Lin W H, Yang R, Wu Y N, Li J P, Zhang Z B, Zhai Z R 2022Mater. Design 213 110355
[22] Xing W, Ouyang D, Li N, Liu L 2018Materials 11 1480
[23] Li X P, Roberts M, Liu Y J, Kang C W, Huang H, Sercombe T B 2015Materials & Design 201565 1
[24] Wang M Z, Lu S L, Wu S S, Chen X H, Guo W 2022J Mater Res Technol 20
[25] Dong B, Zhou S X, Pan S P, Wang Y G, Qin J Y, Xing Y X 2024J Alloy Compd 626122770
[26] Zhang Y, Liu H S, Mo J Y, Wang M Z, Chen Z, He Y Z, Yang W M, Tang C G 2018Comput. Mater. Sci. 150 62
[27] Jiang Q, Liu H S, Li J Y, Yang D F, Zhang Y, Yang W M 2020Addit. Manuf. 34 101369
[28] Bonny G, Pasianot R C, Castin N, Malerba L 2009Philosophical Magazine 89 3531
[29] Stukowski A 2010Modelling Simul. Mater. Sci. Eng. 18 015012
[30] Honeycutt J D, Andersen H C 1987J. Phys. Chem. 91 4950
[31] Faken D, Jónsson H 1994Computational Materials Science 2 279
[32] Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E 2008Acta Materialia 56 6264
[33] Yang D F, Liu H S, Jiang Q, Jiang Y Y, Wang X, Yang W M 2022J. Non-cryst. Solids 582 121435
[34] Wang H Z, Cheng Y H, Yang J Y, Liang X B 2023J. Non-cryst. Solids 602 122081
[35] Wu W H, Ye S X, Wang R D, Zhang C, Zhang Y W, Lu X G 2023Journal of Materials Research and Technology 23 1609
[36] Wang W H 2023Amphorous Matter (Vol. 1) (Beijing: Science Press) p408(in Chinese) [汪卫华2023非晶物质(第一卷)(北京:科学出版社)第408页]{专著}
[37] Na M Y, Kim W C, Hong S H, Park S H, Kim K C, Kim W T, Kim D H, J Alloy Compd 2019788 5
[38] Cui X, Zhang Q D, Li X Y, Zu F Q 2016 J Non-cryst. Solids 452 15
[39] Li W, Liu J, Zhou Y, Wen S, Wei Q, Yan C, Shi Y 2016Scr. Mater. 118 13
[40] Xu J J, Lin X, Guo P F, Hua Y L, Wen X L, Xue L, Liu J R, Huang W D, 2017 Materials Science and Engineering: A 69171-80
计量
- 文章访问数: 63
- PDF下载量: 1
- 被引次数: 0