搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基板温度对激光选区熔化制备铁基非晶合金晶化的影响

姜晓月 黄志敏 王璇 张响 杨卫明 刘海顺

引用本文:
Citation:

基板温度对激光选区熔化制备铁基非晶合金晶化的影响

姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺

Effect of substrate temperature on crystallization of Fe-based amorphous alloy fabricated by selective laser melting

Jiang Xiao-Yue, Huang Zhi-min, Wang xuan, Zhang Xiang, Yang Wei-Ming, Liu Hai-Shun
PDF
导出引用
  • 激光选区熔化技术有望实现复杂形状非晶合金部件的制造,但晶化现象难以避免.基板是激光选区熔化装置的重要部件,对打印件质量及微观结构有不容忽视的影响,但关于其对打印样品影响的研究还不多见.本文利用分子动力学模拟,在原子尺度探究了Fe50Cu25Ni25非晶合金激光选区熔化过程中基板温度对晶化及原子团簇的影响.研究发现,基板温度低于750 K时,FCC晶相结构的特征键对1421含量及相应的<0,4,4,6>面心立方团簇含量随基板温度升高而明显增加;基板温度接近玻璃转变温度时,键对和团簇的演变同时受玻璃形成能力、熔体和冷却速率等的共同影响.本研究揭示了铁基非晶合金激光选区熔化过程中原子团簇随基板温度的演变及其原子尺度的晶化,为理解与调控非晶晶化提供了新的思路.
    Selective Laser Melting (SLM) is expected to realize the fabrication of amorphous alloy parts with complex shapes, however, the almost inevitable crystallization makes it very difficult to obtain parts with excellent performance. Most of previous studies have been focusing on properties improvements by parameters optimization such as laser power, scanning speed, scanning strategy, etc. It is known that the substrate is an essential part in SLM device, which supports and contacts the initial powder and melting pool directly, affects the absorption and transmission of heat, the formation and cooling of the melting pool, and therefore exerts a significant influence on the quality and microstructure of printed parts, however related study of its effects is still rare. It is important and necessary to understand the effects of substrate temperature on crystallization behavior during the SLM of Fe-based amorphous alloy, molecular dynamics (MD) simulations can provide direct evidence for the evolution of clusters and band pairs, which helps make clear the crystallization mechanism and therefore alleviate the crystallization. By using MD simulations, this study investigates the effects of substrate temperature on the crystallization and evolution of atomic clusters in Fe50Cu25Ni25 amorphous alloy during SLM at atomic scale, with different substrate temperature (300 ~ 900 K), laser power (500 ~ 800 eV/ps), and scanning speed (0.1 ~ 1.0 nm/ps). It is found that when the substrate temperature is lower than 750 K, the content of characteristic bond pair 1421 and the corresponding <0,4,4,6> cluster increase with the substrate temperature, increasing face-centered cubic bond pair and cluster thus promotes the crystallization. When the substrate temperature is raised to close to the glass transition temperature, the evolution of bond pairs and clusters becomes complexed, which is affected by the collaborative and competitive effects of glass formation ability, melting and cooling rate, etc. This study reveals the evolution of atomic clusters, band pairs, and the initiation of crystal phase with varied substrate temperature during the SLM of Fe-based amorphous alloy, which provides new ideas for understanding and regulating the crystallization.
  • [1]

    Zhang J Q, Qin Y J, Fang Z, Fan X Z, Yang H Y, Kuang F L, Zhai Y, Miao Y L, Zhao Z X, He J J, Ye H Q, Fang Y Z 2022Acta Phys. Sin. 71 247501(in Chinese)[张建强, 秦彦军, 方铮, 范晓珍, 杨慧, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟2022物理学报71 247501]

    [2]

    Zou Y M, Qiu Z G, Zheng Z G, Wang G, Yan X C, Yin S, Liu M, Zeng D C 2021Tribol. Int. 162 107112

    [3]

    Suryanarayana C, Inoue A 2013Int. Mater. Rev. 58 131

    [4]

    Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024Acta Phys. Sin. 73 098801(in Chinese) [余秀冬, 刘海顺, 薛琳, 张响, 杨卫明2024物理学报73 098801]

    [5]

    Inoue A, Takeuchi A 2004Materials Science and Engineering: A 375–377 16

    [6]

    Li H S, Jiang Y Y, Yang D F, Jiang Q, Yang W M 2023Journal of Materials Research and Technology 26 3070-3089

    [7]

    Liu H S, Jiang Q, Huo J T, Zhang Y, Yang W M, Li X P 2020Addit. Manuf. 36 101568

    [8]

    Li X P, Roberts M P, O’Keeffe S, Sercombe T B 2016Materials & Design 112 217

    [9]

    Li X P, Kang C W, Huang H, Sercombe T B 2014Materials & Design 63 407

    [10]

    Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013Mater. Today 16 37

    [11]

    Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018Appl. Mater. Today 11 264

    [12]

    Nong X D, Zhou X L, Ren Y X 2019Opt. Laser Technol. 109 20

    [13]

    Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019J. Alloys Compd. 771 769

    [14]

    Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020Materials Characterization 162 110206

    [15]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015Mater. Design 86 703

    [16]

    Li N, Zhang J, Xing W, Ouyang D, Liu L 2018Mater. Design 143 285

    [17]

    Lei M X, Hu L, Wu B W, Long Q, Wei B B 2024Acta Phys. Sin. 73097102(in Chinese) [糜晓磊, 胡亮, 武博文, 龙强, 魏炳波2024物理学报73097102]

    [18]

    Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth J P 2014J. Manuf. Sci. Eng. 136 061026

    [19]

    Malý M, Koutný D, Pantělejev L, Pambaguian L, Paloušek D 2022J. Manuf. Processes 73 924

    [20]

    Mertens R, Dadbakhsh S, Humbeeck J V, Kruth J P 2018Procedia CIRP 74 5

    [21]

    Wang W H, Lin W H, Yang R, Wu Y N, Li J P, Zhang Z B, Zhai Z R 2022Mater. Design 213 110355

    [22]

    Xing W, Ouyang D, Li N, Liu L 2018Materials 11 1480

    [23]

    Li X P, Roberts M, Liu Y J, Kang C W, Huang H, Sercombe T B 2015Materials & Design 201565 1

    [24]

    Wang M Z, Lu S L, Wu S S, Chen X H, Guo W 2022J Mater Res Technol 20

    [25]

    Dong B, Zhou S X, Pan S P, Wang Y G, Qin J Y, Xing Y X 2024J Alloy Compd 626122770

    [26]

    Zhang Y, Liu H S, Mo J Y, Wang M Z, Chen Z, He Y Z, Yang W M, Tang C G 2018Comput. Mater. Sci. 150 62

    [27]

    Jiang Q, Liu H S, Li J Y, Yang D F, Zhang Y, Yang W M 2020Addit. Manuf. 34 101369

    [28]

    Bonny G, Pasianot R C, Castin N, Malerba L 2009Philosophical Magazine 89 3531

    [29]

    Stukowski A 2010Modelling Simul. Mater. Sci. Eng. 18 015012

    [30]

    Honeycutt J D, Andersen H C 1987J. Phys. Chem. 91 4950

    [31]

    Faken D, Jónsson H 1994Computational Materials Science 2 279

    [32]

    Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E 2008Acta Materialia 56 6264

    [33]

    Yang D F, Liu H S, Jiang Q, Jiang Y Y, Wang X, Yang W M 2022J. Non-cryst. Solids 582 121435

    [34]

    Wang H Z, Cheng Y H, Yang J Y, Liang X B 2023J. Non-cryst. Solids 602 122081

    [35]

    Wu W H, Ye S X, Wang R D, Zhang C, Zhang Y W, Lu X G 2023Journal of Materials Research and Technology 23 1609

    [36]

    Wang W H 2023Amphorous Matter (Vol. 1) (Beijing: Science Press) p408(in Chinese) [汪卫华2023非晶物质(第一卷)(北京:科学出版社)第408页]{专著}

    [37]

    Na M Y, Kim W C, Hong S H, Park S H, Kim K C, Kim W T, Kim D H, J Alloy Compd 2019788 5

    [38]

    Cui X, Zhang Q D, Li X Y, Zu F Q 2016 J Non-cryst. Solids 452 15

    [39]

    Li W, Liu J, Zhou Y, Wen S, Wei Q, Yan C, Shi Y 2016Scr. Mater. 118 13

    [40]

    Xu J J, Lin X, Guo P F, Hua Y L, Wen X L, Xue L, Liu J R, Huang W D, 2017 Materials Science and Engineering: A 69171-80

  • [1] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20221368
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, doi: 10.7498/aps.71.20212318
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.69.20200836
    [5] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, doi: 10.7498/aps.69.20191781
    [6] 文大东, 邓永和, 戴雄英, 吴安如, 田泽安. 钽过冷液体等温晶化的原子层面机制. 物理学报, doi: 10.7498/aps.69.20200665
    [7] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, doi: 10.7498/aps.66.227101
    [8] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, doi: 10.7498/aps.66.176104
    [9] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究. 物理学报, doi: 10.7498/aps.62.186101
    [10] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究. 物理学报, doi: 10.7498/aps.62.156102
    [11] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, doi: 10.7498/aps.62.036101
    [12] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, doi: 10.7498/aps.61.146101
    [13] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, doi: 10.7498/aps.60.046104
    [14] 李世彬, 吴志明, 李 伟, 于军胜, 蒋亚东, 廖乃镘. 氢化硅薄膜的晶化机理研究. 物理学报, doi: 10.7498/aps.57.7114
    [15] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.56.443
    [16] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, doi: 10.7498/aps.55.6673
    [17] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, doi: 10.7498/aps.54.2863
    [18] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, doi: 10.7498/aps.53.1930
    [19] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, doi: 10.7498/aps.52.2520
    [20] 戚泽明, 施朝淑, 王正, 魏亚光, 谢亚宁, 胡天斗, 李福利. 非晶和纳米ZrO2·Y2O3(15%)的X射线衍射与扩展X射线吸收精细结构研究. 物理学报, doi: 10.7498/aps.50.1318
计量
  • 文章访问数:  63
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-29

/

返回文章
返回