搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基板温度对激光选区熔化制备铁基非晶合金晶化的影响

姜晓月 黄志敏 王璇 张响 杨卫明 刘海顺

引用本文:
Citation:

基板温度对激光选区熔化制备铁基非晶合金晶化的影响

姜晓月, 黄志敏, 王璇, 张响, 杨卫明, 刘海顺
cstr: 32037.14.aps.74.20240662

Effects of substrate temperature on crystallization of Fe-based amorphous alloy prepared by selective laser melting

JIANG Xiaoyue, HUANG Zhimin, WANG Xuan, ZHANG Xiang, YANG Weiming, LIU Haishun
cstr: 32037.14.aps.74.20240662
PDF
HTML
导出引用
  • 激光选区熔化技术有望实现复杂形状非晶合金部件的制造, 但晶化现象难以避免. 基板是激光选区熔化装置的重要部件, 对打印件质量及微观结构有不容忽视的影响, 但关于其对打印样品影响的研究还不多见. 本文利用分子动力学模拟, 在原子尺度探究了Fe50Cu25Ni25非晶合金激光选区熔化过程中基板温度对晶化及原子团簇的影响. 研究发现, 基板温度低于750 K时, 面心立方(FCC)晶相结构的特征键对1421含量及相应的$ \left\langle{0, {\mathrm{ }}4, {\mathrm{ }}4, {\mathrm{ }}6}\right\rangle $面心立方团簇含量随基板温度升高而明显增加; 基板温度接近玻璃转变温度时, 键对和团簇的演变同时受玻璃形成能力、熔体和冷却速率等的共同影响. 本研究揭示了铁基非晶合金激光选区熔化过程中原子团簇随基板温度的演变及其原子尺度的晶化, 为理解与调控非晶晶化提供了新的思路.
    Selective laser melting (SLM) has potential to prepare complex shaped amorphous alloy parts, however, the almost inevitable crystallization makes it very difficult to obtain excellent performance parts. Most of previous studies focus on improving properties by optimizing parameters such as laser power, scanning speed, and scanning strategy. As is well known, the substrate is an important component in SLM devices, which directly supports and contacts the initial powder and melting pool, affecting the absorption and transfer of heat, the formation and cooling of the melting pool, and therefore exerts a significant influence on the quality and microstructure of printed parts. However, there is relatively little research on its influence. It is important and necessary to understand the influence of substrate temperature on crystallization behavior of Fe-based amorphous alloy during SLM process. Molecular dynamics (MD) simulations can provide direct evidence for the evolution of clusters and band pairs, which can help clarify the crystallization mechanism and alleviate the crystallization. In this work, the influence of substrate temperature on the crystallization and evolution of atomic clusters in Fe50Cu25Ni25 amorphous alloy during SLM is investigated on an atomic scale, using MD simulation under different substrate temperatures (300–900 K), laser power values (500–800 eV/ps), and scanning speeds (0.1–1.0 nm/ps). The research results show that when the substrate temperature is lower than 750 K, the content of characteristic bond pair 1421 and the corresponding $ \left\langle{0,{\mathrm{ }}4,{\mathrm{ }}4,{\mathrm{ }}6}\right\rangle $ cluster increase with the substrate temperature rising, thereby increasing face-centered cubic bond pair and cluster and promoting the crystallization. When the substrate temperature rises to a value close to the glass transition temperature, the evolution of bond pairs and clusters becomes complex, which is influenced by the collaborative and competitive effects, such as the ability to form glass, melting and cooling rate. This work reveals the evolution of atomic clusters and band pairs in the SLM process of Fe-based amorphous alloys, and the initiation of crystal phases at different substrate temperatures, providing new ideas for understanding and regulating crystallization.
      通信作者: 刘海顺, liuhaishun@cumt.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2021YFF0600500)和国家自然科学基金(批准号: 52371167)资助的课题.
      Corresponding author: LIU Haishun, liuhaishun@cumt.edu.cn
    • Funds: Project supported by the National Key Research & Development Program of China (Grant No. 2021YFF0600500) and the National Natural Science Foundation of China (Grant No. 52371167).
    [1]

    张建强, 秦彦军, 方铮, 范晓珍, 杨慧雅, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟 2022 物理学报 71 247501Google Scholar

    Zhang J Q, Qin Y J, Fang Z, Fan X Z, Yang H Y, Kuang F L, Zhai Y, Miao Y L, Zhao Z X, He J J, Ye H Q, Fang Y Z 2022 Acta Phys. Sin. 71 247501Google Scholar

    [2]

    Zou Y M, Qiu Z G, Zheng Z G, Wang G, Yan X C, Yin S, Liu M, Zeng D C 2021 Tribol. Int. 162 107112Google Scholar

    [3]

    Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131Google Scholar

    [4]

    余秀冬, 刘海顺, 薛琳, 张响, 杨卫明 2024 物理学报 73 098801Google Scholar

    Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 73 098801Google Scholar

    [5]

    Inoue A, Takeuchi A 2004 Mater. Sci. Eng. A 375 16Google Scholar

    [6]

    Li H S, Jiang Y Y, Yang D F, Jiang Q, Yang W M 2023 J. Mater. Res. Technol. 26 3070Google Scholar

    [7]

    Liu H S, Jiang Q, Huo J T, Zhang Y, Yang W M, Li X P 2020 Addit. Manuf. 36 101568Google Scholar

    [8]

    Li X P, Roberts M P, O’Keeffe S, Sercombe T B 2016 Mater. Des. 112 217Google Scholar

    [9]

    Li X P, Kang C W, Huang H, Sercombe T B 2014 Mater. Des. 63 407Google Scholar

    [10]

    Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013 Mater. Today 16 37Google Scholar

    [11]

    Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018 Appl. Mater. Today 11 264Google Scholar

    [12]

    Nong X D, Zhou X L, Ren Y X 2019 Opt. Laser Technol. 109 20Google Scholar

    [13]

    Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019 J. Alloys Compd. 771 769Google Scholar

    [14]

    Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020 Mater. Charact. 162 110206Google Scholar

    [15]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015 Mater. Des. 86 703Google Scholar

    [16]

    Li N, Zhang J, Xing W, Ouyang D, Liu L 2018 Mater. Des. 143 285Google Scholar

    [17]

    糜晓磊, 胡亮, 武博文, 龙强, 魏炳波 2024 物理学报 73 097102Google Scholar

    Mi X L, Hu L, Wu B W, Long Q, Wei B B 2024 Acta Phys. Sin. 73 097102Google Scholar

    [18]

    Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth J P 2014 J. Manuf. Sci. Eng. 136 061026Google Scholar

    [19]

    Malý M, Koutný D, Pantělejev L, Pambaguian L, Paloušek D 2022 J. Manuf. Processes 73 924Google Scholar

    [20]

    Mertens R, Dadbakhsh S, Humbeeck J V, Kruth J P 2018 Procedia CIRP 74 5Google Scholar

    [21]

    Wang W H, Lin W H, Yang R, Wu Y N, Li J P, Zhang Z B, Zhai Z R 2022 Mater. Des. 213 110355Google Scholar

    [22]

    Xing W, Ouyang D, Li N, Liu L 2018 Materials 11 1480Google Scholar

    [23]

    Li X P, Roberts M, Liu Y J, Kang C W, Huang H, Sercombe T B 2015 Mater. Des. 65 1Google Scholar

    [24]

    Wang M Z, Lu S L, Wu S S, Chen X H, Guo W 2022 J. Mater. Res. Technol. 20 3355Google Scholar

    [25]

    Dong B S, Zhou S X, Pan S P, Wang Y G, Qin J Y, Xing Y X 2024 J. Alloys Compd. 626 122770Google Scholar

    [26]

    Zhang Y, Liu H S, Mo J Y, Wang M Z, Chen Z, He Y Z, Yang W M, Tang C G 2018 Comput. Mater. Sci. 150 62Google Scholar

    [27]

    Jiang Q, Liu H S, Li J Y, Yang D F, Zhang Y, Yang W M 2020 Addit. Manuf. 34 101369Google Scholar

    [28]

    Bonny G, Pasianot R C, Castin N, Malerba L 2009 Philos. Mag. 89 3531Google Scholar

    [29]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [30]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [31]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [32]

    Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E 2008 Acta Mater. 56 6264Google Scholar

    [33]

    Yang D F, Liu H S, Jiang Q, Jiang Y Y, Wang X, Yang W M 2022 J. Non-Cryst. Solids 582 121435Google Scholar

    [34]

    Wang H Z, Cheng Y H, Yang J Y, Liang X B 2023 J. Non-Cryst. Solids 602 122081Google Scholar

    [35]

    Wu W H, Ye S X, Wang R D, Zhang C, Zhang Y W, Lu X G 2023 J. Mater. Res. Technol. 23 1609Google Scholar

    [36]

    汪卫华 2023 非晶物质(上卷) (北京: 科学出版社) 第408页

    Wang W H 2023 Amphorous Matter (Vol. 1) (Beijing: Science Press) p408

    [37]

    Na M Y, Kim W C, Hong S H, Park S H, Kim K C, Kim W T, Kim D H 2019 J. Alloys Compd. 788 5Google Scholar

    [38]

    Cui X, Zhang Q D, Li X Y, Zu F Q 2016 J. Non-Cryst. Solids 452 15Google Scholar

    [39]

    Li W, Liu J, Zhou Y, Wen S, Wei Q, Yan C, Shi Y 2016 Scr. Mater. 118 13Google Scholar

    [40]

    Xu J J, Lin X, Guo P F, Hua Y L, Wen X L, Xue L, Liu J R, Huang W D 2017 Mater. Sci. Eng. , A 691 71Google Scholar

  • 图 1  Fe50Cu25Ni25的玻璃转变温度(a)和熔点温度(b)

    Fig. 1.  Glass transition temperature (a) and melting point temperature (b) of Fe50Cu25Ni25.

    图 2  SLM 模拟体系示意图 (a) 透视图; (b) 正视图

    Fig. 2.  SLM simulation system diagram: (a) Perspective view; (b) front view.

    图 3  (a) 1421键对含量和(b)晶体及非晶键对含量随基板温度的变化

    Fig. 3.  Changes of (a) 1421 bond pair content (b) crystal and amorphous bond pairs with substrate temperature.

    图 4  不同扫描速率下基板温度对FCC团簇和冷却速率的影响 (a) 0.1 nm/ps; (b) 0.5 nm/ps; (c) 0.8 nm/ps; (d) 1.0 nm/ps

    Fig. 4.  Effects of substrate temperature on FCC clusters and cooling rate under different scanning speeds: (a) 0.1 nm/ps; (b) 0.5 nm/ps; (c) 0.8 nm/ps; (d) 1.0 nm/ps.

    图 5  熔池温度随基板温度的变化 (a) 300 K; (b) 450 K; (c) 600 K; (d) 750 K; (e) 900 K. (f) 熔体峰值温度、熔体停留时间和冷却速率随基板温度的变化

    Fig. 5.  Variation of the molten pool temperature with substrate temperatures: (a) 300 K; (b) 450 K; (c) 600 K; (d) 750 K; (e) 900 K. (f) Variation of the melt peak temperature, melting duration, and cooling rate.

    表 1  基板温度对样品晶体和非晶键对的影响

    Table 1.  Effects of substrate temperatures on crystal and amorphous bond pairs.

    样品 基板
    温度
    /K
    扫描
    速率
    /(nm·ps–1)
    激光
    能量密度/
    (J·mm–3)
    晶体
    键对含量
    /%
    非晶
    键对含量
    /%
    13000.139.262.116.4
    20.57.837.731.2
    30.84.933.431.8
    41.03.927.936.5
    54500.139.264.612.8
    60.57.840.327.2
    70.84.946.721.6
    81.03.934.230.4
    96000.139.264.918.4
    100.57.854.817.2
    110.84.949.718.4
    121.03.946.019.6
    137500.139.272.05.1
    140.57.854.016.5
    150.84.948.720.8
    161.03.961.613.0
    179000.139.265.75.7
    180.57.859.310.8
    190.84.943.522.6
    201.03.955.013.1
    下载: 导出CSV
  • [1]

    张建强, 秦彦军, 方铮, 范晓珍, 杨慧雅, 邝富丽, 翟耀, 苗艳龙, 赵梓翔, 何佳俊, 叶慧群, 方允樟 2022 物理学报 71 247501Google Scholar

    Zhang J Q, Qin Y J, Fang Z, Fan X Z, Yang H Y, Kuang F L, Zhai Y, Miao Y L, Zhao Z X, He J J, Ye H Q, Fang Y Z 2022 Acta Phys. Sin. 71 247501Google Scholar

    [2]

    Zou Y M, Qiu Z G, Zheng Z G, Wang G, Yan X C, Yin S, Liu M, Zeng D C 2021 Tribol. Int. 162 107112Google Scholar

    [3]

    Suryanarayana C, Inoue A 2013 Int. Mater. Rev. 58 131Google Scholar

    [4]

    余秀冬, 刘海顺, 薛琳, 张响, 杨卫明 2024 物理学报 73 098801Google Scholar

    Yu X D, Liu H S, Xue L, Zhang X, Yang W M 2024 Acta Phys. Sin. 73 098801Google Scholar

    [5]

    Inoue A, Takeuchi A 2004 Mater. Sci. Eng. A 375 16Google Scholar

    [6]

    Li H S, Jiang Y Y, Yang D F, Jiang Q, Yang W M 2023 J. Mater. Res. Technol. 26 3070Google Scholar

    [7]

    Liu H S, Jiang Q, Huo J T, Zhang Y, Yang W M, Li X P 2020 Addit. Manuf. 36 101568Google Scholar

    [8]

    Li X P, Roberts M P, O’Keeffe S, Sercombe T B 2016 Mater. Des. 112 217Google Scholar

    [9]

    Li X P, Kang C W, Huang H, Sercombe T B 2014 Mater. Des. 63 407Google Scholar

    [10]

    Pauly S, Löber L, Petters R, Stoica M, Scudino S, Kühn U, Eckert J 2013 Mater. Today 16 37Google Scholar

    [11]

    Mahbooba Z, Thorsson L, Unosson M, Skoglund P, West H, Horn T, Rock C, Vogli E, Harrysson O 2018 Appl. Mater. Today 11 264Google Scholar

    [12]

    Nong X D, Zhou X L, Ren Y X 2019 Opt. Laser Technol. 109 20Google Scholar

    [13]

    Żrodowski Ł, Wysocki B, Wróblewski R, Krawczyńska A, Adamczyk-Cieślak B, Zdunek J, Błyskun P, Ferenc J, Leonowicz M, Święszkowski W 2019 J. Alloys Compd. 771 769Google Scholar

    [14]

    Luo N, Scheitler C, Ciftci N, Galgon F, Fu Z, Uhlenwinkel V, Schmidt M, Körner C 2020 Mater. Charact. 162 110206Google Scholar

    [15]

    Jung H Y, Choi S J, Prashanth K G, Stoica M, Scudino S, Yi S, Kühn U, Kim D H, Kim K B, Eckert J 2015 Mater. Des. 86 703Google Scholar

    [16]

    Li N, Zhang J, Xing W, Ouyang D, Liu L 2018 Mater. Des. 143 285Google Scholar

    [17]

    糜晓磊, 胡亮, 武博文, 龙强, 魏炳波 2024 物理学报 73 097102Google Scholar

    Mi X L, Hu L, Wu B W, Long Q, Wei B B 2024 Acta Phys. Sin. 73 097102Google Scholar

    [18]

    Kempen K, Vrancken B, Buls S, Thijs L, Van Humbeeck J, Kruth J P 2014 J. Manuf. Sci. Eng. 136 061026Google Scholar

    [19]

    Malý M, Koutný D, Pantělejev L, Pambaguian L, Paloušek D 2022 J. Manuf. Processes 73 924Google Scholar

    [20]

    Mertens R, Dadbakhsh S, Humbeeck J V, Kruth J P 2018 Procedia CIRP 74 5Google Scholar

    [21]

    Wang W H, Lin W H, Yang R, Wu Y N, Li J P, Zhang Z B, Zhai Z R 2022 Mater. Des. 213 110355Google Scholar

    [22]

    Xing W, Ouyang D, Li N, Liu L 2018 Materials 11 1480Google Scholar

    [23]

    Li X P, Roberts M, Liu Y J, Kang C W, Huang H, Sercombe T B 2015 Mater. Des. 65 1Google Scholar

    [24]

    Wang M Z, Lu S L, Wu S S, Chen X H, Guo W 2022 J. Mater. Res. Technol. 20 3355Google Scholar

    [25]

    Dong B S, Zhou S X, Pan S P, Wang Y G, Qin J Y, Xing Y X 2024 J. Alloys Compd. 626 122770Google Scholar

    [26]

    Zhang Y, Liu H S, Mo J Y, Wang M Z, Chen Z, He Y Z, Yang W M, Tang C G 2018 Comput. Mater. Sci. 150 62Google Scholar

    [27]

    Jiang Q, Liu H S, Li J Y, Yang D F, Zhang Y, Yang W M 2020 Addit. Manuf. 34 101369Google Scholar

    [28]

    Bonny G, Pasianot R C, Castin N, Malerba L 2009 Philos. Mag. 89 3531Google Scholar

    [29]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [30]

    Honeycutt J D, Andersen H C 1987 J. Phys. Chem. 91 4950Google Scholar

    [31]

    Faken D, Jónsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [32]

    Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E 2008 Acta Mater. 56 6264Google Scholar

    [33]

    Yang D F, Liu H S, Jiang Q, Jiang Y Y, Wang X, Yang W M 2022 J. Non-Cryst. Solids 582 121435Google Scholar

    [34]

    Wang H Z, Cheng Y H, Yang J Y, Liang X B 2023 J. Non-Cryst. Solids 602 122081Google Scholar

    [35]

    Wu W H, Ye S X, Wang R D, Zhang C, Zhang Y W, Lu X G 2023 J. Mater. Res. Technol. 23 1609Google Scholar

    [36]

    汪卫华 2023 非晶物质(上卷) (北京: 科学出版社) 第408页

    Wang W H 2023 Amphorous Matter (Vol. 1) (Beijing: Science Press) p408

    [37]

    Na M Y, Kim W C, Hong S H, Park S H, Kim K C, Kim W T, Kim D H 2019 J. Alloys Compd. 788 5Google Scholar

    [38]

    Cui X, Zhang Q D, Li X Y, Zu F Q 2016 J. Non-Cryst. Solids 452 15Google Scholar

    [39]

    Li W, Liu J, Zhou Y, Wen S, Wei Q, Yan C, Shi Y 2016 Scr. Mater. 118 13Google Scholar

    [40]

    Xu J J, Lin X, Guo P F, Hua Y L, Wen X L, Xue L, Liu J R, Huang W D 2017 Mater. Sci. Eng. , A 691 71Google Scholar

  • [1] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [2] 张博佳, 安敏荣, 胡腾, 韩腊. 镁中位错和非晶作用机制的分子动力学模拟. 物理学报, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [3] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [4] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [5] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [6] 文大东, 邓永和, 戴雄英, 吴安如, 田泽安. 钽过冷液体等温晶化的原子层面机制. 物理学报, 2020, 69(19): 196101. doi: 10.7498/aps.69.20200665
    [7] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [8] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [9] 徐志欣, 李家云, 孙民华, 姚秀伟. 非晶纳米Ni500团簇等温晶化过程中的结构与动力学研究. 物理学报, 2013, 62(18): 186101. doi: 10.7498/aps.62.186101
    [10] 董垒, 王卫国. 纯铜[0 1 1]倾侧型非共格3晶界结构稳定性分子动力学模拟研究. 物理学报, 2013, 62(15): 156102. doi: 10.7498/aps.62.156102
    [11] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [12] 陈青, 王淑英, 孙民华. 纳米Cu颗粒等温晶化过程的分子动力学模拟研究. 物理学报, 2012, 61(14): 146101. doi: 10.7498/aps.61.146101
    [13] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究. 物理学报, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [14] 李世彬, 吴志明, 李 伟, 于军胜, 蒋亚东, 廖乃镘. 氢化硅薄膜的晶化机理研究. 物理学报, 2008, 57(11): 7114-7118. doi: 10.7498/aps.57.7114
    [15] 赵九洲, 刘 俊, 赵 毅, 胡壮麒. 压力对非晶铜形成影响的分子动力学模拟. 物理学报, 2007, 56(1): 443-445. doi: 10.7498/aps.56.443
    [16] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究. 物理学报, 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [17] 周 锋, 梁开明, 王国梁. 电场热处理条件下TiO2薄膜的晶化行为研究. 物理学报, 2005, 54(6): 2863-2867. doi: 10.7498/aps.54.2863
    [18] 于 威, 何 杰, 孙运涛, 朱海丰, 韩 理, 傅广生. 碳化硅薄膜脉冲激光晶化特性研究. 物理学报, 2004, 53(6): 1930-1934. doi: 10.7498/aps.53.1930
    [19] 文玉华, 朱 弢, 曹立霞, 王崇愚. 镍基单晶超合金Ni/Ni3Al晶界的分子动力学模拟. 物理学报, 2003, 52(10): 2520-2524. doi: 10.7498/aps.52.2520
    [20] 戚泽明, 施朝淑, 王正, 魏亚光, 谢亚宁, 胡天斗, 李福利. 非晶和纳米ZrO2·Y2O3(15%)的X射线衍射与扩展X射线吸收精细结构研究. 物理学报, 2001, 50(7): 1318-1323. doi: 10.7498/aps.50.1318
计量
  • 文章访问数:  269
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-10
  • 修回日期:  2024-11-12
  • 上网日期:  2024-11-29
  • 刊出日期:  2025-01-05

/

返回文章
返回