搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z = 118—120超重核α衰变性质的研究

邢凤竹 乐先凯 王楠 王艳召

引用本文:
Citation:

Z = 118—120超重核α衰变性质的研究

邢凤竹, 乐先凯, 王楠, 王艳召
cstr: 32037.14.aps.74.20240907

Research on α decay properties of superheavy nuclei with Z = 118–120

XING Fengzhu, LE Xiankai, WANG Nan, WANG Yanzhao
cstr: 32037.14.aps.74.20240907
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文通过考虑原子核的形变效应和引入α粒子预形成因子的解析表达式对统一裂变模型(unified fission model, UFM)进行改进. 通过考虑原子核形变效应得到了改进的UFM (improved UFM-1, IMUFM1), 在IMUFM1基础上引入α粒子预形成因子的解析表达式得到了进一步改进的UFM (improved UFM-2, IMUFM2). 利用UFM, IMUFM1和IMUFM2三个版本分别对$ Z \geqslant 92 $重核和超重核的α衰变半衰期进行了系统地计算. 通过计算理论值和实验值之间的平均偏差和标准偏差, 发现IMUFM1的精度比UFM的精度仅提高了2.45%, 而IMUFM2的精度却提高了32.09%. 接着, 通过有限力程小液滴模型(finite-range Droplet model-2012, FRDM2012), Weizsäcker-Skyrme-4 (WS4)和Koura-Tachibana-Uno-Yamada (KTUY) 3种质量模型分别提取了Z = 118—120同位素链的α衰变能, 并利用IMUFM1和IMUFM2计算了相应的α衰变半衰期. 通过观察半衰期随同位素链的演化, 发现不同质量模型预言的演化趋势是一致的, 而且在N = 178和N = 184处会出现转折点, 但不同的质量模型预言的α衰变半衰期会出现数量级的差异. 另外, 通过讨论α衰变和自发裂变之间的竞争, 发现N<186质量核区的超重核以α衰变为主. 最后, 结合上述3种核质量模型, 利用IMUFM1和IMUFM2讨论了296Og, 297119和298120 α衰变链的衰变模式, 发现WS4和KTUY两种质量模型的预言结果与实验结果一致. 尽管FRDM2012质量模型预言的288Fl, 285Nh 和 286Fl的衰变模式与实验结果有所差别, 但对于288Fl, IMUFM2的预言结果比IMUFM1更符合实验测量结果, 再次验证了IMUFM2的合理性和可靠性. 上述研究结果可为将来实验鉴别新核素提供理论依据.
    An unified fission model (UFM) has been improved by considering the nuclear deformation effect and introducing an analytical expression of preformation factor. The improved version of the UFM by taking into consideration the nuclear deformation effect is named IMUFM1. Based on the IMUFM1, the further improved version is termed IMUFM2, which incorporates an analytical expression of the preformation factor. Within the UFM, the IMUFM1 and the IMUFM2, the α decay half-lives of heavy and superheavy nuclei with $ Z \geqslant 92 $are systematically calculated. The calculated standard deviation between the calculation results and the experimental data shows that the accuracy of the IMUFM1 is improved by 2.45% compared with that of the UFM. The accuracy of the IMUFM2 will be further improved by 32.09% compared with that of the IMUFM1, which implies that the nuclear deformation effect and the preformation factor are both important in prediction. Then, the α decay half-lives of Z = 118–120 isotopes are predicted from the IMUFM1 and the IMUFM2 by inputting the α decay energy values that are extracted from the sinite-range droplet model (FRDM), the Weizsäcker-Skyrme-4 (WS4) model and the Koura-Tachibaba-Uno-Yamads (KTUY) formula, respectively. The observed evolution of the α decay half-lives indicates that the evolution trends obtained from the above-mentioned three mass models are consistent with each other and the shell effects occur at N = 178 and 184, but their orders of magnitude, obtained from different mass models, are different from each other. Meanwhile, the comparison of half-lives between α decay and spontaneous fission shows that the dominant decay modes of the superheavy nuclei with N < 186 are α decay. Finally, the decay modes of 296Og, 297119 and 298120 α decay chains are predicted within the IMUFM1 and the IMUFM2 by using these three mass models, showing that the predictions from the WS4 mass model and KTUY mass model are more consistent with the experimental measurements. Form the FRDM2012 mass model, the predictions of 288Fl, 285Nh and 286Fl within the IMUFM1 mass model are not consistent with the experimental measurements, however, the prediction of 288Fl from the IMUFM2 is good agreement with the experimental measurement, which once again verifies the rationality and reliability of the IMUFM2. This study may be helpful for identifying new nuclide in future experiments.
      通信作者: 王楠, wangnan@szu.edu.cn ; 王艳召, yanzhaowang09@126.com
    • 基金项目: 国家自然科学基金 (批准号: 12175151)和广东省基础与应用基础研究重大项目(批准号: 2021B0301030006)资助的课题.
      Corresponding author: WANG Nan, wangnan@szu.edu.cn ; WANG Yanzhao, yanzhaowang09@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.12175151) and the Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2021B0301030006).
    [1]

    Hofmann S, Munzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [2]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Katori K, Koura H, Kudo H, Ohnishi T, Ozawa A, Suda T, Sueki K, Tokanai F, Yamaguchi T, Yoneda A, Yoshida A 2004 J. Phys. Soc. Jpn. 73 2593Google Scholar

    [3]

    Morita K, Morimoto K, Kaji D, Haba H, Ozeki K, Kudou Y, Sumita T, Wakabayashi Y, Yoneda A, Tanaka K, Yamaki S, Sakai R, Akiyama T, Goto S, Hasebe H, Huang M, Huang T, Ideguchi E, Kasamatsu Y, Katori Y, Kariya Y, Kikunaga H, Koura H, Kudo H, Mashiko A, Mayama K, Mitsuoka S, Moriya T, Murakami M, Murayama H, Namai S, Ozawa A, Sato N, Sueki K, Takeyama M, Tokanai F, Yamaguchi T, Yoshida A 2012 Rev. Mod. Phys. 81 103201

    [4]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Yu S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502Google Scholar

    [5]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [6]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [7]

    Oganessian Y T, Utyonkov V K 2015 Nucl. Phys. A 944 62Google Scholar

    [8]

    Oganessian Y T, Sobiczewski A, Ter-akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [9]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603Google Scholar

    [10]

    Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Krupa L, Loktev T A, Smirnov S V, Zagrebaev V I, Äystö J, Trzaska W H, Rubchenya V A, Vardaci E, Stefanini A M, Cinausero M, Corradi L, Fioretto E, Mason P, Prete G F, Silvestri R, Beghini S, Montagnoli G, Scarlassara F, Hanappe F, Khlebnikov S V, Kliman J, Brondi A, Di Nitto A, Moro R, Gelli N, Szilner S 2010 Phys. Lett. B 686 227Google Scholar

    [11]

    Wang N, Zhao E G, Scheid W, Zhou S G 2012 Phys. Rev. C 85 041601Google Scholar

    [12]

    Li J X, Zhang H F 2022 Phys. Rev. C 106 034613Google Scholar

    [13]

    Li F, Zhu L, Wu Z H, Sun J, Guo C C 2018 Phys. Rev. C 98 014618Google Scholar

    [14]

    Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622Google Scholar

    [15]

    Varga K, Lovas R G, Liotta R J 1992 Phys. Rev. Lett. 69 37.

    [16]

    Wauters J, Bijnens N, Denooven P, Huyse M, Hwang H Y, Reusen G, von Schwarzenberg J, Van Duppen P, Kirchner R, Roeckl E 1994 Phys. Rev. Lett. 72 1329Google Scholar

    [17]

    Andeyev A N, Huyse M, Van Duppen P, et al. 2000 Nature 405 430Google Scholar

    [18]

    Khuyagbaatar J, Yakushev A, Dullmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schädel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward D E, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2014 Phys. Rev. Lett. 112 172501Google Scholar

    [19]

    Oganessian Y T, Utyonkov V K, Shumeiko M V, Abdullin F S, Adamian G G, Dmitriev S N, Ibadullayev D, Itkis M G, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Rogov I S, Sagaidak R N, Schlattauer L, Shubin V D, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Bublikova N S, Voronyuk M G, Sabelnikov A V, Bodrov A Y, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B 2024 Phys. Rev. C 109 054307

    [20]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [21]

    Gurney R W, Condon E U 1928 Nature 122 439Google Scholar

    [22]

    Malik S S, Gupts R K 1989 Phys. Rev. C 39 1992.Google Scholar

    [23]

    Buck B, Merchant A C, Perez S M 1993 At. Data Nucl. Data Tables 54 53Google Scholar

    [24]

    Mirea M 1996 Phys. Rev. C 54 302Google Scholar

    [25]

    任中洲, 许昌 2006 原子核物理评论 23 369

    Ren Z Z, Xu C 2006 Nucl. Phys. Rev. 23 369

    [26]

    Royer G 2000 J. Phys. G. Nucl. Part. Phys. 26 1149Google Scholar

    [27]

    Zhang H F, Royer G, Wang Y J, Dong J M, Zuo W, Li J Q 2009 Phys. Rev. C 80 057301Google Scholar

    [28]

    张海飞, 包小军, 王佳眉, 黄银, 李君清, 张鸿飞 2013 原子核物理评论 30 241Google Scholar

    Zhang H F, Bao X J, Wang J M, Huang Y, Li J Q, Zhang H F 2013 Nucl. Phys. Rev. 30 241Google Scholar

    [29]

    Zou Y T, Pan X, Liu H M, Wu X J, He B, Li X H 2021 Phys. Scr. 96 075301Google Scholar

    [30]

    张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛 2024 物理学报 73 062101Google Scholar

    Zhang K L, Han S X, Yue S J, Liu Z Y, Hu B T 2024 Acta. Phys. Sin. 73 062101Google Scholar

    [31]

    王艳召, 崔建坡, 刘军, 苏学斗 2017 原子能科学技术 51 1544Google Scholar

    Wang Y Z, Cui J P, Liu J, Su X D 2017 At. Energy Sci. Tech. 51 1544Google Scholar

    [32]

    Sobiczewski A, Patyk Z, Cwiok S 1989 Phys. Lett. B 224 279

    [33]

    Luo S, Qi L J, Zhang D M, He B, Chu P C, Li X H 2023 Eur. Phys. J A 59 125Google Scholar

    [34]

    Poenaru D N, Nagame Y, Gherghescu R A, Greiner W 2002 Phys. Rev. C 66 049902Google Scholar

    [35]

    Poenaru D N, Gherghescu R A, Carjan N 2007 Eur. Lett. 77 62001Google Scholar

    [36]

    Shin E, Lim Y, Hyun C H, Oh Y 2016 Phys. Rev. C 94 024320Google Scholar

    [37]

    Qian Y B, Ren Z Z 2012 Phys. Rev. C 85 027306Google Scholar

    [38]

    Sahu B, Paira R, Rath B 2013 Nucl. Phys. A 908 40Google Scholar

    [39]

    Akrawy D T, Ahmed A H 2019 Phys. Rev. C 100 044618Google Scholar

    [40]

    Xing F Z, Qi H, Cui J P, Gao Y H, Wang Y Z, Gu J Z, Yong G C 2022 Nucl. Phys. A 1028 122528Google Scholar

    [41]

    Balasubramaniam M, Gupta Raj K 1999 Phys. Rev. C 60 064316Google Scholar

    [42]

    Santhosh K P, Biju R K 2009 J. Phys. G. Nucl. Part. Phys. 36 015107Google Scholar

    [43]

    Balasubramaniam M, Arunachaiam N 2005 Phys. Rev. C 71 014603Google Scholar

    [44]

    Dong J M, Zhang H F, Zuo W, Li J Q 2010 Chin. Phys. C 34 182Google Scholar

    [45]

    Dong J M, Zhang H F, Li J Q, Scheid W 2009 Eur. Phys. J. A 41 197Google Scholar

    [46]

    Zhu T B, Hu B T, Zhang H F, Dong J M, Li Q J 2011 Commun. Theor. Phys. 55 307Google Scholar

    [47]

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2021 Chin. Phys. C 45 124105Google Scholar

    [48]

    Santhosh K P 2022 Phys. Rev. C 106 054604Google Scholar

    [49]

    Zhu D X, Liu H M, Xu Y Y, Zou Y T, Wu X J, Chu P C, Li X H 2022 Chin. Phys. C 46 044106Google Scholar

    [50]

    Zhu D X, Li M, Xu Y Y, Wu X J, He B, Li X H 2022 Phys. Scr. 97 095304Google Scholar

    [51]

    Zhang H F, Royer G 2008 Phys. Rev. C 77 054318Google Scholar

    [52]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2020 Phys. Rev. C 101 014301Google Scholar

    [53]

    Zhang S, Zhang Y L, Cui J P, Wang Y Z 2017 Phys. Rev. C 95 014311Google Scholar

    [54]

    Santhosh K P, Jose T A 2021 Phys. Rev. C 104 064604Google Scholar

    [55]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 物理学报 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta. Phys. Sin. 71 062301Google Scholar

    [56]

    Wang Y Z, Xing F Z, Cui J P, Gao Y H, Gu J Z 2023 Chin. Phys. C 47 084101Google Scholar

    [57]

    Qi L J, Zhang D M, Luo S, Zhang G Q, Chu P C, Wu X J, Li X H 2023 Phys. Rev. C 108 014325Google Scholar

    [58]

    Chandran Megha, Santhosh K P 2023 Phys. Rev. C 107 024614Google Scholar

    [59]

    Wang Y Z, Xing F Z, Zhang W H, Cui J Z, Gu J P 2024 Phys. Rev. C 110 064305Google Scholar

    [60]

    Nakada H, Sugiura K 2014 Prog. Theor. Exp. Phys. 2014 033D02

    [61]

    Thakur S, Kumar S, Kumar R 2013 Braz. J. Phys. 43 152Google Scholar

    [62]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [63]

    Brewer N T, Utyonkov V K, Rykaczewski K P, Oganessian Y T, Abdullin F S, Boll R A, Dean D J, Dmitriev S N, Ezold J G, Felker L K, Grzywacz R K, Itkis M G, Kovrizhnykh N D, McInturff D C, Miernik K, Owen G D, Polyakov A N, Popeko A G, Roberto J B, Sabel'nikov A V, Sagaidak R N, Shirokovsky I V, Shumeiko M V, Sims N J, Smith E H, Subbotin V G, Sukhov A M, Svirikhin A I, Tsyganov Y S, Van Cleve S M, Voinov A A, Vostokin G K, White C S, Hamilton J H, Stoyer M A 2018 Phys. Rev. C 98 024317Google Scholar

    [64]

    Bao X J 2019 Phys. Rev. C 100 011601(R

    [65]

    Sobiczewski A 2016 Phys. Rev. C 94 051302(R

    [66]

    Mohr P 2017 Phys. Rev. C 95 011302(R

    [67]

    Santhosh K P, Jost T A, Deepak N K 2021 Phys. Rev. C 103 064612Google Scholar

    [68]

    Nithya C, Santhosh K P 2023 Phys. Rev. C 108 014606Google Scholar

    [69]

    Blocki J, Randruo J, Swiatecki W J, Tsang C F 1977 Ann. Phys. 105 427Google Scholar

    [70]

    Bass R 1973 Phys. Lett. B 47 139Google Scholar

    [71]

    Bass R 1974 Nucl. Phys. A 231 45Google Scholar

    [72]

    Bass R 1977 Phys. Rev. Lett. 39 265

    [73]

    Reisdorf W 1994 J. Phys. G: Nucl. Part. Phys. 20 1297Google Scholar

    [74]

    Winther A 1995 Nucl. Phys. A 594 203Google Scholar

    [75]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [76]

    Wang M, Huang J W, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [77]

    Kondev F G, Wang M, Huang J W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [78]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [79]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109–110 1Google Scholar

    [80]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [81]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [82]

    Kirson M W 2008 Nuclear Phys. A 798 29Google Scholar

    [83]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [84]

    Goriely S 2015 Nucl. Phys. A 933 68Google Scholar

    [85]

    Zhang K Y, Cheoun M K, Choi Y B, Pooi S C, Dong J M, Dong Z H, Du X K, Geng L S, Ha E, He X T, Heo C, Ho M C, In E J, Kim S, Kim Y, Lee C H, Lee J, Li H X, Li Z P, Luo T P, Meng J, Mun M H, Niu Z M, Pan C, Papakonstantinou P, Shang X L, Shen C W, Shen G F, Sun W, Sun X X, Tam C K, Wang C, Wang X Z, Wong S H, Wu J W, Wu X H, Xia X W, Yan Y J, Yeung R W Y, Yiu T C, Zhang S Q, Zhang W, Zhang X Y, Zhao Q, Zhou S G 2022 At. Data Nucl. Data Tables 144 101488Google Scholar

    [86]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301Google Scholar

    [87]

    Swiatecki W J 1955 Phys. Rev. J. 100 937Google Scholar

    [88]

    Xu C, Ren Z Z 2005 Phys. Rev. C 71 014309Google Scholar

    [89]

    Ren Z Z, Xu C 2005 Nucl. Phys. A 759 64Google Scholar

    [90]

    Bao X J, Guo S Q, Zhang H F 2015 J. Phys. G. Nucl. Part. Phys. 42 085101Google Scholar

  • 图 1  $ {\log _{10}}r $值随中子数N的演化

    Fig. 1.  The values of log10r as functions of the neutron number N.

    图 2  294Og发生α衰变时的核-核相互作用势

    Fig. 2.  The nuclear-nuclear interaction potential in α decay of 294Og.

    图 3  α衰变和自发裂变的对数半衰期随中子数N的演化

    Fig. 3.  The logarithm half-lives of α decay and spontaneous fission as functions of the neutron number N.

    表 1  (10)式的拟合系数

    Table 1.  The fitting parameters of Eq. (10).

    偶-偶 其他
    系数 126 < N < 152 N > 152 126 < N < 152 N > 152
    a –0.3583 0 5.2940 0
    b 0.0298 –0.0099 0.0388 –0.0606
    c 0.0022 0.0382 8.7843×10–4 0.0214
    d 0.0017 0.0102 –0.0241 0.0042
    下载: 导出CSV

    表 2  $ Z \geqslant 92 $重核和超重核α衰变半衰期的理论值与实验值之间的平均偏差$ \overline \sigma $和标准偏差$ \sqrt {\overline {{\sigma ^2}} } $

    Table 2.  The average deviation $ \overline \sigma $and the standard deviation $ \sqrt {\overline {{\sigma ^2}} } $ between the calculated ones and the experimental data of the heavy and superheavy nuclei with $ Z \geqslant 92 $.

    模型$ \overline \sigma $$ \sqrt {\overline {{\sigma ^2}} } $
    总值(n = 178)偶-偶(n = 56)其他(n = 122)总值(n = 178)偶-偶(n = 56)其他(n = 122)
    UFM0.57600.66170.53670.70660.72920.6960
    IMUFM10.56190.68220.50670.68550.74340.6572
    IMUFM20.38160.22320.45440.53200.33900.6002
    下载: 导出CSV

    表 3  $ Z \geqslant 110 $超重核α衰变半衰期的实验值与理论值, 其中Qα值取自于文献[76], 实验半衰期和原子核的自旋宇称取自文献[77]

    Table 3.  The experimental and calculated α decay half-lives of superheavy nuclei with $ Z \geqslant 110 $. Here the Qα values taken from Ref. [76], and the experimental α decay half-lives and the nuclear spin parity taken from Ref. [77], respectively.

    母核 子核 Qα/MeV $ J_i^{\text{π}} $ $ J_j^{\text{π}} $ l $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Expt}}{.}}{\text{/s}} $ $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $
    UFM IMUFM1 IMUFM2
    267Ds 263Hs 11.78 3/2+# 3/2+# 0 –5.00 –4.956 –4.764 –4.295
    269Ds 265Hs 11.51 3/2+# 0 –3.638 –4.384 –4.194 –3.777
    270Ds 266Hs 11.117 0+ 0+ 0 –3.688 –3.479 –3.340 –3.602
    273Ds 269Hs 11.37 9/2+# 0 –3.620 –4.105 –3.934 –3.620
    272Rg 268Mt 11.197 0 –2.377 –3.377 –3.205 –2.783
    278Rg 274Mt 10.85 0 –2.097 –2.596 –2.403 –2.134
    279Rg 275Mt 10.53 0 –0.77 –1.794 –1.616 –1.373
    280Rg 276Mt 10.149 0 0.633 –0.786 –0.623 –0.405
    277Cn 273Ds 11.62 0 –3.102 –4.095 –3.910 –3.534
    281Cn 277Ds 10.43 0 –0.745 –1.212 –1.121 –0.847
    282Nh 278Rg 10.78 0 –0.854 –1.800 –1.753 –1.422
    284Nh 280Rg 10.28 0 –0.013 –0.492 –0.422 –0.142
    285Nh 281Rg 10.01 0 0.663 0.258 0.328 0.581
    286Nh 282Rg 9.79 0 1.079 0.891 0.911 1.139
    285Fl 281Cn 10.56 0 –0.678 –0.932 –0.883 –0.547
    286Fl 282Cn 10.36 0+ 0+ 0 –0.657 –0.390 –0.351 –0.836
    287Fl 283Cn 10.17 0+ 0 –0.292 0.130 0.168 0.453
    288Fl 284Cn 10.076 0+ 0+ 0 –0.185 0.386 0.272 –0.309
    289Fl 285Cn 9.95 0 0.322 0.731 0.627 0.860
    287Mc 283Nh 10.76 0 –1.222 –1.140 –1.107 –0.741
    288Mc 284Nh 10.65 0 –0.752 –0.861 –0.828 –0.487
    289Mc 285Nh 10.49 0 –0.387 –0.442 –0.408 –0.093
    290Mc 286Nh 10.41 0 –0.076 –0.232 –0.200 0.090
    290Lv 286Fl 11 0+ 0+ 0 –2.046 –1.458 –1.444 –1.846
    291Lv 287Fl 10.89 0 –1.585 –1.186 –1.172 –0.826
    292Lv 288Fl 10.791 0+ 0+ 0 –1.796 –0.940 –1.052 –1.551
    293Lv 289Fl 10.68 0 –1.155 –0.667 –0.737 –0.442
    293Ts 289Mc 11.32 0 –1.602 –1.973 –2.238 –1.861
    294Ts 290Mc 11.18 0 –1.155 –1.636 –1.881 –1.530
    294Og 290Lv 11.87 0+ 0+ 0 –3.155 –2.985 –3.110 –3.430
    下载: 导出CSV

    表 4  利用IMUFM2预言的Z = 118—120同位素链α衰变半衰期, Qα值分别取自FRDM2012[79], WS4[80]和KTUY[81]质量模型

    Table 4.  The predicted α decay half-lives of superheavy nuclei with Z = 118–120 isotopes within the IMUFM2 by inputting the Qα values that extracted from FRDM2012[79], WS4[80], and KTUY[81] mass tables, respectively.

    母核 FRDM2012 WS4 KTUY
    Qα/MeV $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ Qα/MeV $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ Qα/MeV $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $
    282Og 13.115 –5.234 13.494 –5.960 12.935 –4.877
    284Og 13.565 –6.311 13.227 –5.673 12.745 –4.711
    286Og 13.045 –5.346 12.915 –5.087 12.335 –3.873
    288Og 12.855 –5.081 12.616 –4.591 11.905 –3.035
    290Og 12.665 –4.786 12.601 –4.653 11.645 –2.523
    292Og 12.385 –4.301 12.240 –3.987 11.465 –2.194
    294Og 12.365 –4.382 12.198 –4.017 11.165 –1.571
    296Og 12.275 –4.335 11.752 –3.151 10.945 –1.148
    298Og 12.485 –4.901 12.182 –4.243 11.115 –1.705
    300Og 12.505 –5.062 11.956 –3.852 11.035 –1.617
    302Og 12.615 –5.407 12.041 –4.168 10.945 –1.504
    304Og 13.395 –7.080 13.122 –6.557 12.435 –5.146
    285119 14.055 –6.359 13.612 –5.553 13.085 –4.451
    287119 13.365 –5.366 13.278 –5.195 12.705 –4.041
    289119 13.465 –5.311 13.157 –4.716 12.455 –3.268
    291119 13.235 –4.941 13.048 –4.573 12.165 –2.705
    293119 12.915 –4.362 12.715 –3.949 11.985 –2.355
    295119 12.935 –4.477 12.758 –4.113 11.705 –1.774
    297119 12.895 –4.501 12.424 –3.512 11.285 –0.853
    299119 13.075 –4.929 12.764 –4.298 11.475 –1.389
    301119 13.075 –5.012 12.426 –3.664 11.345 –1.150
    303119 13.105 –5.141 12.416 –3.707 11.215 –0.887
    305119 13.855 –6.639 13.424 –5.828 12.815 –4.628
    288120 13.845 –6.523 13.725 –6.303 13.105 –5.110
    290120 13.745 –6.571 13.700 –6.488 12.835 –4.796
    292120 13.775 –6.215 13.467 –5.634 12.715 –4.125
    294120 13.485 –5.788 13.242 –5.315 12.495 –3.774
    296120 13.585 –6.103 13.343 –5.640 12.225 –3.306
    298120 13.235 –5.804 13.007 –5.345 11.625 –2.280
    300120 13.695 –6.572 13.319 –5.854 11.885 –2.784
    302120 13.545 –6.421 12.890 –5.125 11.795 –2.704
    304120 13.545 –6.529 12.763 –4.970 11.515 –2.135
    306120 14.275 –7.977 13.787 –7.108 13.225 –6.028
    下载: 导出CSV

    表 5  296Og, 297119和298120 α衰变链的衰变模式, 其中Qα值分别取自FRDM2012[79], WS4[80]和 KTUY[81]质量表

    Table 5.  Decay modes of 296Og, 297119 and 298120 α decay chains, here the Qα values taken from FRDM2012[79], WS4[80] , and KTUY[81] mass tables, respectively.

    母核 $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ FRDM2012 $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ WS4 $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ KTUY $ {\log _{10}}T_{{\text{1/2}}}^{{\text{Cal}}{.}}{\text{/s}} $ 衰变模式
    SF Qα/MeV IMUFM1 IMUFM2 Qα/MeV IMUFM1 IMUFM2 Qα/MeV IMUFM1 IMUFM2 FRDM2012 WS4 KTUY Expt.
    296Og 5.39 12.275 –3.919 –4.335 11.752 –2.735 –3.151 10.945 –0.732 –1.148 α(α) α(α) α(α)
    292Lv 5.34 10.815 –1.115 –1.614 11.127 –1.911 –2.410 10.335 0.195 –0.304 α(α) α(α) α(α) α
    288Fl 3.02 9.165 3.100 2.519 9.645 1.561 0.980 9.465 2.123 1.542 SF(α) α(α) α(α) α
    284Cn –2.15 8.955 3.281 2.617 9.544 1.375 0.712 9.225 2.385 1.721 SF(SF) SF(SF) SF(SF) SF
    297119 8.53 12.895 –4.940 –4.501 12.424 –3.951 –3.512 11.285 –1.291 –0.853 α(α) α(α) α(α)
    293Ts 8.28 11.395 –2.396 –2.019 11.622 –2.963 –2.586 10.725 –0.708 –0.331 α(α) α(α) α(α) α
    289Mc 7.12 10.085 0.731 1.046 10.296 0.129 0.444 10.005 0.966 1.281 α(α) α(α) α(α) α
    285Nh 3.04 9.125 3.075 3.328 9.810 0.917 1.171 9.555 1.693 1.946 SF(SF) α(α) α(α) α
    281Rg –1.89 9.215 2.128 2.320 9.758 0.455 0.647 9.785 0.374 0.566 SF(SF) SF(SF) SF(SF) SF
    298120 4.68 13.235 –5.567 –5.804 13.007 –5.108 –5.345 11.625 –2.043 –2.280 α(α) α(α) α(α)
    294Og 4.67 12.365 –4.062 –4.382 12.198 –3.698 –4.017 11.165 –1.252 –1.571 α(α) α(α) α(α) α
    290Lv 3.71 11.065 –1.610 –2.011 11.084 –1.657 –2.059 10.575 –0.323 –0.725 α(α) α(α) α(α) α
    286Fl 1.54 9.465 2.30 1.815 9.970 0.756 0.272 9.725 1.489 1.004 SF(SF) α(α) α(α) α
    282Cn –3.78 9.425 1.788 1.221 10.140 –0.331 –0.898 10.135 –0.317 –0.884 SF(SF) SF(SF) SF(SF) SF
    下载: 导出CSV
  • [1]

    Hofmann S, Munzenberg G 2000 Rev. Mod. Phys. 72 733Google Scholar

    [2]

    Morita K, Morimoto K, Kaji D, Akiyama T, Goto S, Haba H, Ideguchi E, Katori K, Koura H, Kudo H, Ohnishi T, Ozawa A, Suda T, Sueki K, Tokanai F, Yamaguchi T, Yoneda A, Yoshida A 2004 J. Phys. Soc. Jpn. 73 2593Google Scholar

    [3]

    Morita K, Morimoto K, Kaji D, Haba H, Ozeki K, Kudou Y, Sumita T, Wakabayashi Y, Yoneda A, Tanaka K, Yamaki S, Sakai R, Akiyama T, Goto S, Hasebe H, Huang M, Huang T, Ideguchi E, Kasamatsu Y, Katori Y, Kariya Y, Kikunaga H, Koura H, Kudo H, Mashiko A, Mayama K, Mitsuoka S, Moriya T, Murakami M, Murayama H, Namai S, Ozawa A, Sato N, Sueki K, Takeyama M, Tokanai F, Yamaguchi T, Yoshida A 2012 Rev. Mod. Phys. 81 103201

    [4]

    Oganessian Y T, Abdullin F S, Bailey P D, Benker D E, Bennett M E, Dmitriev S N, Ezold J G, Hamilton J H, Henderson R A, Itkis M G, Lobanov Y V, Mezentsev A N, Moody K J, Nelson S L, Polyakov A N, Porter C E, Ramayya A V, Riley F D, Roberto J B, Ryabinin M A, Rykaczewski K P, Sagaidak R N, Shaughnessy D A, Shirokovsky I V, Stoyer M A, Subbotin V G, Sudowe R, Sukhov A M, Tsyganov Yu S, Utyonkov V K, Voinov A A, Vostokin G K, Wilk P A 2010 Phys. Rev. Lett. 104 142502Google Scholar

    [5]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [6]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Gulbekian G G, Bogomolov S L, Gikal B N, Mezentsev A N, Iliev S, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Vostokin G K, Itkis M G, Moody K J, Patin J B, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A, Kenneally J M, Landrum J H, Wild J F, Lougheed R W 2006 Phys. Rev. C 74 044602Google Scholar

    [7]

    Oganessian Y T, Utyonkov V K 2015 Nucl. Phys. A 944 62Google Scholar

    [8]

    Oganessian Y T, Sobiczewski A, Ter-akopian G M 2017 Phys. Scr. 92 023003Google Scholar

    [9]

    Oganessian Y T, Utyonkov V K, Lobanov Y V, Abdullin F S, Polyakov A N, Sagaidak R N, Shirokovsky I V, Tsyganov Yu S, Voinov A A, Mezentsev A N, Subbotin V G, Sukhov A M, Subotic K, Zagrebaev V I, Dmitriev S N, Henderson R A, Moody K J, Kenneally J M, Landrum J H, Shaughnessy D A, Stoyer M A, Stoyer N J, Wilk P A 2009 Phys. Rev. C 79 024603Google Scholar

    [10]

    Kozulin E M, Knyazheva G N, Itkis I M, Itkis M G, Bogachev A A, Krupa L, Loktev T A, Smirnov S V, Zagrebaev V I, Äystö J, Trzaska W H, Rubchenya V A, Vardaci E, Stefanini A M, Cinausero M, Corradi L, Fioretto E, Mason P, Prete G F, Silvestri R, Beghini S, Montagnoli G, Scarlassara F, Hanappe F, Khlebnikov S V, Kliman J, Brondi A, Di Nitto A, Moro R, Gelli N, Szilner S 2010 Phys. Lett. B 686 227Google Scholar

    [11]

    Wang N, Zhao E G, Scheid W, Zhou S G 2012 Phys. Rev. C 85 041601Google Scholar

    [12]

    Li J X, Zhang H F 2022 Phys. Rev. C 106 034613Google Scholar

    [13]

    Li F, Zhu L, Wu Z H, Sun J, Guo C C 2018 Phys. Rev. C 98 014618Google Scholar

    [14]

    Zhang M H, Zhang Y H, Zou Y, Wang C, Zhu L, Zhang F S 2024 Phys. Rev. C 109 014622Google Scholar

    [15]

    Varga K, Lovas R G, Liotta R J 1992 Phys. Rev. Lett. 69 37.

    [16]

    Wauters J, Bijnens N, Denooven P, Huyse M, Hwang H Y, Reusen G, von Schwarzenberg J, Van Duppen P, Kirchner R, Roeckl E 1994 Phys. Rev. Lett. 72 1329Google Scholar

    [17]

    Andeyev A N, Huyse M, Van Duppen P, et al. 2000 Nature 405 430Google Scholar

    [18]

    Khuyagbaatar J, Yakushev A, Dullmann C E, Ackermann D, Andersson L L, Asai M, Block M, Boll R A, Brand H, Cox D M, Dasgupta M, Derkx X, Di Nitto A, Eberhardt K, Even J, Evers M, Fahlander C, Forsberg U, Gates J M, Gharibyan N, Golubev P, Gregorich K E, Hamilton J H, Hartmann W, Herzberg R D, Heßberger F P, Hinde D J, Hoffmann J, Hollinger R, Hübner A, Jäger E, Kindler B, Kratz J V, Krier J, Kurz N, Laatiaoui M, Lahiri S, Lang R, Lommel B, Maiti M, Miernik K, Minami S, Mistry A, Mokry C, Nitsche H, Omtvedt J P, Pang G K, Papadakis P, Renisch D, Roberto J, Rudolph D, Runke J, Rykaczewski K P, Sarmiento L G, Schädel M, Schausten B, Semchenkov A, Shaughnessy D A, Steinegger P, Steiner J, Tereshatov E E, Thörle-Pospiech P, Tinschert K, Torres De Heidenreich T, Trautmann N, Türler A, Uusitalo J, Ward D E, Wegrzecki M, Wiehl N, Van Cleve S M, Yakusheva V 2014 Phys. Rev. Lett. 112 172501Google Scholar

    [19]

    Oganessian Y T, Utyonkov V K, Shumeiko M V, Abdullin F S, Adamian G G, Dmitriev S N, Ibadullayev D, Itkis M G, Kovrizhnykh N D, Kuznetsov D A, Petrushkin O V, Podshibiakin A V, Polyakov A N, Popeko A G, Rogov I S, Sagaidak R N, Schlattauer L, Shubin V D, Solovyev D I, Tsyganov Y S, Voinov A A, Subbotin V G, Bublikova N S, Voronyuk M G, Sabelnikov A V, Bodrov A Y, Aksenov N V, Khalkin A V, Gan Z G, Zhang Z Y, Huang M H, Yang H B 2024 Phys. Rev. C 109 054307

    [20]

    Gamow G 1928 Z. Phys. 51 204Google Scholar

    [21]

    Gurney R W, Condon E U 1928 Nature 122 439Google Scholar

    [22]

    Malik S S, Gupts R K 1989 Phys. Rev. C 39 1992.Google Scholar

    [23]

    Buck B, Merchant A C, Perez S M 1993 At. Data Nucl. Data Tables 54 53Google Scholar

    [24]

    Mirea M 1996 Phys. Rev. C 54 302Google Scholar

    [25]

    任中洲, 许昌 2006 原子核物理评论 23 369

    Ren Z Z, Xu C 2006 Nucl. Phys. Rev. 23 369

    [26]

    Royer G 2000 J. Phys. G. Nucl. Part. Phys. 26 1149Google Scholar

    [27]

    Zhang H F, Royer G, Wang Y J, Dong J M, Zuo W, Li J Q 2009 Phys. Rev. C 80 057301Google Scholar

    [28]

    张海飞, 包小军, 王佳眉, 黄银, 李君清, 张鸿飞 2013 原子核物理评论 30 241Google Scholar

    Zhang H F, Bao X J, Wang J M, Huang Y, Li J Q, Zhang H F 2013 Nucl. Phys. Rev. 30 241Google Scholar

    [29]

    Zou Y T, Pan X, Liu H M, Wu X J, He B, Li X H 2021 Phys. Scr. 96 075301Google Scholar

    [30]

    张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛 2024 物理学报 73 062101Google Scholar

    Zhang K L, Han S X, Yue S J, Liu Z Y, Hu B T 2024 Acta. Phys. Sin. 73 062101Google Scholar

    [31]

    王艳召, 崔建坡, 刘军, 苏学斗 2017 原子能科学技术 51 1544Google Scholar

    Wang Y Z, Cui J P, Liu J, Su X D 2017 At. Energy Sci. Tech. 51 1544Google Scholar

    [32]

    Sobiczewski A, Patyk Z, Cwiok S 1989 Phys. Lett. B 224 279

    [33]

    Luo S, Qi L J, Zhang D M, He B, Chu P C, Li X H 2023 Eur. Phys. J A 59 125Google Scholar

    [34]

    Poenaru D N, Nagame Y, Gherghescu R A, Greiner W 2002 Phys. Rev. C 66 049902Google Scholar

    [35]

    Poenaru D N, Gherghescu R A, Carjan N 2007 Eur. Lett. 77 62001Google Scholar

    [36]

    Shin E, Lim Y, Hyun C H, Oh Y 2016 Phys. Rev. C 94 024320Google Scholar

    [37]

    Qian Y B, Ren Z Z 2012 Phys. Rev. C 85 027306Google Scholar

    [38]

    Sahu B, Paira R, Rath B 2013 Nucl. Phys. A 908 40Google Scholar

    [39]

    Akrawy D T, Ahmed A H 2019 Phys. Rev. C 100 044618Google Scholar

    [40]

    Xing F Z, Qi H, Cui J P, Gao Y H, Wang Y Z, Gu J Z, Yong G C 2022 Nucl. Phys. A 1028 122528Google Scholar

    [41]

    Balasubramaniam M, Gupta Raj K 1999 Phys. Rev. C 60 064316Google Scholar

    [42]

    Santhosh K P, Biju R K 2009 J. Phys. G. Nucl. Part. Phys. 36 015107Google Scholar

    [43]

    Balasubramaniam M, Arunachaiam N 2005 Phys. Rev. C 71 014603Google Scholar

    [44]

    Dong J M, Zhang H F, Zuo W, Li J Q 2010 Chin. Phys. C 34 182Google Scholar

    [45]

    Dong J M, Zhang H F, Li J Q, Scheid W 2009 Eur. Phys. J. A 41 197Google Scholar

    [46]

    Zhu T B, Hu B T, Zhang H F, Dong J M, Li Q J 2011 Commun. Theor. Phys. 55 307Google Scholar

    [47]

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2021 Chin. Phys. C 45 124105Google Scholar

    [48]

    Santhosh K P 2022 Phys. Rev. C 106 054604Google Scholar

    [49]

    Zhu D X, Liu H M, Xu Y Y, Zou Y T, Wu X J, Chu P C, Li X H 2022 Chin. Phys. C 46 044106Google Scholar

    [50]

    Zhu D X, Li M, Xu Y Y, Wu X J, He B, Li X H 2022 Phys. Scr. 97 095304Google Scholar

    [51]

    Zhang H F, Royer G 2008 Phys. Rev. C 77 054318Google Scholar

    [52]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2020 Phys. Rev. C 101 014301Google Scholar

    [53]

    Zhang S, Zhang Y L, Cui J P, Wang Y Z 2017 Phys. Rev. C 95 014311Google Scholar

    [54]

    Santhosh K P, Jose T A 2021 Phys. Rev. C 104 064604Google Scholar

    [55]

    邢凤竹, 崔建坡, 王艳召, 顾建中 2022 物理学报 71 062301Google Scholar

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2022 Acta. Phys. Sin. 71 062301Google Scholar

    [56]

    Wang Y Z, Xing F Z, Cui J P, Gao Y H, Gu J Z 2023 Chin. Phys. C 47 084101Google Scholar

    [57]

    Qi L J, Zhang D M, Luo S, Zhang G Q, Chu P C, Wu X J, Li X H 2023 Phys. Rev. C 108 014325Google Scholar

    [58]

    Chandran Megha, Santhosh K P 2023 Phys. Rev. C 107 024614Google Scholar

    [59]

    Wang Y Z, Xing F Z, Zhang W H, Cui J Z, Gu J P 2024 Phys. Rev. C 110 064305Google Scholar

    [60]

    Nakada H, Sugiura K 2014 Prog. Theor. Exp. Phys. 2014 033D02

    [61]

    Thakur S, Kumar S, Kumar R 2013 Braz. J. Phys. 43 152Google Scholar

    [62]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [63]

    Brewer N T, Utyonkov V K, Rykaczewski K P, Oganessian Y T, Abdullin F S, Boll R A, Dean D J, Dmitriev S N, Ezold J G, Felker L K, Grzywacz R K, Itkis M G, Kovrizhnykh N D, McInturff D C, Miernik K, Owen G D, Polyakov A N, Popeko A G, Roberto J B, Sabel'nikov A V, Sagaidak R N, Shirokovsky I V, Shumeiko M V, Sims N J, Smith E H, Subbotin V G, Sukhov A M, Svirikhin A I, Tsyganov Y S, Van Cleve S M, Voinov A A, Vostokin G K, White C S, Hamilton J H, Stoyer M A 2018 Phys. Rev. C 98 024317Google Scholar

    [64]

    Bao X J 2019 Phys. Rev. C 100 011601(R

    [65]

    Sobiczewski A 2016 Phys. Rev. C 94 051302(R

    [66]

    Mohr P 2017 Phys. Rev. C 95 011302(R

    [67]

    Santhosh K P, Jost T A, Deepak N K 2021 Phys. Rev. C 103 064612Google Scholar

    [68]

    Nithya C, Santhosh K P 2023 Phys. Rev. C 108 014606Google Scholar

    [69]

    Blocki J, Randruo J, Swiatecki W J, Tsang C F 1977 Ann. Phys. 105 427Google Scholar

    [70]

    Bass R 1973 Phys. Lett. B 47 139Google Scholar

    [71]

    Bass R 1974 Nucl. Phys. A 231 45Google Scholar

    [72]

    Bass R 1977 Phys. Rev. Lett. 39 265

    [73]

    Reisdorf W 1994 J. Phys. G: Nucl. Part. Phys. 20 1297Google Scholar

    [74]

    Winther A 1995 Nucl. Phys. A 594 203Google Scholar

    [75]

    Wong C Y 1973 Phys. Rev. Lett. 31 766Google Scholar

    [76]

    Wang M, Huang J W, Kondev F G, Audi G, Naimi S 2021 Chin. Phys. C 45 030003Google Scholar

    [77]

    Kondev F G, Wang M, Huang J W, Naimi S, Audi G 2021 Chin. Phys. C 45 030001Google Scholar

    [78]

    Möller P, Nix J R, Myers W D, Swiatecki W J 1995 At. Data Nucl. Data Tables 59 185Google Scholar

    [79]

    Möller P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109–110 1Google Scholar

    [80]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [81]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [82]

    Kirson M W 2008 Nuclear Phys. A 798 29Google Scholar

    [83]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [84]

    Goriely S 2015 Nucl. Phys. A 933 68Google Scholar

    [85]

    Zhang K Y, Cheoun M K, Choi Y B, Pooi S C, Dong J M, Dong Z H, Du X K, Geng L S, Ha E, He X T, Heo C, Ho M C, In E J, Kim S, Kim Y, Lee C H, Lee J, Li H X, Li Z P, Luo T P, Meng J, Mun M H, Niu Z M, Pan C, Papakonstantinou P, Shang X L, Shen C W, Shen G F, Sun W, Sun X X, Tam C K, Wang C, Wang X Z, Wong S H, Wu J W, Wu X H, Xia X W, Yan Y J, Yeung R W Y, Yiu T C, Zhang S Q, Zhang W, Zhang X Y, Zhao Q, Zhou S G 2022 At. Data Nucl. Data Tables 144 101488Google Scholar

    [86]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301Google Scholar

    [87]

    Swiatecki W J 1955 Phys. Rev. J. 100 937Google Scholar

    [88]

    Xu C, Ren Z Z 2005 Phys. Rev. C 71 014309Google Scholar

    [89]

    Ren Z Z, Xu C 2005 Nucl. Phys. A 759 64Google Scholar

    [90]

    Bao X J, Guo S Q, Zhang H F 2015 J. Phys. G. Nucl. Part. Phys. 42 085101Google Scholar

  • [1] 夏金戈, 李伟峰, 方基宇, 牛中明. 原子核β衰变寿命经验公式. 物理学报, 2024, 73(6): 062301. doi: 10.7498/aps.73.20231653
    [2] 刘超, 刘世龙, 杨毅, 冯晶, 李昱兆. 252Cf自发裂变K X射线发射与动能-电荷关系. 物理学报, 2024, 73(14): 142501. doi: 10.7498/aps.73.20240563
    [3] 张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛. 强激光场对原子核α衰变的影响. 物理学报, 2024, 73(6): 062101. doi: 10.7498/aps.73.20231627
    [4] 何铁, 肖军, 安力, 阳剑, 郑普. 基于裂变γ标识技术的瞬发裂变中子谱测量新方法. 物理学报, 2018, 67(21): 212501. doi: 10.7498/aps.67.20180563
    [5] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析. 物理学报, 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [6] 张小东, 邱孟通, 张建福, 欧阳晓平, 张显鹏, 陈亮. 一种基于4He气闪烁体的裂变中子探测器. 物理学报, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [7] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, 2008, 57(3): 1569-1575. doi: 10.7498/aps.57.1569
    [8] 贾 飞, 徐瑚珊, 郑 川, 樊瑞睿, 张雪荧, 李君清, W. Scheid. 基于双核模型对超重元素合成机制的研究. 物理学报, 2007, 56(4): 2047-2052. doi: 10.7498/aps.56.2047
    [9] 贾 飞, 徐瑚珊, 黄天衡, 袁小华, 张宏斌, 李君清, W.Scheid. 基于双核模型对准裂变产物质量分布的研究. 物理学报, 2007, 56(3): 1347-1352. doi: 10.7498/aps.56.1347
    [10] 庆承瑞, 何祚庥. 氚核β衰变谱形的原子效应修正和中微子质量的测定. 物理学报, 1982, 31(5): 654-659. doi: 10.7498/aps.31.654
    [11] 罗辽复, 陆埮. 奇异粒子的非轻子衰变和层子模型. 物理学报, 1975, 24(2): 105-114. doi: 10.7498/aps.24.105
    [12] 黄胜年, 陈进贵, 韩洪银. U238自发裂变瞬时中子数目几率分布. 物理学报, 1974, 23(1): 46-51. doi: 10.7498/aps.23.46
    [13] 王豫生, 许谨诚. Pu240自发裂变放出瞬时中子数目的几率分布. 物理学报, 1974, 23(1): 38-45. doi: 10.7498/aps.23.38
    [14] 喻传赞, 郭建中. 裂变统计理论存在的问题. 物理学报, 1966, 22(1): 111-114. doi: 10.7498/aps.22.111
    [15] 卓益忠, 李泽清, 李明寿. 原子核的对相互作用对裂变碎块角分布的影响. 物理学报, 1966, 22(2): 136-145. doi: 10.7498/aps.22.136
    [16] 叶宣化, 王德焴. 关于裂变中子谱的进一步研究. 物理学报, 1965, 21(3): 546-559. doi: 10.7498/aps.21.546
    [17] 卓益忠, 李泽清. 裂变碎块角分布与鞍点结构. 物理学报, 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
    [18] 冯锡璋. 偶偶核的自裂变势垒厚度. 物理学报, 1964, 20(9): 938-939. doi: 10.7498/aps.20.938
    [19] 张历宁, 安瑛, 陈庭金, 戴元本. 复合模型和∑的四体衰变. 物理学报, 1962, 18(5): 264-271. doi: 10.7498/aps.18.264
    [20] 谢宽仲, 王朝俊, 朱善根, 郑林生. Gd159的衰变——稀土元素大变形核的激发能级的研究(Ⅱ). 物理学报, 1961, 17(9): 411-424. doi: 10.7498/aps.17.411
计量
  • 文章访问数:  277
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-30
  • 修回日期:  2025-03-27
  • 上网日期:  2025-04-24
  • 刊出日期:  2025-06-05

/

返回文章
返回