搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火温度对磁控溅射掺锡氧化镓薄膜特性及其日盲光电探测器性能的影响

许怡红 范伟航 王尘

引用本文:
Citation:

退火温度对磁控溅射掺锡氧化镓薄膜特性及其日盲光电探测器性能的影响

许怡红, 范伟航, 王尘
cstr: 32037.14.aps.74.20240972

Influence of annealing temperature on the performance of radio frequency magnetron sputtered Sn-doped Ga2O3 films and its solar-blind photodetector

XU Yihong, FAN Weihang, WANG Chen
cstr: 32037.14.aps.74.20240972
PDF
HTML
导出引用
  • 本文采用射频磁控溅射在蓝宝石衬底上室温下制备了非晶掺锡氧化镓薄膜, 而后在氮气氛围下进行不同温度(400—800 ℃)退火, 并基于退火前后薄膜制备了相应的日盲光电探测器, 探究退火温度对薄膜特性及器件性能的影响规律. 研究结果表明: 非晶掺锡氧化镓薄膜在700 ℃退火后开始出现氧化镓β相结晶, 且薄膜中晶格氧以及Sn4+离子比例随退火温度的升高而增大, 说明薄膜质量升高, 导电性增强. 然而, 随着退火温度升高至800 ℃时, 晶格氧以及Sn4+离子比例下降, 薄膜的质量及导电特性变差, 这可能归因于薄膜中Sn表面偏析以及Al从衬底中扩散进入薄膜. 综上, 薄膜的质量及其导电特性对掺锡氧化镓日盲探测器性能起到调控作用, 当退火温度为700 ℃, 器件获得最优的光电性能: 暗电流低至89.97 pA, 响应度为18.4 mA/W, 光暗电流比可达1264, 上升/下降时间低至0.93 s/0.87 s.
    In this study, Sn-doped Ga2O3 thin films are prepared on sapphire substrate by radio frequency magnetron sputtering at ambient temperature, and then annealed at different temperatures (400–800 ℃) in nitrogen atmosphere. The corresponding metal-semiconductor-metal (MSM) solar blind photodetectors (PDs) are prepared based on those films before and after annealing to explore the influence of annealing temperature on the characteristics of the films and device properties. The results show that the as-deposited Sn-doped Ga2O3 film displays amorphous structure. With the increase of annealing temperature, the proportion of OL, Ga3+ and Sn4+ ions in the film increase, and the band gap of the film decreases slightly, indicating that the conductivity of the film is enhanced and the quality of the film is improved. When the annealing temperature increases to 700 ℃, the β-Ga2O3 (${\bar 402} $) crystal surface diffraction peak appeares, indicating that the film begins to crystallize. As the annealing temperature increases to 800 ℃, the proportion of OL, Ga3+ and Sn4+ decreases, and the quality and conductive properties of the film deteriorate, which may be attributed to Sn surface segregation and Al diffusion into the film from the substrate. In addition, the average particle size and surface roughness of the film surface increase with annealing temperature increasing, which is consistent with the changing trend of film characteristics. Then, based on Sn-doped Ga2O3 thin films before and after annealing, the MSM solar blind PDs are prepared to explore the influence of annealing temperature on device performance. The quality of the film and its conductive characteristics play a role in regulating the performance of Sn-doped Ga2O3 solar blind PD. The optimal device performance can be obtained when the annealing temperature is 700 ℃, with a low dark current of 89.97 pA, a responsivity of 18.4 mA/W, a light-dark current up to 1264, and the rise/fall time of 0.93 s/0.87 s. In summary, the annealing temperature has an important effect on the characteristics of Sn-doped Ga2O3 films and the performance of solar blind PDs, which has certain guiding significance for the preparation of high-quality Sn-doped Ga2O3 films and high-performance solar blind PDs.
      通信作者: 王尘, chenwang@xmut.edu.cn
    • 基金项目: 厦门市自然科学基金(批准号: 3502Z202373061)、福建省自然科学基金(批准号: 2023J011459)、国家自然科学基金青年基金(批准号: 61904155)、福建省教育厅科技计划(批准号: JAT200484)和福建省科学技术协会资助的课题.
      Corresponding author: WANG Chen, chenwang@xmut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Xiamen, China (Grant No. 3502Z202373061), the Natural Science Foundation of Fujian Province, China (Grant No. 2023J011459), the National Natural Science Foundation of China (Grant No. 61904155), the Science and Technology Project of Fujian Provincial Department of Education, China (Grant No. JAT200484), and the Association for Science and Technology of Fujian Province, China.
    [1]

    Pearton S, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Express 5 011301

    [2]

    Wang C, Fan W H, Cao R J, et al. 2024 Vacuum 225 113246Google Scholar

    [3]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Physica B 405 3899Google Scholar

    [4]

    Kudou J, Funasaki S, Takahara M, et al. 2012 Materials Science Forum. Trans Tech Publications Ltd 725 269

    [5]

    Vega E, Isukapati S B, Oder T N 2021 J. Vac. Sci. Technol. A 39 033412Google Scholar

    [6]

    Lee S Y, Kang H C 2018 Jpn. J. Appl. Phys. 57 01AE02Google Scholar

    [7]

    Li L J, Li C K, Wang S Q, Lu Q, Jia Y F, Chen H F 2023 J. Semicond. 44 062805Google Scholar

    [8]

    王尘, 张宇超, 范伟航, 李世韦, 张小英, 林海军, 连水养, 朱文章 2022 光学学报 42 0831001Google Scholar

    Wang C, Zhang Y C, Fan W H, Li S W, Zhang X Y, Lin H J, Lien S Y, Zhu W Z 2022 Acta Opt. Sin. 42 0831001Google Scholar

    [9]

    Dorneles L S, O’Mahony D, Fitzgerald C B, McGee F, Venkatesan M, Stanca I, Lunney J G, Coey J M D 2005 Appl. Surf. Sci. 248 406Google Scholar

    [10]

    Schurig P, Couturier M, Becker M, Polity A, Klar P J 2019 Phys. Status Solidi A. 216 1900385Google Scholar

    [11]

    Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar

    [12]

    Joshi G, Chauhan Y S, Verma A 2021 J. Alloy. Compd. 883 160799Google Scholar

    [13]

    Wang C, Li S W, Zhang Y C, Fan W H, Lin H J, Wuu D S, Lien S Y, Zhu W Z 2022 Vacuum 202 111176Google Scholar

    [14]

    Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H, Tang W H 2017 J. Electronic Mater. 46 2366Google Scholar

    [15]

    Spencer J A, Mock A L, Jacobs A G, Schubert M, Zhang Y H, Tadjer M J 2022 Appl. Phys. Rev. 9 011315Google Scholar

    [16]

    Khan A F, Mehmood M, Rana A M, Bhatti M T 2009 Appl. Surf. Sci. 255 8562Google Scholar

    [17]

    Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar

    [18]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [19]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [20]

    Blumenschein N, Kadlec C, Romanyuk O, Paskova T, Muth J F, Kadlec F 2020 J. Appl. Phys. 127 165702Google Scholar

    [21]

    Singh R, Lenka T R, Panda D K, et al. 2020 Mat. Sci. Semicon. Proc. 119 105216Google Scholar

    [22]

    Nie Y Y, Jiao S J, Meng F X, Lu H L, Wang D B, Li L, Gao S Y, Wang J Z, Wang X H 2019 J. Alloy. Compd. 798 568Google Scholar

    [23]

    Kuznetsov M V, Safonov A V 2023 Mater. Chem. Phys. 302 127739Google Scholar

    [24]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [25]

    Gutierrez G, Sundin E M, Nalam P G, et al. 2021 J. Phys. Chem. C 125 20468Google Scholar

    [26]

    Korhonen E, Tuomisto F, Bierwagen O, Speck J S, Galazka Z 2014 Phys. Rev. B 90 245307Google Scholar

  • 图 1  Sn掺杂Ga2O3薄膜退火前后X射线衍射图

    Fig. 1.  XRD diffraction property of Sn-doped Ga2O3 films annealed at various temperatures.

    图 2  退火前后Sn掺杂Ga2O3薄膜的XPS图谱 (a) 全谱图; (b) 元素比例

    Fig. 2.  (a) XPS survey spectrum, (b) atomic percent of O, Ga, C, and Sn of Sn-doped Ga2O3 films annealed at various temperatures.

    图 3  Sn掺杂Ga2O3薄膜退火前后的XPS核心能谱图 (a) O 1s, (b) Ga 3d, (c) Sn 3d; (d)晶格氧OL/(OL+ONL)的比例; (e) Ga3+/(Ga3++Ga+)比例; (f) Sn4+/(Sn4++Sn2+)比例

    Fig. 3.  High-resolution XPS spectra and its fitting spectra of (a) O 1s, (b) Ga 3d, and (c) Sn 3d; the OL proportion (d), Ga3+ ratio (e) and Sn4+ percentage (f) of the films annealed at various temperatures.

    图 4  Sn掺杂Ga2O3薄膜的SIMS图 (a) 未退火; (b) 800 ℃退火后

    Fig. 4.  SIMS data of the Sn-doped Ga2O3 films: (a) before and (b) after 800 ℃ annealing.

    图 5  退火前后Sn掺杂Ga2O3薄膜的FESEM, AFM及颗粒尺寸统计图 (a) 未退火; (b)—(f) 400—800 ℃退火后

    Fig. 5.  The FESEM, AFM, and cluster size distribution pictures of the Sn-doped Ga2O3 films annealed at different temperatures: (a) As-dep; (b)–(f) after 400–800 ℃ annealing.

    图 6  退火前后Sn掺杂Ga2O3薄膜 (a)透射光谱, 插图为(αhν)2的Tauc图; (b)光学带隙随退火温度变化曲线

    Fig. 6.  (a) The transmittance as well as Tauc plot of (αhν)2 versus (inset) spectra and (b) optical bandgap of the Sn-doped Ga2O3 films for varying annealing temperatures.

    图 7  不同退火温度下Sn掺杂Ga2O3薄膜的载流子浓度、电阻率和迁移率

    Fig. 7.  Carrier concentration, resistivity, and hall mobility of Sn-doped Ga2O3 films with different annealing temperatures.

    图 8  不同退火温度下Sn掺杂Ga2O3日盲光电探测器 (a) 暗电流, 插图为光学显微镜下器件的俯视图; (b) 光电流; (c) 瞬态响应

    Fig. 8.  (a) The dark current-voltage curves, the inset is the physical top-view of photodetectors; (b) the photocurrent–voltage curves; (c) the transient response (I-t) curves of photodetectors under different annealing temperature.

    表 1  磁控溅射Sn掺杂Ga2O3薄膜工艺及退火参数

    Table 1.  Growth and annealing parameters of the sputtered Sn-doped Ga2O3 films.

    参数
    背景压力/Torr 5×10–7
    工作压力/Torr 9×10–3
    溅射功率/W 500
    气体总流量/SCCM 40
    氧流量比[O2/(O2+Ar)]/% 1.0
    沉积温度/℃ 室温
    薄膜厚度/nm ~102
    退火气氛和时间 N2气体和2 h
    退火温度/℃ As-dep., 400, 500, 600, 700, 800
    注: SCCM为体积流量单位(standard cubic centimeter per minute).
    下载: 导出CSV

    表 2  退火前后Sn掺杂Ga2O3探测器的性能参数

    Table 2.  Performance of the Sn-doped Ga2O photodetectors before and after annealing.

    退火温度/℃ 暗电流/pA 光电流/nA 光暗>电流比 响应度/(mA·W–1) 上升时间/s 下降时间/s
    As-dep. 1.10 0.94 854.5 0.15 1.61 1.02
    400 23.33 22.05 945.14 3.57 2.28 3.54
    500 63.85 66.73 1045.11 10.8 1.43 1.34
    600 80.28 89.65 1116.72 14.5 1.03 0.98
    700 89.97 113.74 1264.20 18.4 0.93 0.87
    800 1.14 0.09 82.46 0.02 1.12 17.36
    下载: 导出CSV
  • [1]

    Pearton S, Yang J, Cary IV P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Express 5 011301

    [2]

    Wang C, Fan W H, Cao R J, et al. 2024 Vacuum 225 113246Google Scholar

    [3]

    Zhang Y J, Yan J L, Zhao G, Xie W F 2010 Physica B 405 3899Google Scholar

    [4]

    Kudou J, Funasaki S, Takahara M, et al. 2012 Materials Science Forum. Trans Tech Publications Ltd 725 269

    [5]

    Vega E, Isukapati S B, Oder T N 2021 J. Vac. Sci. Technol. A 39 033412Google Scholar

    [6]

    Lee S Y, Kang H C 2018 Jpn. J. Appl. Phys. 57 01AE02Google Scholar

    [7]

    Li L J, Li C K, Wang S Q, Lu Q, Jia Y F, Chen H F 2023 J. Semicond. 44 062805Google Scholar

    [8]

    王尘, 张宇超, 范伟航, 李世韦, 张小英, 林海军, 连水养, 朱文章 2022 光学学报 42 0831001Google Scholar

    Wang C, Zhang Y C, Fan W H, Li S W, Zhang X Y, Lin H J, Lien S Y, Zhu W Z 2022 Acta Opt. Sin. 42 0831001Google Scholar

    [9]

    Dorneles L S, O’Mahony D, Fitzgerald C B, McGee F, Venkatesan M, Stanca I, Lunney J G, Coey J M D 2005 Appl. Surf. Sci. 248 406Google Scholar

    [10]

    Schurig P, Couturier M, Becker M, Polity A, Klar P J 2019 Phys. Status Solidi A. 216 1900385Google Scholar

    [11]

    Wu J W, Mi W, Yang Z C, Chen Y T, Li P J, Zhao J S, Zhang K L, Zhang X C, Luan C B 2019 Vacuum 167 6Google Scholar

    [12]

    Joshi G, Chauhan Y S, Verma A 2021 J. Alloy. Compd. 883 160799Google Scholar

    [13]

    Wang C, Li S W, Zhang Y C, Fan W H, Lin H J, Wuu D S, Lien S Y, Zhu W Z 2022 Vacuum 202 111176Google Scholar

    [14]

    Zhao X L, Cui W, Wu Z P, Guo D Y, Li P G, An Y H, Li L H, Tang W H 2017 J. Electronic Mater. 46 2366Google Scholar

    [15]

    Spencer J A, Mock A L, Jacobs A G, Schubert M, Zhang Y H, Tadjer M J 2022 Appl. Phys. Rev. 9 011315Google Scholar

    [16]

    Khan A F, Mehmood M, Rana A M, Bhatti M T 2009 Appl. Surf. Sci. 255 8562Google Scholar

    [17]

    Ghose S, Rahman S, Hong L, Rojas-Ramirez J S, Jin H, Park K, Klie R, Droopad R 2017 J. Appl. Phys. 122 095302Google Scholar

    [18]

    Qian L X, Liu H Y, Zhang H F, Wu Z H, Zhang W L 2019 Appl. Phys. Lett. 114 113506Google Scholar

    [19]

    Zhang J, Shi J, Qi D C, Chen L, Zhang K H L 2020 APL Mater. 8 020906Google Scholar

    [20]

    Blumenschein N, Kadlec C, Romanyuk O, Paskova T, Muth J F, Kadlec F 2020 J. Appl. Phys. 127 165702Google Scholar

    [21]

    Singh R, Lenka T R, Panda D K, et al. 2020 Mat. Sci. Semicon. Proc. 119 105216Google Scholar

    [22]

    Nie Y Y, Jiao S J, Meng F X, Lu H L, Wang D B, Li L, Gao S Y, Wang J Z, Wang X H 2019 J. Alloy. Compd. 798 568Google Scholar

    [23]

    Kuznetsov M V, Safonov A V 2023 Mater. Chem. Phys. 302 127739Google Scholar

    [24]

    Jubu P R, Yam F K, Igba V M, Beh K P 2020 J. Solid State Chem. 290 121576Google Scholar

    [25]

    Gutierrez G, Sundin E M, Nalam P G, et al. 2021 J. Phys. Chem. C 125 20468Google Scholar

    [26]

    Korhonen E, Tuomisto F, Bierwagen O, Speck J S, Galazka Z 2014 Phys. Rev. B 90 245307Google Scholar

  • [1] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [2] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [3] 程静云, 康朝阳, 宗海涛, 曹国华, 李明. Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善. 物理学报, 2017, 66(2): 027702. doi: 10.7498/aps.66.027702
    [4] 郭红力, 杨焕银, 唐焕芳, 侯海军, 郑勇林, 朱建国. 高压退火对0.65PMN-0.35PT薄膜结构、形貌及电学性能的影响. 物理学报, 2013, 62(13): 130704. doi: 10.7498/aps.62.130704
    [5] 徐蕙, 王顺利, 刘爱萍, 陈本永, 唐为华. Cu/TiOx复合薄膜的电子态分析及其对亲水性的影响. 物理学报, 2010, 59(5): 3601-3606. doi: 10.7498/aps.59.3601
    [6] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [7] 谢婧, 黎兵, 李愿杰, 颜璞, 冯良桓, 蔡亚平, 郑家贵, 张静全, 李卫, 武莉莉, 雷智, 曾广根. 射频磁控溅射法制备ZnS多晶薄膜及其性质. 物理学报, 2010, 59(8): 5749-5754. doi: 10.7498/aps.59.5749
    [8] 高立, 张建民. 带隙可调的Al,Mg掺杂ZnO薄膜的制备. 物理学报, 2009, 58(10): 7199-7203. doi: 10.7498/aps.58.7199
    [9] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, 2009, 58(7): 5022-5028. doi: 10.7498/aps.58.5022
    [10] 王振宁, 江美福, 宁兆元, 朱 丽. 磁控共溅射法制备的Zn2GeO4多晶薄膜结构及其光致发光研究. 物理学报, 2008, 57(10): 6507-6512. doi: 10.7498/aps.57.6507
    [11] 李阳平, 刘正堂, 刘文婷, 闫 峰, 陈 静. GeC薄膜的射频磁控反应溅射制备及性质. 物理学报, 2008, 57(10): 6587-6592. doi: 10.7498/aps.57.6587
    [12] 王 楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南 貌, 阮海波. p型ZnO薄膜的制备及特性. 物理学报, 2007, 56(10): 5974-5978. doi: 10.7498/aps.56.5974
    [13] 刘晃清, 王玲玲, 邹炳锁. 退火温度对ZrO2纳米材料中Eu3+离子发光的影响. 物理学报, 2007, 56(1): 556-560. doi: 10.7498/aps.56.556
    [14] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟. 物理学报, 2007, 56(5): 2937-2944. doi: 10.7498/aps.56.2937
    [15] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响. 物理学报, 2006, 55(1): 437-440. doi: 10.7498/aps.55.437
    [16] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 射频磁控溅射法生长MgxZn1-xO薄膜的结构和光学特性. 物理学报, 2005, 54(9): 4309-4312. doi: 10.7498/aps.54.4309
    [17] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [18] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光. 物理学报, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [19] 李俊杰, 郑伟涛, 卞海蛟, 吕宪义, 姜志刚, 白亦真, 金曾孙, 赵永年. 高温退火对非晶CNx薄膜场发射特性的影响. 物理学报, 2003, 52(7): 1797-1801. doi: 10.7498/aps.52.1797
    [20] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
计量
  • 文章访问数:  407
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-13
  • 修回日期:  2024-11-07
  • 上网日期:  2024-12-03
  • 刊出日期:  2025-01-20

/

返回文章
返回