搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅酸锆对Pb3O4/Mg/PTFE红外诱饵剂远红外辐射性能影响

王冰 陈宗胜 时家明 许河秀

引用本文:
Citation:

硅酸锆对Pb3O4/Mg/PTFE红外诱饵剂远红外辐射性能影响

王冰, 陈宗胜, 时家明, 许河秀
cstr: 32037.14.aps.74.20241048

Effect of ZrSiO4 on far-infrared radiation characteristics of Pb3O4/Mg/PTFE infrared decoy

WANG Bing, CHEN Zongsheng, SHI Jiaming, XU Hexiu
cstr: 32037.14.aps.74.20241048
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 传统镁/聚四氟乙烯(Mg/PTFE)红外诱饵剂被广泛应用于对抗红外制导武器, 但随着红外制导技术发展, 其长波红外辐射不足、燃烧温度过高等缺点令其难以对抗新型红外制导弹药. 针对这一问题, 提出了采用硅酸锆(ZrSiO4)作为添加剂来提高传统诱饵剂红外辐射的方法. 以四氧化三铅/镁粉/聚四氟乙烯(Pb3O4/Mg/PTFE)红外诱饵剂作为基础配方, 设计了7种配方, 通过实验研究了不同ZrSiO4添加量对Pb3O4/Mg/PTFE红外诱饵剂效能的影响. 首先测试了基础配方(ZrSiO4添加量为0)和12% ZrSiO4添加量配方的热分解性能, 然后用7.5—14 μm远红外热像仪测量了压制成药柱样品的燃烧过程, 并计算出每个样品的燃烧时间、燃烧温度、质量燃速、辐射面积、远红外辐射亮度和辐射强度. 结果表明: 添加ZrSiO4后, 混合红外诱饵剂反应放热峰值减小, 热效应变差; 随着ZrSiO4添加量增大, 样品燃烧时间持续变长, 燃烧温度持续降低. 当ZrSiO4添加比例为18%时, 样品反应时间最长达3.73 s, 燃烧温度最低达765.46 ℃; 远红外辐射亮度和辐射强度均随着ZrSiO4添加比例升高先增大后减小, 且当ZrSiO4添加比例为6%时分别达到最大值2461 W/(m2·sr)和142 W/sr; 当ZrSiO4添加比例在18%以内和9%以内时分别对基础配方的远红外辐射亮度和辐射强度有提升作用.
    Traditional composite infrared decoy, magnesium/teflon (Mg/PTFE), has been widely used in countering infrared guided weapons since its advent. However, with the development of infrared guidance technology, its drawbacks such as insufficient far-infrared radiation and high combustion temperature emerge, making it difficult to counter novel infrared guided weapons. To address this issue, a strategy of utilizing zirconium silicate (ZrSiO4) as an additive is proposed to improve the infrared radiation of infrared decoy. Therein, seven formulations with different ratios of ZrSiO4 are designed based on the basic formula of trilead tetraoxide/ magnesium/teflon (Pb3O4/Mg/PTFE) mixed powder. And the effect of ZrSiO4 serving as an additive on the performance of Pb3O4/Mg/PTFE infrared decoy is analyzed through experiments. First, initial experiments are conducted on the thermal decomposition characteristics of the basic formula (ZrSiO4 addition ratio is 0%) and its variant counterpart with 12% ZrSiO4. Subsequently, the combustion behaviors of the compacted formulation samples are examined using an infrared thermal imager operating within the 7.5–14 μm range, subsequently, the combution time, combution temperature, burning rate, radiation area, radiance, and radiation intensity of individual samples are computed. These results show that incorporation of ZrSiO4 reduces the intensity of the primary exothermic peak during the reactions with a mixed infrared decoy agent, yielding suboptimal thermal efficiencies. Furthermore, the combustion durations of the samples progressively increase with ZrSiO4 addition increasing, accompanied by consistent reductions in their combustion temperatures. Specifically, the sample reaction time peaks at 3.73 s at a ZrSiO4 addition ratio of 18%, while the combution temperature drops to a minimum value of 765.46 ℃. Moreover, the far-infrared radiance and radiation intensity demonstrate an initial-increase-then-decrease trend with ZrSiO4 addition increasing, thereby achieving the maximum values of 2461 W/(m2·sr) and 142 W/sr, respectively at a ZrSiO4 addition ratio of 6%. Furthermore, the far-infrared radiance and radiation intensity of the base formulation are enhanced when ZrSiO4 addition ratios are kept within 18% and 9% respectively. Based on the comprehensive analysis of the experimental data and considering the requirements for the infrared decoy in practical applications, a formulation with a ZrSiO4 addition ratio of 6% is adopted as an improved formulation for the Pb3O4/Mg/PTFE infrared decoy.
      通信作者: 时家明, shijiaming17@nudt.edu.cn ; 许河秀, hxxuellen@gmail.com
    • 基金项目: 国防预研基金(批准号: HJJ2017-0671)资助的课题.
      Corresponding author: SHI Jiaming, shijiaming17@nudt.edu.cn ; XU Hexiu, hxxuellen@gmail.com
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. HJJ2017-0671).
    [1]

    邵晓光 2019 制导与引信 40 020012Google Scholar

    Shao X G 2019 Guidance Fuze 40 020012Google Scholar

    [2]

    卢晓, 梁晓庚, 贾晓洪 2021 红外与激光工程 50 29

    Lu X, Liang X G, Jia X H 2021 Infrared Laser Eng. 50 29

    [3]

    周遵宁 2017 光电对抗材料基础(北京: 北京理工大学出版社

    Zhou Z N 2017 Fundermentals of Electro-optical Countermeasure Materials (Beijing: Beijing Institute of Technology Press

    [4]

    李泽军, 李志勇, 占明明, 张波, 姚鲲, 李秋怡, 张定宏 2024 固体火箭技术 47 15Google Scholar

    Li Z J, Li Z Y, Zhan M M, Zhang B, Yao K, Li Q Y, Zhang D H 2024 J. Solid Rocket Technol. 47 15Google Scholar

    [5]

    赵亮, 巨秀芝 2019 航天电子对抗 35 50Google Scholar

    Zhao L, Ju X Z 2019 Aerospace Electron. Warfare 35 50Google Scholar

    [6]

    叶淑琴, 朱晨光, 林红雪, 欧阳的华, 潘功配 2017 红外与激光工程 46 90

    Ye S Q, Zhu C G, Lin H X, Ouyang D H, Pan G P 2017 Infrared Laser Eng. 46 90

    [7]

    Elbasuney S, Elmotaz A A, Sadek M A 2020 J. Mater. Sci. Mater. El. 31 6130

    [8]

    金青君, 吴昱, 史红星, 任秀娟, 赵建锋 2020 火工品 3 41Google Scholar

    Jin Q J, Wu Y, Shi H X, Ren X J, Zhao J F 2020 Initiators Pyrotechn. 3 41Google Scholar

    [9]

    胡亚鹏, 王虎, 聂学辉, 孙宏涛, 姜建增, 郭鹏宏, 强文学 2023 火工品 5 34Google Scholar

    Hu Y P, Wang H, Nie X H, Sun H T, Jiang J Z, Guo P H, Qiang W X 2023 Initiators Pyrotechn. 5 34Google Scholar

    [10]

    杨谦 2021 硕士学位论文(南京: 南京理工大学)

    Yang Q 2021 M. S. Thesis (Nanjing: Nanjing University of Science & Technology

    [11]

    张建奇, 方小平 2011 红外物理(西安: 西安电子科技大学出版社)

    Zhang J Q, Fang X P 2011 Infrared Physics (Xian: Xidian University Press

    [12]

    于志良 1994 光电技术应用 2 12

    Yu Z L 1994 Electro-Opt. Technol. Appl. 2 12

    [13]

    卢为开 1983 远红外辐射加热技术(上海: 上海科学技术出版社)

    Lu K W 1983 Infrared Radiation Heating Technology (Shanghai: Shanghai Scientific & Technical Publishers

    [14]

    王冰, 陈宗胜, 刘洋, 汪家春, 时家明 2018 火工品 3 13Google Scholar

    Wang B, Chen Z S, Liu Y, Wang J C, Shi J M 2018 Initiators Pyrotechn. 3 13Google Scholar

    [15]

    Griffiths T T, Robertson J, Hall P G 1985 16th International Annual ICT Conference, Germany, 1985 p19

    [16]

    希洛夫著 (马永利译) 1959 烟火药火焰的发光 (北京: 国防工业出版社)

    Shilov (translated by Ma Y L) 1959 Flame Radiation of Fire Works Composition (Beijing: National Defence Industry Press

    [17]

    王伯羲, 冯增国 1997 火药燃烧理论(北京: 北京理工大学出版社)

    Wang B X, Feng Z G 1997 Theory of Gunpowder Combustion (Beijing: BeiJing Institute Of Technology Press

    [18]

    屠传经 1992 热传导(北京: 高等教育出版社)

    Tu C J 1992 Infrared Physics (Beijing: Higher Education Press

    [19]

    刘光启, 马连湘, 项曙光 2013 化学化工物性数据手册·无机卷 (北京:化学工业出版社)

    Liu G Q, Ma L X, Xiang S G 2013 Chemical and Chemical Data Sheet (Beijing: Chemical Industry Press

    [20]

    James G Speight 2005 Langes Handbook of Chemistry (16th Ed.) (New York: Mc Graw-Hill, Inc

  • 图 1  14个不同ZrSiO4添加量混合红外诱饵剂药柱样品实物图

    Fig. 1.  Photograph of 14 samples of composite infrared decoys with varied ZrSiO4.

    图 2  药柱样品燃烧实验及测试场景

    Fig. 2.  Experimental setup and testing scenarios for combustion of samples.

    图 3  Pb3O4/Mg/PTFE红外诱饵剂基础配方TG-DSC曲线

    Fig. 3.  TG-DSC curve of basic formula of Pb3O4/Mg/PTFE composite infrared decoy.

    图 4  ZrSiO4添加量为12%时Pb3O4/Mg/PTFE/ ZrSiO4混合红外诱饵剂TG-DSC曲线

    Fig. 4.  TG-DSC curve of Pb3O4/Mg/PTFE/ZrSiO4 composite infrared decoy with 12% addition of ZrSiO4.

    图 5  Pb3O4/Mg/PTFE红外诱饵剂基础配方(1号配方)和ZrSiO4添加量为12%配方(5号配方)的XRD测试图

    Fig. 5.  XRD curve of basic formula of Pb3O4/Mg/PTFE composite infrared decoy (No.1) and Pb3O4/Mg/PTFE/ZrSiO4 composite infrared decoy with 12% addition of ZrSiO4 (No.5).

    图 6  7种不同ZrSiO4添加量混合红外诱饵剂配方反应温度

    Fig. 6.  Combustion temperature of 7 types of composite infrared decoys with varied ZrSiO4.

    图 7  7种不同ZrSiO4添加量混合红外诱饵剂配方燃烧时间和质量燃速

    Fig. 7.  Combustion time and burning rate of 7 types of composite infrared decoys with varied ZrSiO4.

    图 8  7种不同ZrSiO4添加量混合红外诱饵剂配方导温系数

    Fig. 8.  Thermal Diffusivity of 7 types of composite infrared decoys with varied ZrSiO4.

    图 9  7种不同ZrSiO4添加量混合红外诱饵剂配方燃烧红外热像图

    Fig. 9.  Infrared thermal image of 7 types of composite infrared decoys with varied ZrSiO4.

    图 10  7种不同ZrSiO4添加量混合红外诱饵剂配方辐射特性

    Fig. 10.  Radiation characteristics of 7 types of composite infrared decoys with varied ZrSiO4.

    表 1  7种不同ZrSiO4添加量混合红外诱饵剂配方成分比例

    Table 1.  Compositional ratios of 7 types of composite infrared decoys with varied ZrSiO4.

    Formula m (Pb3O4)/% m (Mg)/% m (PTFE)/% m (ZrSiO4)/%
    1 35 50 15 0
    2 33.95 48.5 14.55 3
    3 32.9 47 14.1 6
    4 31.85 45.5 13.65 9
    5 30.8 44 13.2 12
    6 29.75 42.5 12.75 15
    7 28.7 41 12.3 18
    下载: 导出CSV

    表 2  14个不同ZrSiO4添加量混合红外诱饵剂药柱样品质量和高度

    Table 2.  Weight and height of 14 samples of composite infrared decoys with varied ZrSiO4.

    Formula I II Average
    Weight/g Height/mm Weight/g Height/mm Weight/g Height/mm
    1 15.99 12.97 15.98 13.01 15.99 12.99
    2 15.99 12.96 15.98 12.90 15.99 12.93
    3 15.99 12.95 15.99 12.85 15.99 12.90
    4 15.96 12.84 15.96 12.83 15.96 12.84
    5 15.97 12.61 15.97 12.75 15.97 12.68
    6 15.99 12.53 15.95 12.74 15.97 12.64
    7 15.98 12.45 15.98 12.41 15.98 12.43
    下载: 导出CSV

    表 3  7种不同ZrSiO4添加量混合红外诱饵剂配方燃烧时间、温度和燃速

    Table 3.  Combution time, temperature, and burning rate of 7 types of composite infrared decoys with varied ZrSiO4.

    Formula I II Average
    T/℃ Combustion
    time/s
    Burning
    rate/(g·s–1)
    T/℃ Combustion
    time/s
    Burning
    rate/(g·s–1)
    T/℃ Combustion
    time/s
    Burning
    rate/(g·s–1)
    1 857.00 3.01 5.32 823.90 3.06 5.23 840.50 3.03 5.27
    2 822.58 3.09 5.18 852.19 3.07 5.21 837.39 3.08 5.19
    3 830.89 3.16 5.06 834.05 3.11 5.14 832.47 3.14 5.10
    4 817.44 3.37 4.75 824.39 3.25 4.92 820.91 3.31 4.84
    5 809.42 3.44 4.65 798.71 3.53 4.53 804.06 3.49 4.59
    6 782.70 3.71 4.31 788.54 3.62 4.42 785.62 3.67 4.37
    7 761.32 3.77 4.24 769.59 3.69 4.34 765.46 3.73 4.29
    下载: 导出CSV

    表 4  Pb3O4, Mg, PTFE和ZrSiO4物理性质

    Table 4.  Physical properties of Pb3O4, Mg, PTFE, and ZrSiO4.

    Material λ/(J·m–1·s–1·K–1) c/(J·kg–1·K–1) ρ/(kg–1·m–3)
    Mg 165.1 1000 1745
    PTFE 0.24 1050 2150
    Pb3O4 0.288 226 9100
    ZrSiO4 5.1 800 4560
    下载: 导出CSV

    表 5  7种不同ZrSiO4添加量混合红外诱饵剂配方辐射特性

    Table 5.  Radiation characteristics of 7 types of composite infrared decoys with varied ZrSiO4

    Formula I II Average
    Radiance/
    (W·m–2·sr–1)
    Radiation
    area/mm2
    Radiation intensity/
    (W·sr–1)
    Radiance/
    (W·m–2·sr–1)
    Radiation
    area/mm2
    Radiation intensity/
    (W·sr–1)
    Radiance/
    (W·m–2·sr–1)
    Radiation
    area/mm2
    Radiation intensity/
    (W·sr–1)
    1 2134 54957 117 2071 46744 97 2103 50851 107
    2 2067 50508 104 2329 51714 120 2198 51111 112
    3 2452 59449 146 2470 55706 138 2461 57577 142
    4 2240 43043 96 2410 59574 144 2325 51308 120
    5 2317 41358 96 2277 40256 92 2297 40807 94
    6 2256 39882 90 2290 39050 89 2273 39466 90
    7 2228 38302 85 2248 36888 82 2238 37595 84
    下载: 导出CSV
  • [1]

    邵晓光 2019 制导与引信 40 020012Google Scholar

    Shao X G 2019 Guidance Fuze 40 020012Google Scholar

    [2]

    卢晓, 梁晓庚, 贾晓洪 2021 红外与激光工程 50 29

    Lu X, Liang X G, Jia X H 2021 Infrared Laser Eng. 50 29

    [3]

    周遵宁 2017 光电对抗材料基础(北京: 北京理工大学出版社

    Zhou Z N 2017 Fundermentals of Electro-optical Countermeasure Materials (Beijing: Beijing Institute of Technology Press

    [4]

    李泽军, 李志勇, 占明明, 张波, 姚鲲, 李秋怡, 张定宏 2024 固体火箭技术 47 15Google Scholar

    Li Z J, Li Z Y, Zhan M M, Zhang B, Yao K, Li Q Y, Zhang D H 2024 J. Solid Rocket Technol. 47 15Google Scholar

    [5]

    赵亮, 巨秀芝 2019 航天电子对抗 35 50Google Scholar

    Zhao L, Ju X Z 2019 Aerospace Electron. Warfare 35 50Google Scholar

    [6]

    叶淑琴, 朱晨光, 林红雪, 欧阳的华, 潘功配 2017 红外与激光工程 46 90

    Ye S Q, Zhu C G, Lin H X, Ouyang D H, Pan G P 2017 Infrared Laser Eng. 46 90

    [7]

    Elbasuney S, Elmotaz A A, Sadek M A 2020 J. Mater. Sci. Mater. El. 31 6130

    [8]

    金青君, 吴昱, 史红星, 任秀娟, 赵建锋 2020 火工品 3 41Google Scholar

    Jin Q J, Wu Y, Shi H X, Ren X J, Zhao J F 2020 Initiators Pyrotechn. 3 41Google Scholar

    [9]

    胡亚鹏, 王虎, 聂学辉, 孙宏涛, 姜建增, 郭鹏宏, 强文学 2023 火工品 5 34Google Scholar

    Hu Y P, Wang H, Nie X H, Sun H T, Jiang J Z, Guo P H, Qiang W X 2023 Initiators Pyrotechn. 5 34Google Scholar

    [10]

    杨谦 2021 硕士学位论文(南京: 南京理工大学)

    Yang Q 2021 M. S. Thesis (Nanjing: Nanjing University of Science & Technology

    [11]

    张建奇, 方小平 2011 红外物理(西安: 西安电子科技大学出版社)

    Zhang J Q, Fang X P 2011 Infrared Physics (Xian: Xidian University Press

    [12]

    于志良 1994 光电技术应用 2 12

    Yu Z L 1994 Electro-Opt. Technol. Appl. 2 12

    [13]

    卢为开 1983 远红外辐射加热技术(上海: 上海科学技术出版社)

    Lu K W 1983 Infrared Radiation Heating Technology (Shanghai: Shanghai Scientific & Technical Publishers

    [14]

    王冰, 陈宗胜, 刘洋, 汪家春, 时家明 2018 火工品 3 13Google Scholar

    Wang B, Chen Z S, Liu Y, Wang J C, Shi J M 2018 Initiators Pyrotechn. 3 13Google Scholar

    [15]

    Griffiths T T, Robertson J, Hall P G 1985 16th International Annual ICT Conference, Germany, 1985 p19

    [16]

    希洛夫著 (马永利译) 1959 烟火药火焰的发光 (北京: 国防工业出版社)

    Shilov (translated by Ma Y L) 1959 Flame Radiation of Fire Works Composition (Beijing: National Defence Industry Press

    [17]

    王伯羲, 冯增国 1997 火药燃烧理论(北京: 北京理工大学出版社)

    Wang B X, Feng Z G 1997 Theory of Gunpowder Combustion (Beijing: BeiJing Institute Of Technology Press

    [18]

    屠传经 1992 热传导(北京: 高等教育出版社)

    Tu C J 1992 Infrared Physics (Beijing: Higher Education Press

    [19]

    刘光启, 马连湘, 项曙光 2013 化学化工物性数据手册·无机卷 (北京:化学工业出版社)

    Liu G Q, Ma L X, Xiang S G 2013 Chemical and Chemical Data Sheet (Beijing: Chemical Industry Press

    [20]

    James G Speight 2005 Langes Handbook of Chemistry (16th Ed.) (New York: Mc Graw-Hill, Inc

  • [1] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响. 物理学报, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [2] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [3] 李开, 柳军, 刘伟强. 基于变均布霍尔系数的磁控热防护系统霍尔效应影响. 物理学报, 2017, 66(5): 054701. doi: 10.7498/aps.66.054701
    [4] 王佐, 张家忠, 王恒. 非正交多松弛系数轴对称热格子Boltzmann方法. 物理学报, 2017, 66(4): 044701. doi: 10.7498/aps.66.044701
    [5] 胡金秀, 高效伟. 变系数瞬态热传导问题边界元格式的特征正交分解降阶方法. 物理学报, 2016, 65(1): 014701. doi: 10.7498/aps.65.014701
    [6] 彭勇, 罗昔贤, 付姚, 邢明铭. 热分解含硫金属有机配合物制备近红外PbS量子点. 物理学报, 2013, 62(20): 208105. doi: 10.7498/aps.62.208105
    [7] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理. 物理学报, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [8] 季小玲, 李晓庆. 高斯-谢尔模型列阵光束的远场发散角和远场辐射强度. 物理学报, 2009, 58(7): 4624-4629. doi: 10.7498/aps.58.4624
    [9] 王岩松, 王文全, 袁 洲, 张立功, 徐世峰. 热固化剂浓度对SiCN陶瓷压阻效应的影响. 物理学报, 2008, 57(10): 6540-6544. doi: 10.7498/aps.57.6540
    [10] 张新陆, 王月珠, 李 立, 鞠有伦. 端面抽运Tm, Ho:YLF激光器热转换系数及热透镜效应的研究. 物理学报, 2007, 56(4): 2196-2201. doi: 10.7498/aps.56.2196
    [11] 刘凌涛, 王民盛, 韩小英, 李家明. 溴的光电离和辐射复合——平均原子模型速率系数与细致组态速率系数. 物理学报, 2006, 55(5): 2322-2327. doi: 10.7498/aps.55.2322
    [12] 成金秀, 缪文勇, 孙可熙, 王红斌, 杨家敏, 曹磊峰, 温天舒, 陈正林, 杨存榜, 江少恩, 崔延莉, 汤小青, 于艳宁, 陈久森. X射线辐射输运分解实验研究. 物理学报, 2000, 49(2): 282-287. doi: 10.7498/aps.49.282
    [13] 方泉玉, 蔡 蔚, 邹 宇, 李 萍. 推广Bethe公式:Au50+离子的偶极激发的碰撞强度和速率系数. 物理学报, 1998, 47(10): 1612-1620. doi: 10.7498/aps.47.1612
    [14] 余保龙, 朱从善, 干福熹. PbS纳米微粒溶胶热光系数dn/dT的测量和光束限制效应研究. 物理学报, 1997, 46(12): 2394-2400. doi: 10.7498/aps.46.2394
    [15] 方泉玉, 蔡蔚, 邹宇, 李萍, 徐志瑾. Auq+(q=47,55)离子的电子碰撞强度与速率系数. 物理学报, 1997, 46(3): 448-457. doi: 10.7498/aps.46.448
    [16] 史子康, 江爱栋, 叶海涛, 陈创天. 新型热释电晶体低温相偏硼酸钡电学性能和它在高功率红外探测器中应用的可能性. 物理学报, 1985, 34(1): 140-144. doi: 10.7498/aps.34.140
    [17] 吴德昌, 王仁卉. 锌的X射线热漫散衍射及弹性系数. 物理学报, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
    [18] 陈箎, 李华林, 丁家言. 论元素互致X射线荧光辐射强度. 物理学报, 1963, 19(11): 727-734. doi: 10.7498/aps.19.727
    [19] 郝柏林. 金属在红外波段的表面电阻和电磁波的穿透系数. 物理学报, 1961, 17(10): 453-464. doi: 10.7498/aps.17.453
    [20] 郑吉母, 蒋孟闵. 落雪山宇宙线强度的气压系数. 物理学报, 1960, 16(3): 175-176. doi: 10.7498/aps.16.175
计量
  • 文章访问数:  305
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-29
  • 修回日期:  2025-01-03
  • 上网日期:  2025-02-25

/

返回文章
返回