搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于micro-CT实验的颗粒体系接触力计算及演化分析

王潇 宋世琦 平子健 盛思源 商宪义 陈凡秀

引用本文:
Citation:

基于micro-CT实验的颗粒体系接触力计算及演化分析

王潇, 宋世琦, 平子健, 盛思源, 商宪义, 陈凡秀
cstr: 32037.14.aps.74.20241206

Contact force calculation and evolution analysis of granular systems based on micro-CT experiment

WANG Xiao, SONG Shiqi, PING Zijian, SHENG Siyuan, SHANG Xianyi, CHEN Fanxiu
cstr: 32037.14.aps.74.20241206
PDF
HTML
导出引用
  • 三维颗粒体系颗粒间接触力计算是散体力学研究的重难点. 以双弹性橡胶球为研究对象, 开展显微CT (micro-CT)原位平压实验, 基于Hertz接触理论和Tatara大变形接触理论, 验证了弹性球接触模型, 获得了基于实验的弹性球接触力理论公式. 以三维颗粒体系为研究对象, 开展了micro-CT原位探针加载实验, 获取颗粒二维图像序列, 经过系列数字变换得到数字体图像, 获得了不同加载状态下三维颗粒体系接触力网络, 分析了颗粒体系接触力分布及演化规律, 探究了强接触数量及分布演化与颗粒体系稳定性的联系. 研究结果表明: 基于实验的弹性球接触力公式能合理有效表征两颗粒间的接触力; 探针加载下颗粒间接触力呈现以探针压头接触点为起点, 向下方和四周逐级传递接触力的网状分布; 强接触数量占接触总数量的45%—50%, 分布贯穿于整个颗粒体系内部, 支撑起颗粒体系网络结构, 较大值集中于压头下方呈现树杈状分布; 加载过程中, z = 14 mm处建立了平衡点, 平衡点处, 强接触数量达到顶峰, 强接触力网络结构布满整个三维颗粒体系, 建立起承受外载荷的主要骨架, 随着加载继续, 强接触力的整体数值更高, 在颗粒体系内部分布也更加均匀.
    The calculation of inter-granule contact force in three-dimensional (3D) granular systems is a key and challenging aspect of granular mechanics research. Two elastic rubber balls are used as research objects for in-situ flat pressing micro-CT experiments. Based on the Hertzian contact theory and Tatara large deformation contact theory, the contact model of elastic balls is verified, and the theoretical formula of the contact force of elastic balls based on the experiment is obtained. Taking the 3D granular systems as research object, in-situ probe loading experiment of micro-CT is carried out to obtain the 2D image sequence of the granules, after a series of digital transformations, the digital body images emerge, the contact force networks of the 3D granular systems under different loading conditions are obtained by constructing pore network models. The contact force distribution and evolution law of the granular systems are analyzed. The relation among the number of strong contacts, the distribution evolution, and the stability of the granular system is explored. The results show that the two elastic ball contact model conforms to the Hertzian contact theory and Tatara large deformation contact theory, and the contact force fitting formula based on experiment can characterize the contact force between two granules reasonably and effectively. The contact force of granules under probe loading is distributed in a net-like pattern starting from the contact point of the indenter and gradually transmitted to the lower and the surrounding area. The trend of average contact force is consistent with the trend of the contact times, showing a significant phase transition. With the increase of contact times, the frequency of particle compression increases, resulting in a greater contact force between granules, ultimately stabilizing at about 10.5 N. The number of strong contacts accounts for 45% to 50% of the total number of contacts, distributed throughout the whole granular system and supporting the network structure of the granular system. The larger values are concentrated below the indenter and exhibit a branching distribution. In the loading process, an equilibrium point is established at z = 14 mm, where the number of strong contacts reaches the peak. The network structure of strong contact force is spread throughout the entire 3D granular system, establishing the main skeleton that can withstand external loads. As the loading continues, the total value of strong contact forces increases, and their distribution within the granular system becomes more uniform.
      通信作者: 陈凡秀, mecfx@163.com
    • 基金项目: 国家自然科学基金(批准号: 12072170)和泰山学者工程专项(批准号: tsqn202211180)资助的课题.
      Corresponding author: CHEN Fanxiu, mecfx@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12072170) and the Taishan Scholars Project Special Funds, China (Grant No. tsqn202211180).
    [1]

    孙其诚 2015 物理学报 64 076101Google Scholar

    Sun Q C 2015 Acta Phys. Sin. 64 076101Google Scholar

    [2]

    瞿同明, 冯云田, 王孟琦, 赵婷婷, 狄少丞 2021 力学学报 53 2404Google Scholar

    Qu T M, Feng Y T, Wang M Q, Zhao T T, Di S C 2021 Chin. J. Theor. Appl. Mech. 53 2404Google Scholar

    [3]

    Wang Y W, Liu R, Sun R H, Xu Z W 2023 Eng. Comput. 40 1390Google Scholar

    [4]

    Lovoll G, Måloy K J, Flekkoy E G 1999 Phys. Rev. E 60 5872Google Scholar

    [5]

    Blair D L, Mueggenburg N W, Marshall A H, Jaeger H M, Nagel S R 2000 Phys. Rev. E 63 278Google Scholar

    [6]

    Anton K, Neverov S, Neverov A, Dmitry O, Ivan Z, Maria K 2023 Geohazard Mech. 1 128Google Scholar

    [7]

    鲁锋, 李照阳, 杨召, 张刘平, 刘金, 李璐璐, 刘向军 2023 石油实验地质 45 193Google Scholar

    Lu F, Li Z Y, Yang Z, Zhang L P, Liu J, Li L L, Liu X J 2023 Pet. Geol. Exp. 45 193Google Scholar

    [8]

    Wang S T, Chang Y H, Wang Z F, Su X X 2024 Energies 17 1370Google Scholar

    [9]

    Majmudar T S, Behringer R P 2005 Nature 435 1079Google Scholar

    [10]

    Sanfratello L, Fukushima E, Behringer R P 2009 Granular Matter 11 1Google Scholar

    [11]

    陈凡秀, 庄琦, 王日龙 2016 岩土力学 37 563Google Scholar

    Chen F X, Zhuang Q, Wang R L 2016 Rock Soil Mech. 37 563Google Scholar

    [12]

    Kondo A, Takano D, Kohama E, Bathurst R J 2022 Géotech. Lett. 12 203

    [13]

    王潇, 陈凡秀, 王远, 刘雨欣, 孙洁 2023 力学学报 55 1732

    Wang X, Chen F X, Wang Y, Liu Y X, Sun J 2023 Chin. J. Theor. Appl. Mech. 55 1732

    [14]

    Hertz H 1881 J. Reine Angew. Math. 92 156Google Scholar

    [15]

    Johnson K L, Kendall K, Roberts A D 1971 Proc. R. Soc. London, Ser. A 324 301Google Scholar

    [16]

    Derjaguin B V, Muller V M, Toporov Y P 1975 J. Colloid Interface Sci. 53 314Google Scholar

    [17]

    Tatara Y 1991 ASME J. Eng. Mater. Technol. 113 285Google Scholar

    [18]

    Tatara Y, Shima S, Lucero J C 1991 ASME J. Eng. Mater. Technol. 113 292Google Scholar

    [19]

    何思明, 吴永, 李新坡 2008 工程力学 25 19

    He S M, Wu Y, Li X P 2008 Eng. Mech. 25 19

    [20]

    运睿德, 丁北 2019 机械工程学报 55 80

    Yun R D, Ding B 2019 J. Mech. Eng. 55 80

    [21]

    Wu Y, Hao H C, Gao M Z, Gao Z, Gao Y N 2023 Geomech. Geophys. Geo-Energy Geo-Resour. 9 126Google Scholar

    [22]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 物理学报 66 054202Google Scholar

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202Google Scholar

    [23]

    Lubner M G, Ziemlewicz T J, Wells S A, Li Ke, Wu P H, Hinshaw J L, Lee F T, Brace C L 2022 Abdominal Radiology 47 2658Google Scholar

    [24]

    Busch M, Hausotte T 2022 Prod. Eng. 16 411Google Scholar

    [25]

    毛灵涛, 毕玉洁, 刘海洲, 陈俊, 王建强, 彭瑞东, 刘红彬, 吴昊, 孙跃, 鞠杨 2023 科学通报 68 380Google Scholar

    Mao L T, Bi Y J, Liu H Z, Chen J, Wang J Q, Peng R D, Liu H B, Wu H, Sun Y, Ju Y 2023 Chin. Sci. Bill. 68 380Google Scholar

    [26]

    Sakamoto S, Suzuki K, Toda K, Seino S 2022 Materials 15 7393Google Scholar

    [27]

    Zhuang C, Jianfeng W, Wei X 2023 Géotech. 21 1Google Scholar

    [28]

    孙其诚, 王光谦 2008 物理学报 57 4667Google Scholar

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667Google Scholar

    [29]

    Pérez L G, Bernal P L J, Alés F V, del-Río J J M, Borreguero M, Ochoa J M A 2024 Boletín de la Sociedad Españ ola de Cerámicay Vidrio 63 216

    [30]

    Wu Z H, Yang Y H, Zuo Y J, Meng X R, Wang W T, Lei W L 2023 Acta Geophys. 72 2503Google Scholar

    [31]

    Fang H, He N 2023 Appl. Sci. 13 12270Google Scholar

    [32]

    雷健, 潘保芝, 张丽华 2018 地球物理学进展 33 653Google Scholar

    Lei J, Pan B Z, Zhang L H 2018 Prog. Geophys. 33 653Google Scholar

    [33]

    Hosseinzadegan A, Raoof A, Mahdiyar H, Nikooee E, Ghaedi M, Qajar J 2023 Geoenergy Sci. Eng. 226 211

  • 图 1  Hertz接触模型

    Fig. 1.  Hertz contact model.

    图 2  单球颗粒法向重叠量$ \delta $与接触力F关系

    Fig. 2.  Relationship between normal overlap $ \delta $ and contact force F for single granule.

    图 3  Micro-CT系统

    Fig. 3.  Micro-CT system.

    图 4  实验模型

    Fig. 4.  Test model.

    图 5  压头和试样

    Fig. 5.  Indenter and specimen.

    图 6  图像处理流程

    Fig. 6.  Image processing flow.

    图 7  双弹性颗粒实验模型

    Fig. 7.  Experimental model of two granules.

    图 8  压头和试样

    Fig. 8.  Indenter and specimen.

    图 9  双颗粒不同速度z-P曲线

    Fig. 9.  The z-P curves for two granules with different velocities.

    图 10  应变$ \varepsilon $-接触力F关系

    Fig. 10.  Relationship of strain $ \varepsilon $ and contact force F.

    图 11  应变$ \varepsilon $-接触面积A关系

    Fig. 11.  Relationship of strain $ \varepsilon $ and contact area A.

    图 12  接触面积A-接触力F关系

    Fig. 12.  Relationship of contact area A and contact force F.

    图 13  颗粒体系受压情况

    Fig. 13.  Granular systems pressure situation.

    图 14  接触力网络分布及演化计算流程图

    Fig. 14.  Flowchart for calculation of contact force network distribution and evolution.

    图 15  颗粒体系接触力网络分布及演化

    Fig. 15.  Contact force network distribution and evolution of granular systems.

    图 16  接触力区间变化

    Fig. 16.  Change in contact force interval.

    图 17  接触总数量NT和平均接触力$ \overline F $变化

    Fig. 17.  Change in total number of contacts NT and average contact force $ \overline F $.

    图 18  颗粒体系强接触力网络分布及演化

    Fig. 18.  Strong contact force network distribution and evolution of granular systems.

    图 19  颗粒体系高于10.78 N的强接触力网络分布及演化

    Fig. 19.  Strong contact force network distribution and evolution more than 10.78 N of granular systems.

    图 20  强接触数量NS变化

    Fig. 20.  Change in number of strong contacts NS.

  • [1]

    孙其诚 2015 物理学报 64 076101Google Scholar

    Sun Q C 2015 Acta Phys. Sin. 64 076101Google Scholar

    [2]

    瞿同明, 冯云田, 王孟琦, 赵婷婷, 狄少丞 2021 力学学报 53 2404Google Scholar

    Qu T M, Feng Y T, Wang M Q, Zhao T T, Di S C 2021 Chin. J. Theor. Appl. Mech. 53 2404Google Scholar

    [3]

    Wang Y W, Liu R, Sun R H, Xu Z W 2023 Eng. Comput. 40 1390Google Scholar

    [4]

    Lovoll G, Måloy K J, Flekkoy E G 1999 Phys. Rev. E 60 5872Google Scholar

    [5]

    Blair D L, Mueggenburg N W, Marshall A H, Jaeger H M, Nagel S R 2000 Phys. Rev. E 63 278Google Scholar

    [6]

    Anton K, Neverov S, Neverov A, Dmitry O, Ivan Z, Maria K 2023 Geohazard Mech. 1 128Google Scholar

    [7]

    鲁锋, 李照阳, 杨召, 张刘平, 刘金, 李璐璐, 刘向军 2023 石油实验地质 45 193Google Scholar

    Lu F, Li Z Y, Yang Z, Zhang L P, Liu J, Li L L, Liu X J 2023 Pet. Geol. Exp. 45 193Google Scholar

    [8]

    Wang S T, Chang Y H, Wang Z F, Su X X 2024 Energies 17 1370Google Scholar

    [9]

    Majmudar T S, Behringer R P 2005 Nature 435 1079Google Scholar

    [10]

    Sanfratello L, Fukushima E, Behringer R P 2009 Granular Matter 11 1Google Scholar

    [11]

    陈凡秀, 庄琦, 王日龙 2016 岩土力学 37 563Google Scholar

    Chen F X, Zhuang Q, Wang R L 2016 Rock Soil Mech. 37 563Google Scholar

    [12]

    Kondo A, Takano D, Kohama E, Bathurst R J 2022 Géotech. Lett. 12 203

    [13]

    王潇, 陈凡秀, 王远, 刘雨欣, 孙洁 2023 力学学报 55 1732

    Wang X, Chen F X, Wang Y, Liu Y X, Sun J 2023 Chin. J. Theor. Appl. Mech. 55 1732

    [14]

    Hertz H 1881 J. Reine Angew. Math. 92 156Google Scholar

    [15]

    Johnson K L, Kendall K, Roberts A D 1971 Proc. R. Soc. London, Ser. A 324 301Google Scholar

    [16]

    Derjaguin B V, Muller V M, Toporov Y P 1975 J. Colloid Interface Sci. 53 314Google Scholar

    [17]

    Tatara Y 1991 ASME J. Eng. Mater. Technol. 113 285Google Scholar

    [18]

    Tatara Y, Shima S, Lucero J C 1991 ASME J. Eng. Mater. Technol. 113 292Google Scholar

    [19]

    何思明, 吴永, 李新坡 2008 工程力学 25 19

    He S M, Wu Y, Li X P 2008 Eng. Mech. 25 19

    [20]

    运睿德, 丁北 2019 机械工程学报 55 80

    Yun R D, Ding B 2019 J. Mech. Eng. 55 80

    [21]

    Wu Y, Hao H C, Gao M Z, Gao Z, Gao Y N 2023 Geomech. Geophys. Geo-Energy Geo-Resour. 9 126Google Scholar

    [22]

    戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔 2017 物理学报 66 054202Google Scholar

    Qi J C, Chen R C, Liu B, Chen P, Du G H, Xiao T Q 2017 Acta Phys. Sin. 66 054202Google Scholar

    [23]

    Lubner M G, Ziemlewicz T J, Wells S A, Li Ke, Wu P H, Hinshaw J L, Lee F T, Brace C L 2022 Abdominal Radiology 47 2658Google Scholar

    [24]

    Busch M, Hausotte T 2022 Prod. Eng. 16 411Google Scholar

    [25]

    毛灵涛, 毕玉洁, 刘海洲, 陈俊, 王建强, 彭瑞东, 刘红彬, 吴昊, 孙跃, 鞠杨 2023 科学通报 68 380Google Scholar

    Mao L T, Bi Y J, Liu H Z, Chen J, Wang J Q, Peng R D, Liu H B, Wu H, Sun Y, Ju Y 2023 Chin. Sci. Bill. 68 380Google Scholar

    [26]

    Sakamoto S, Suzuki K, Toda K, Seino S 2022 Materials 15 7393Google Scholar

    [27]

    Zhuang C, Jianfeng W, Wei X 2023 Géotech. 21 1Google Scholar

    [28]

    孙其诚, 王光谦 2008 物理学报 57 4667Google Scholar

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667Google Scholar

    [29]

    Pérez L G, Bernal P L J, Alés F V, del-Río J J M, Borreguero M, Ochoa J M A 2024 Boletín de la Sociedad Españ ola de Cerámicay Vidrio 63 216

    [30]

    Wu Z H, Yang Y H, Zuo Y J, Meng X R, Wang W T, Lei W L 2023 Acta Geophys. 72 2503Google Scholar

    [31]

    Fang H, He N 2023 Appl. Sci. 13 12270Google Scholar

    [32]

    雷健, 潘保芝, 张丽华 2018 地球物理学进展 33 653Google Scholar

    Lei J, Pan B Z, Zhang L H 2018 Prog. Geophys. 33 653Google Scholar

    [33]

    Hosseinzadegan A, Raoof A, Mahdiyar H, Nikooee E, Ghaedi M, Qajar J 2023 Geoenergy Sci. Eng. 226 211

  • [1] 张销杰, 赵千千, 黄荣宗. 流固耦合传热作用下两颗粒拖曳-接触-翻滚运动研究. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241453
    [2] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型. 物理学报, 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [3] 王国强, 张烁, 杨俊元, 许小可. 耦合不同年龄层接触模式的新冠肺炎传播模型. 物理学报, 2021, 70(1): 010201. doi: 10.7498/aps.70.20201371
    [4] 陈小辉, 谭伯仲, 薛桃, 马云灿, 靳赛, 李志军, 辛越峰, 李晓亚, 李俊. 高压高应变率加载下多晶相变的原位X射线衍射. 物理学报, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [5] 詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东. 英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计. 物理学报, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [6] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [7] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [8] 王会, 贾富国, 韩燕龙, 张亚雄, 曹斌. 圆锥料仓内颗粒周期性脉动特征研究. 物理学报, 2017, 66(1): 014501. doi: 10.7498/aps.66.014501
    [9] 刘全, 于明, 林忠, 王瑞利. 流体力学拉氏守恒滑移线算法设计. 物理学报, 2015, 64(19): 194701. doi: 10.7498/aps.64.194701
    [10] 王疆靖, 邵瑞文, 邓青松, 郑坤. 应变加载下Si纳米线电输运性能的原位电子显微学研究. 物理学报, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [11] 段芳莉, 杨继明, 仇和兵, 吴聪颖. 表面黏附导致的接触行为转变. 物理学报, 2012, 61(1): 016201. doi: 10.7498/aps.61.016201
    [12] 王玉丹, 彭冠云, 佟亚军, 周光照, 任玉琦, 杨群, 肖体乔. 影响同步辐射X射线螺旋显微CT的若干因素研究. 物理学报, 2012, 61(5): 054205. doi: 10.7498/aps.61.054205
    [13] 许双英, 胡林华, 李文欣, 戴松元. 染料敏化太阳电池中TiO2颗粒界面接触对电子输运影响的研究. 物理学报, 2011, 60(11): 116802. doi: 10.7498/aps.60.116802
    [14] 贺剑雄, 郑家贵, 李 卫, 冯良桓, 蔡 伟, 蔡亚平, 张静全, 黎 兵, 雷 智, 武莉莉, 王文武. CdTe薄膜太阳电池背接触的研究. 物理学报, 2007, 56(9): 5548-5553. doi: 10.7498/aps.56.5548
    [15] 李钱光, 许海霞, 李 翌, 李志扬. STM中量子点接触的电导计算. 物理学报, 2005, 54(11): 5251-5256. doi: 10.7498/aps.54.5251
    [16] 王晓平, 刘磊, 胡海龙, 张琨. 原子力显微术轻敲模式中探针样品接触过程及相位衬度研究. 物理学报, 2004, 53(4): 1008-1014. doi: 10.7498/aps.53.1008
    [17] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
    [18] 吴鼎芬, 王德宁. GaAs及其它半导体欧姆接触模型. 物理学报, 1985, 34(3): 332-340. doi: 10.7498/aps.34.332
    [19] 陈存礼. 金属-块状半导体的接触电阻率——四点结构模型. 物理学报, 1984, 33(9): 1314-1320. doi: 10.7498/aps.33.1314
    [20] 徐鸿达, 邵全远, 肖楠. 金属与GaAs接触界面的分析. 物理学报, 1981, 30(9): 1249-1258. doi: 10.7498/aps.30.1249
计量
  • 文章访问数:  239
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-09-29
  • 上网日期:  2024-11-27
  • 刊出日期:  2025-01-05

/

返回文章
返回