-
湍流非线性作用产生的等离子体流可以通过剪切抑制湍流及其驱动的输运,从而改善等离子体约束。湍流可以由局域梯度驱动及远大于其相关长度的径向位置的湍流传播。采用快速往复朗缪尔探针阵列在中国环流器2号A(HL-2A)托卡马克上首次观测了电子回旋共振加热(electron cyclotron resonance heating,ECRH)调制对边缘湍流驱动和传播的影响。边缘径向电场、湍流和雷诺协强在ECRH期间均增强且伴随着离子-离子碰撞率降低。分析表明边缘极向流的增强是由于湍流非线性驱动增加和阻尼减弱的共同作用结果。进一步分析发现ECRH开启后湍流驱动和传播率均增加,且湍流驱动率大于湍流传播率,并与湍流强度做比较。结果表明ECRH期间边缘湍流驱动和传播共同作用导致湍流强度增加,进而引起湍流雷诺协强增强并驱动更强的边缘等离子体流。这些结果阐明了ECRH调制期间边缘湍流驱动和传播对边缘等离子体流和湍流的重要影响。The plasma flow generated by turbulent nonlinear interaction can improve plasma confinement by suppressing turbulence and its driven transport. Turbulence can be driven by local gradients and propagate radially from far beyond its associated correlation length. Effects of electron cyclotron resonance heating (ECRH) modulation on edge turbulence driving and spreading are first presented in the edge plasma of the HL-2A tokamak. These experiments were performed by a fast reciprocating Langmuir probe array. When ECRH modulation is applied, both the edge temperature and density are higher, and the radial electric field is stronger. The edge radial electric field, turbulence, and Reynolds stresses are all enhanced with the ECRH while the ion-ion collision rate is reduced. Figures 1 (a)-(g) present the conditional averages of the ECRH power, turbulence intensity, turbulent Reynolds stress gradient, Er×B poloidal velocity, density gradient, turbulence drive rate and turbulence spreading rate, respectively. With ECRH, both the turbulence intensity and Reynolds stress gradients increase. The maximum turbulence intensity appears at the start of the ECRH switch-off while the maximum stress gradient occurs at the end of the ECRH. The evolution of the Er×B poloidal velocity is very similar to that of the Reynolds stress gradients. This observation suggests that the poloidal flow is the result of the combined effect of turbulence nonlinear driving and damping. The enhancement of Reynolds stress during ECRH modulation mainly depends on the increase in the turbulence intensity, with the increase in radial velocity fluctuation intensity being more significant. The turbulence drive and spreading rates also increase with ECRH. The maximum drive rate appears at the start of the ECRH swithch-off while the maximum spreading rate occurs at the end of the ECRH. This analysis indicates that turbulence driving and spreading are enhanced with the former being dominant. This result suggests that the enhancements of turbulence driving and spreading lead to the enhancements of the turbulence and Reynolds stress, and thus stronger edge flows.
-
Keywords:
- tokamak /
- ECRH modulation /
- edge flow and turbulence /
- Langmuir probes
-
[1] Huang M, Rao J, Li B, Zhou J, Kang Z H, Wang H, Lu B, Xia D H, Wang C, Feng K, Wang M W, Chen G Y, Pu Y N, Lu Z H, Wang J Q, Duan X R, Liu Y 2012EPJ Web of Conf. 32 04012
[2] Xu H D, Wang X J, Zhang J, Liu F K, Huang Y Y, Shan J F, Xu W Y, Li M H, Lohr J, Gorelov Y A, Anderson J P, Zhang Y, Wu D J, Hu H C, Yang Y, Feng J Q, Tang Y Y, Li B, Ma W D, Wu Z G, Wang J, Zhang L Y, Guo F, Sun H Z, Yan X S, EAST Team 2019EPJ Web of Conf. 203 04002
[3] Xia D H, Chen X X, Li J T, Wang R M, Zheng W, the J-TEXT team 2024EPJ Web of Conf. 313 02003
[4] Wagner D, Grünwald G, Leuterer F,Manini A, Monaco F, Münich M, Schütz H, Stober J, Zohm H, Franke T, Thumm M, Gantenbein G, Heidinger R, Meier A, Kasparek W, Lechte C, Litvak A, Denisov G G, Chirkov A V, Tai E M, Popov L G, NichiporenkoV O, Myasnikov V E, Solyanova E A, Malygin S A, Meo F, Woskov P 2008Nucl. Fusion 48 054006
[5] Kubo S 2012EPJ Web of Conf. 32 02001
[6] Kajiwara K, Ikeda Y, Sakamoto K, Kasugai A, Seki M, Moriyama S, Takahashi K, Imai T, Mitsunaka Y, Fujii T 2003Fusion Eng. Des. 65 493
[7] Gnesin S, Decker J, Coda S, Goodman T P, Peysson Y, Mazon D 2012Plasma Phys. Control. Fusion 54 035002
[8] Mariani A, Mantica P, Brunner S, Fontana M, Karpushov A, Marini C, Porte L, Sauter O, the TCV Team, the EUROfusion MST1 Team 2019Nucl. Fusion 59 126017
[9] Yang Z J, Zhang Y P, Ren X H, Li F, Xu X, Yan W, Zhang X Y, Xia D H, Zhang Z C, GaoY, Zha X Q, Luo Q, Chen Z Y, Cheng Z F, Chen Z P, Gao L, Ding Y H 2021Nucl. Fusion 61 086005
[10] Wang S X, Liu H Q, Jie Y X, Zang Q, Lyu B, Zhang T, Zeng L, Zhang S B, Shi N, Lan T, Zou Z Y, Li W M, Yao Y, Wei X C, Lian H, Li G, Xu H D, Zhang X J, Wu B, Sun Y W, the EAST Team 2016Plasma Sci. Technol. 19 015102
[11] Baschetti S, Bufferand H, Ciraolo G, Fedorczak N, Ghendrih P, Tamain P, Serre E, the EUROfusion MST1 team, the TCV team 2019Nucl. Mater. Energy 19 200
[12] Weiland J, Eriksson A, Nordman H, Zagorodny A 2007Plasma Phys. Control. Fusion 49 A45
[13] Luo L, Rafiq T, Kritz A H 2013Comput. Phys. Commun. 184 2267
[14] Doyle E J, Houlberg W A, Kamada Y, Mukhovatov V, Osborne T H, Polevoi A, Bateman G, Connor J W, Cordey J G, Fujita T, Garbet X, Hahm T S, Horton L D, Hubbard A E, Imbeaux F, Jenko F, Kinsey J E, Kishimoto Y, Li J, Luce T C, Martin Y, Ossipenko M, Parail V, Peeters A, Rhodes T L, Rice J E, Roach C M, Rozhansky V, Ryter F, Saibene G, Sartori R, Sips A C C, Snipes J A, Sugihara M, Synakowski E J, Takenaga H, Takizuka T, Thomsen K,Wade M R, Wilson H R, ITPA Transport Physics Topical Group, ITPA Confinement Database, Modelling Topical Group, ITPA Pedestal and Edge Topical Group 2007Nucl. Fusion 47 S18
[15] Ritz C P, Brower D L, Rhodes T L, Bengtson R D, Levinson S J, LuhmannJr N C, Peebles W A, Powers E J 1987Nucl. fusion 27 1125
[16] Zhao K J, Dong J Q, Yan L W, Diamond P H, Cheng J, Hong W Y, Huang Z H, Xu M, Tynan G R, Itoh K, Itoh S -I, Fujisawa A, Nagashima Y, Inagaki S,Wang Z X, Wei L, Li Q, Ji X Q, Huang Y, Liu Yi, Zhou J, Song X M, Yang Q W, Ding X T, Duan X R, the HL-2A Team 2013Nucl. Fusion 53 083011
[17] Grenfell G, Van Milligen B P, Losada U, Ting W, Liu B, Silva C, Spolaore M, Hidalgo C, The TJ-II Team 2018Nucl. Fusion 59 016018
[18] Gao J M, Cai L Z, Zou X L, Eich T, Adamek J, Cao C Z, Huang Z H, Ji X Q, Jiang M, Liu L, Lu J, Liu Y, Shi Z B, Thornton A J, Wu N, Xiao G L, Xu M, Yan L W, Yu L M, Yu D L,Yang Q W, Zhong W L, the HL-2A Team 2021Nucl. Fusion 61 066024
[19] Zhao K J, Nagashima Y, Guo Z B, Dong J Q, Yan L W, Itoh K, Itoh S -I, Li X B, Li J Q, Fujisawa A, Inagaki S, Cheng J, Xu J Q, Kosuga Y, Sasaki M, Wang Z X, Zhang H Q, Chen Y Q, Cao X G, Yu D L, Liu Y, Song X M, Xia F, Wang S 2022Plasma Sci. Technol. 25 015101
[20] Zhao K J, Shi Y J, Hahn S H, Diamond P H, Sun Y, Cheng J, Liu H, Lie N, Chen Z P, Ding Y H, Chen Z Y, Rao B, Leconte M, Bak J G, Cheng Z F, Gao L, Zhang X Q,Yang Z J, Wang N C, Wang L, Jin W, Yan L W, Dong J Q, Zhuang G, J-TEXT team 2015Nucl. Fusion 55 073022
[21] Zhao K J, Chen Z P, Shi Y J, Diamond P H, Dong J Q, Chen Z P, Ding Y H, Zhuang G, Liu Y B, Zhang H Q, Chen Y Q, Liu H, Cheng J, Nie L, Rao B, Cheng Z F,Gao L, Zhang X Q, Yang Z J, Wang N C, Wang L, Li J Q, Jin W, Xu J Q, Yan L W, Liang Y F, Xie Y Y, Liu B 2020Nucl. Fusion 60 106030
[22] Manz P, Ribeiro T T, Scott B D, Birkenmeier G, Carralero D, Fuchert G, Müller S H, Müller H W, Stroth U, Wolfrum E 2015Phys. Plasmas 22 022308
[23] Wu T, Diamond P H, Nie L, Xu M, Yu Y, Hong R J, Chen Y H, Xu J Q, Long T, Zhang Y, Yan Q H, Ke R, Cheng J, Li W, Huang Z H, Yan L W, Chu X, Wang Z H, Hidalgo C 2023Nucl. Fusion 63 126001
[24] Long T, Diamond P H, Ke R, Nie L, Xu M, Zhang X Y, Li B L, Chen Z P, Xu X, Wang Z H, Wu T, Tian W J, Yuan J B, Yuan B D, Gong S B, Xiao C Y, Gao J M, Hao Z G, Wang N C, Chen Z Y, Yang Z J, Gao L, Ding Y H, Pan Y, Chen W, Hao G Z, Li J Q, Zhong W L, Duan X R 2021Nucl. Fusion 61 126066
计量
- 文章访问数: 38
- PDF下载量: 0
- 被引次数: 0