搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

力学约束对锂离子电池双层电极中锂扩散和应力的影响

张凯 徐鹏 关学锋 杜玉群 王轲杰 陆勇俊

引用本文:
Citation:

力学约束对锂离子电池双层电极中锂扩散和应力的影响

张凯, 徐鹏, 关学锋, 杜玉群, 王轲杰, 陆勇俊
cstr: 32037.14.aps.74.20241275

Influence of mechanical constraints on Li diffusion and stress in bilayer electrode of lithium-ion batteries

ZHANG Kai, XU Peng, GUAN Xuefeng, DU Yuqun, WANG Kejie, LU Yongjun
cstr: 32037.14.aps.74.20241275
PDF
HTML
导出引用
  • 锂离子电池中的电极总是处于特定的约束当中, 这些约束既包括电池内部不可避免的被动结构约束, 又包括一些新兴技术应用场景可能赋予的外部主动约束. 本文主要利用化学-力学双向耦合的基本假设建立描述双层电极结构的理论模型, 考虑4种不同强弱的理想化变形约束作为其边界条件, 并通过数值求解研究在充电过程中这些外部约束对双层电极中Li扩散和应力的影响. 从力学的角度, 所研究的双层电极结构存在侧向伸缩和弯曲变形两个自由度, 弱化的约束条件能够部分或完全激活这些应力释放机制, 从而降低电极结构整体的应力水平, 并提升结构的力学稳定性. 然而, 从电化学的角度, 电极结构的正向弯曲变形所产生的应力梯度会阻碍嵌Li过程, 强化的约束能够部分或完全抑制电极的正向弯曲, 使活性层内Li浓度更加均匀, 从而提高活性层的容量利用率. 这些结果不仅为进一步理解双层电极在更加真实或极端服役条件下的化学-力学响应提供理论参考, 还从设计的角度表明折中的外部约束有利于平衡电极的结构耐久性和电化学性能.
    Lithium-ion batteries (LIBs) are widely used in portable electronic devices, electric vehicles, and other fields. With the rapid development of its application fields, there is an urgent need to further improve its energy density and safety. In the charging/discharging process of the LIBs, the diffusion of Li will cause local volumetric change in the electrode material. The degradation and damage of the electrode material structure caused by diffusion-induced deformation is a major obstacle to the development of LIBs. Generally speaking, the electrode materials in LIBs are always subject to specific external constraints, including both inevitable passive structural constraints within the battery and external active constraints that may be imposed by emerging technology application scenarios, which can also affect the mechanical properties of the electrode materials. Therefore, a more in-depth understanding of the diffusion-induced stress and Li concentration changes in the electrode material is an engineering requirement for developing new material design paradigms to improve the overall performance of LIBs. In this work, a two-way diffusion-stress coupling model is used to discuss the effects of the four different levels of idealized deformation constraints on the Li concentration and stress in the bilayer plate electrode in the charging process through the numerical solution. From a mechanical perspective, the bilayer plate electrode structure has two degrees of freedom: lateral expansion and bending deformation. Weakened constraint conditions can partially or completely activate these stress release mechanisms, thereby reducing the overall stress level of the electrode structure and improving its mechanical stability. However, from an electrochemical perspective, the stress gradient generated by the forward bending deformation of the electrode structure can hinder the Li intercalation process. Enhanced constraints can partially or completely suppress the forward bending of the electrode, making the Li concentration in the active layer more uniform and thus improving the capacity utilization efficiency of the active layer. These results not only provide theoretical references for further understanding the chemical-mechanical response of the bilayer electrodes under more realistic or extreme service conditions, but also indicate from a design perspective that compromised external constraints are beneficial for balancing the structural durability and electrochemical performance of electrodes.
      通信作者: 张凯, kzhang222@163.com ; 陆勇俊, luyongjun@mail.nwpu.edu.cn
    • 基金项目: 山西省基础研究计划(批准号: 202103021223190, 20210302124218)资助的课题.
      Corresponding author: ZHANG Kai, kzhang222@163.com ; LU Yongjun, luyongjun@mail.nwpu.edu.cn
    • Funds: Project supported by the Fundamental Research Program of Shanxi Province, China (Grant Nos. 202103021223190, 20210302124218).
    [1]

    Zhang H, Li C M, Eshetu G G, et al. 2020 Angew. Chem. Int. Ed. 59 534Google Scholar

    [2]

    Mukhopadhyay A, Sheldon B W 2014 Prog. Mater. Sci. 63 58Google Scholar

    [3]

    张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14

    Zhang J Q, Lü B, Song Y C 2017 Chin. Q. Mech. 38 14

    [4]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B X 2019 J. Power Sources 413 259Google Scholar

    [5]

    de Vasconcelos L S, Xu R, Xu Z, et al. 2022 Chem. Rev. 122 13043Google Scholar

    [6]

    Yang F 2024 J. Energy Storage 75 109634Google Scholar

    [7]

    Haftbaradaran H, Gao H, Curtin W A 2010 Appl. Phys. Lett. 96 091909Google Scholar

    [8]

    Vanimisetti S K, Ramakrishnan N 2012 Proc. IMechE Part C: J. Mech. Eng. Sci. 226 2192Google Scholar

    [9]

    Lu B, Ning C Q, Shi D X, Zhao Y F, Zhang J Q 2020 Chin. Phys. B 29 026201Google Scholar

    [10]

    Li J, Dozier A K, Li Y, Yang F, Cheng Y T 2011 J. Electrochem. Soc. 158 A689Google Scholar

    [11]

    Chew H B, Hou B, Wang X, Xia S 2014 Int. J. Solids Struct. 51 4176Google Scholar

    [12]

    Xie H, Zhang Q, Song H, Shi B, Kang Y 2017 J. Power Sources 342 896Google Scholar

    [13]

    Li D, Wang Y, Hu J, Lu B, Cheng Y T, Zhang J 2017 J. Power Sources 366 80Google Scholar

    [14]

    Sethuraman V A, Chon M J, Shimshak M, Srinivasan V, Guduru P R 2010 J. Power Sources 195 5062Google Scholar

    [15]

    Pharr M, Suo Z, Vlassak J J 2013 Nano Lett. 13 5570Google Scholar

    [16]

    Guo Z S, Zhang T, Zhu J, Wang Y 2014 Comput. Mater. Sci. 94 218Google Scholar

    [17]

    宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会 2018 物理学报 67 140201Google Scholar

    Song X, Lu Y J, Shi M L, Zhao X, Wang F H 2018 Acta Phys. Sin. 67 140201Google Scholar

    [18]

    Lu Y, Che Q, Song X, Wang F, Zhao X 2018 Scr. Mater. 150 164Google Scholar

    [19]

    Zhang J, Lu B, Song Y, Ji X 2012 J. Power Sources 209 220Google Scholar

    [20]

    Yang B, He Y P, Irsa J, Lundgren C A, Ratchford J B, Zhao Y P 2012 J. Power Sources 204 168Google Scholar

    [21]

    Hao F, Fang D 2013 J. Power Sources 242 415Google Scholar

    [22]

    Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307Google Scholar

    [23]

    He Y L, Hu H J, Song Y C, Guo Z S, Liu C, Zhang J Q 2014 J. Power Sources 248 517Google Scholar

    [24]

    Song Y, Li Z, Zhang J 2014 J. Power Sources 263 22Google Scholar

    [25]

    Zhang X Y, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351Google Scholar

    [26]

    Ji L, Guo Z, Du S, Chen L 2017 Int. J. Mech. Sci. 134 599Google Scholar

    [27]

    Liu D, Chen W, Shen X 2017 Compos. Struct. 165 91Google Scholar

    [28]

    Yin J, Shao X, Lu B, Song Y, Zhang J 2018 Appl. Math. Mech. 39 1567Google Scholar

    [29]

    Pouyanmehr R, Hassanzadeh-Aghdam M K, Ansari R 2020 Mech. Mater. 145 103390Google Scholar

    [30]

    Zhang A, Wang B, Li G, Wang J, Du J 2020 Eng. Fract. Mech. 235 107189Google Scholar

    [31]

    Gao C, Guan L, Shi Y, Zhou J, Cai R 2022 Acta Mech. 233 5265Google Scholar

    [32]

    Zhang P, Wang Q, Qiu W, Feng L 2023 J. Electrochem. Soc. 170 050508Google Scholar

    [33]

    Crank J 1979 The Mathematics of Diffusion (London: Oxford University Press) p61

    [34]

    Prussin S 1961 J. Appl. Phys. 32 1876Google Scholar

    [35]

    Zhang X, Shyy W, Sastry A M 2007 J. Electrochem. Soc. 154 A910Google Scholar

    [36]

    He Y, Hu H, Huang D 2016 Mater. Des. 92 438Google Scholar

    [37]

    Xia X, Afshar A, Yang H, Portela C M, Kochmann D M, Di Leo C V, Greer J R 2019 Nature 573 205Google Scholar

    [38]

    Qiu W, Zhang J, Su D, Zhang Y, Zhang P, Wang Q, Feng L 2023 Int. J. Mech. Sci. 248 108231Google Scholar

    [39]

    Berg S, Akturk A, Kammoun M, Ardebili H 2017 Extreme Mech. Lett. 13 108Google Scholar

    [40]

    Shi Y, Xu C, Weng L, Wei Y, Chen B, Wang Y, Zhou J, Cai R 2021 Mech. Mater. 161 104024Google Scholar

    [41]

    Kim S, Choi S J, Zhao K, Yang H, Gobbi G, Zhang S, Li J 2016 Nat. Commun. 7 10146Google Scholar

    [42]

    Johannisson W, Harnden R, Zenkert D, Lindbergh G 2020 Proc. Natl. Acad. Sci. U. S. A. 117 7658Google Scholar

    [43]

    Carlstedt D, Runesson K, Larsson F, Jänicke R, Asp L E 2023 J. Mech. Phys. Solids 179 105371Google Scholar

    [44]

    Zhou W 2015 Electrochim. Acta 185 28Google Scholar

    [45]

    Xuan F Z, Shao S S, Wang Z, Tu S T 2008 J. Phys. D: Appl. Phys. 42 015401

    [46]

    Zhu Z, Hu H, He Y, Tao B 2018 Compos. Struct. 204 822Google Scholar

    [47]

    Zhu Z, Wan J, Wu T, Huang P 2022 Acta Mech. 233 2471Google Scholar

    [48]

    Song X, Lu Y, Wang F, Zhao X, Chen H 2020 J. Power Sources 452 227803Google Scholar

    [49]

    Peng Y, Hao F 2023 J. Energy Storage 57 106195Google Scholar

    [50]

    Shi Y, Xu C, Chen B, Zhou J, Cai R 2023 Appl. Math. Mech. 44 189Google Scholar

    [51]

    Guan L, Shi Y, Gao C, Wang T, Zhou J, Cai R 2023 Electrochim. Acta 440 141669Google Scholar

    [52]

    Geng S, Zhang K, Zheng B, Zhang Y 2024 Acta Mech. 235 191Google Scholar

    [53]

    Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M, Shi S Q 2020 Chin. Phys. B 29 068202Google Scholar

    [54]

    张静, 冯露, 仇巍 张鹏飞 2021 应用力学学报 38 2306

    Zhang J, Feng L, Qiu W, Zhang P F 2021 Chin. J. Appl. Mech. 38 2306

    [55]

    Yang S, Lu Y, Liu B, Che Q, Wang F 2023 Int. J. Hydrogen Energy 48 12461Google Scholar

    [56]

    Freud L B 1993 J. Cryst. Growth 132 341Google Scholar

    [57]

    陆勇俊, 杨溢, 王峰会, 楼康, 赵翔 2016 物理学报 65 098102Google Scholar

    Lu Y J, Yang Y, Wang F H, Lou K, Zhao X 2016 Acta Phys. Sin. 65 098102Google Scholar

    [58]

    Purkayastha R, McMeeking R 2013 Comput. Mater. Sci. 80 2Google Scholar

    [59]

    Sethuraman V A, Srinivasan V, Bower A F, Guduru P R 2010 J. Electrochem. Soc. 157 A1253Google Scholar

    [60]

    Yang F 2013 J. Power Sources 241 146Google Scholar

    [61]

    Haftbaradaran H, Xiao X, Verbrugge M W, Gao H 2012 J. Power Sources 206 357Google Scholar

    [62]

    Yang F 2011 J. Power Sources 196 465Google Scholar

  • 图 1  (a)活性层与集流体构成的双层电极横截面示意图(1, 2分别代表活性层和集流体); (b)四种电极的约束情况

    Fig. 1.  (a) Schematic diagram of the cross-section of a bilayer electrode composed of active layer and current collector (1 and 2 represents the active layer and the current collector); (b) four electrode constraint situations.

    图 2  恒流(${\bar J_0} = 0.5$)充电过程活性层中不同时刻浓度场的解析解与数值解

    Fig. 2.  Analytical and numerical solutions of concentration field in the active layer at different time under constant current (${\bar J_0} = 0.5$) charging.

    图 3  (a) 充电过程中双层电极内无量纲曲率随时间的变化情况; (b) 活性层中不同时刻无量纲锂浓度沿活性层厚度的分布情况

    Fig. 3.  (a) Variations of dimensionless curvature with time in the bilayer electrodes under charging; (b) distribution of dimensionless Li concentration at different time in the active layer.

    图 4  充电过程中无量纲通量沿活性层厚度方向的分布情况. 扩散和弯曲应力诱导通量 (a) $ \bar t = 0.1 $, (b) $ \bar t = 1.2 $; 总通量 (c) $ \bar t = 0.1 $, (d) $ \bar t = 1.2 $

    Fig. 4.  Distribution of dimensionless flux along the thickness of the active layer under charging. Diffusion and bending stress-induced flux: (a) $ \bar t = 0.1 $; (b) $ \bar t = 1.2 $. Total flux: (c) $ \bar t = 0.1 $; (d) $ \bar t = 1.2 $.

    图 5  充电过程中双层电极中无量纲应力沿电极厚度方向的分布情况 (a) $ \bar t = 0.1 $; (b) $ \bar t = 1.2 $. (c)活性层与集流体界面以及(d)活性层表面处无量纲应力随时间的变化情况

    Fig. 5.  Distribution of dimensionless stress along the thickness direction of the bilayer electrode during charging process: (a) $ \bar t = 0.1 $; (b) $ \bar t = 1.2 $. (c) The variation of dimensionless stress over time at the interface between the active layer and the current collector, as well as at (d) the surface of the active layer.

  • [1]

    Zhang H, Li C M, Eshetu G G, et al. 2020 Angew. Chem. Int. Ed. 59 534Google Scholar

    [2]

    Mukhopadhyay A, Sheldon B W 2014 Prog. Mater. Sci. 63 58Google Scholar

    [3]

    张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14

    Zhang J Q, Lü B, Song Y C 2017 Chin. Q. Mech. 38 14

    [4]

    Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu B X 2019 J. Power Sources 413 259Google Scholar

    [5]

    de Vasconcelos L S, Xu R, Xu Z, et al. 2022 Chem. Rev. 122 13043Google Scholar

    [6]

    Yang F 2024 J. Energy Storage 75 109634Google Scholar

    [7]

    Haftbaradaran H, Gao H, Curtin W A 2010 Appl. Phys. Lett. 96 091909Google Scholar

    [8]

    Vanimisetti S K, Ramakrishnan N 2012 Proc. IMechE Part C: J. Mech. Eng. Sci. 226 2192Google Scholar

    [9]

    Lu B, Ning C Q, Shi D X, Zhao Y F, Zhang J Q 2020 Chin. Phys. B 29 026201Google Scholar

    [10]

    Li J, Dozier A K, Li Y, Yang F, Cheng Y T 2011 J. Electrochem. Soc. 158 A689Google Scholar

    [11]

    Chew H B, Hou B, Wang X, Xia S 2014 Int. J. Solids Struct. 51 4176Google Scholar

    [12]

    Xie H, Zhang Q, Song H, Shi B, Kang Y 2017 J. Power Sources 342 896Google Scholar

    [13]

    Li D, Wang Y, Hu J, Lu B, Cheng Y T, Zhang J 2017 J. Power Sources 366 80Google Scholar

    [14]

    Sethuraman V A, Chon M J, Shimshak M, Srinivasan V, Guduru P R 2010 J. Power Sources 195 5062Google Scholar

    [15]

    Pharr M, Suo Z, Vlassak J J 2013 Nano Lett. 13 5570Google Scholar

    [16]

    Guo Z S, Zhang T, Zhu J, Wang Y 2014 Comput. Mater. Sci. 94 218Google Scholar

    [17]

    宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会 2018 物理学报 67 140201Google Scholar

    Song X, Lu Y J, Shi M L, Zhao X, Wang F H 2018 Acta Phys. Sin. 67 140201Google Scholar

    [18]

    Lu Y, Che Q, Song X, Wang F, Zhao X 2018 Scr. Mater. 150 164Google Scholar

    [19]

    Zhang J, Lu B, Song Y, Ji X 2012 J. Power Sources 209 220Google Scholar

    [20]

    Yang B, He Y P, Irsa J, Lundgren C A, Ratchford J B, Zhao Y P 2012 J. Power Sources 204 168Google Scholar

    [21]

    Hao F, Fang D 2013 J. Power Sources 242 415Google Scholar

    [22]

    Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307Google Scholar

    [23]

    He Y L, Hu H J, Song Y C, Guo Z S, Liu C, Zhang J Q 2014 J. Power Sources 248 517Google Scholar

    [24]

    Song Y, Li Z, Zhang J 2014 J. Power Sources 263 22Google Scholar

    [25]

    Zhang X Y, Hao F, Chen H S, Fang D N 2015 Mech. Mater. 91 351Google Scholar

    [26]

    Ji L, Guo Z, Du S, Chen L 2017 Int. J. Mech. Sci. 134 599Google Scholar

    [27]

    Liu D, Chen W, Shen X 2017 Compos. Struct. 165 91Google Scholar

    [28]

    Yin J, Shao X, Lu B, Song Y, Zhang J 2018 Appl. Math. Mech. 39 1567Google Scholar

    [29]

    Pouyanmehr R, Hassanzadeh-Aghdam M K, Ansari R 2020 Mech. Mater. 145 103390Google Scholar

    [30]

    Zhang A, Wang B, Li G, Wang J, Du J 2020 Eng. Fract. Mech. 235 107189Google Scholar

    [31]

    Gao C, Guan L, Shi Y, Zhou J, Cai R 2022 Acta Mech. 233 5265Google Scholar

    [32]

    Zhang P, Wang Q, Qiu W, Feng L 2023 J. Electrochem. Soc. 170 050508Google Scholar

    [33]

    Crank J 1979 The Mathematics of Diffusion (London: Oxford University Press) p61

    [34]

    Prussin S 1961 J. Appl. Phys. 32 1876Google Scholar

    [35]

    Zhang X, Shyy W, Sastry A M 2007 J. Electrochem. Soc. 154 A910Google Scholar

    [36]

    He Y, Hu H, Huang D 2016 Mater. Des. 92 438Google Scholar

    [37]

    Xia X, Afshar A, Yang H, Portela C M, Kochmann D M, Di Leo C V, Greer J R 2019 Nature 573 205Google Scholar

    [38]

    Qiu W, Zhang J, Su D, Zhang Y, Zhang P, Wang Q, Feng L 2023 Int. J. Mech. Sci. 248 108231Google Scholar

    [39]

    Berg S, Akturk A, Kammoun M, Ardebili H 2017 Extreme Mech. Lett. 13 108Google Scholar

    [40]

    Shi Y, Xu C, Weng L, Wei Y, Chen B, Wang Y, Zhou J, Cai R 2021 Mech. Mater. 161 104024Google Scholar

    [41]

    Kim S, Choi S J, Zhao K, Yang H, Gobbi G, Zhang S, Li J 2016 Nat. Commun. 7 10146Google Scholar

    [42]

    Johannisson W, Harnden R, Zenkert D, Lindbergh G 2020 Proc. Natl. Acad. Sci. U. S. A. 117 7658Google Scholar

    [43]

    Carlstedt D, Runesson K, Larsson F, Jänicke R, Asp L E 2023 J. Mech. Phys. Solids 179 105371Google Scholar

    [44]

    Zhou W 2015 Electrochim. Acta 185 28Google Scholar

    [45]

    Xuan F Z, Shao S S, Wang Z, Tu S T 2008 J. Phys. D: Appl. Phys. 42 015401

    [46]

    Zhu Z, Hu H, He Y, Tao B 2018 Compos. Struct. 204 822Google Scholar

    [47]

    Zhu Z, Wan J, Wu T, Huang P 2022 Acta Mech. 233 2471Google Scholar

    [48]

    Song X, Lu Y, Wang F, Zhao X, Chen H 2020 J. Power Sources 452 227803Google Scholar

    [49]

    Peng Y, Hao F 2023 J. Energy Storage 57 106195Google Scholar

    [50]

    Shi Y, Xu C, Chen B, Zhou J, Cai R 2023 Appl. Math. Mech. 44 189Google Scholar

    [51]

    Guan L, Shi Y, Gao C, Wang T, Zhou J, Cai R 2023 Electrochim. Acta 440 141669Google Scholar

    [52]

    Geng S, Zhang K, Zheng B, Zhang Y 2024 Acta Mech. 235 191Google Scholar

    [53]

    Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M, Shi S Q 2020 Chin. Phys. B 29 068202Google Scholar

    [54]

    张静, 冯露, 仇巍 张鹏飞 2021 应用力学学报 38 2306

    Zhang J, Feng L, Qiu W, Zhang P F 2021 Chin. J. Appl. Mech. 38 2306

    [55]

    Yang S, Lu Y, Liu B, Che Q, Wang F 2023 Int. J. Hydrogen Energy 48 12461Google Scholar

    [56]

    Freud L B 1993 J. Cryst. Growth 132 341Google Scholar

    [57]

    陆勇俊, 杨溢, 王峰会, 楼康, 赵翔 2016 物理学报 65 098102Google Scholar

    Lu Y J, Yang Y, Wang F H, Lou K, Zhao X 2016 Acta Phys. Sin. 65 098102Google Scholar

    [58]

    Purkayastha R, McMeeking R 2013 Comput. Mater. Sci. 80 2Google Scholar

    [59]

    Sethuraman V A, Srinivasan V, Bower A F, Guduru P R 2010 J. Electrochem. Soc. 157 A1253Google Scholar

    [60]

    Yang F 2013 J. Power Sources 241 146Google Scholar

    [61]

    Haftbaradaran H, Xiao X, Verbrugge M W, Gao H 2012 J. Power Sources 206 357Google Scholar

    [62]

    Yang F 2011 J. Power Sources 196 465Google Scholar

  • [1] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性. 物理学报, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [2] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [3] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [4] 彭劼扬, 王家海, 沈斌, 李浩亮, 孙昊明. 纳米颗粒的表面效应和电极颗粒间挤压作用对锂离子电池电压迟滞的影响. 物理学报, 2019, 68(9): 090202. doi: 10.7498/aps.68.20182302
    [5] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [6] 庞辉. 基于扩展单粒子模型的锂离子电池参数识别策略. 物理学报, 2018, 67(5): 058201. doi: 10.7498/aps.67.20172171
    [7] 宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会. 集流体塑性变形对锂离子电池双层电极中锂扩散和应力的影响. 物理学报, 2018, 67(14): 140201. doi: 10.7498/aps.67.20180148
    [8] 彭颖吒, 李泳, 郑百林, 张锴, 徐咏川. 考虑介质膨胀速率的锂离子电池管状电极中扩散诱导应力及轴向支反力分析. 物理学报, 2018, 67(7): 070203. doi: 10.7498/aps.67.20172288
    [9] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [10] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [11] 马昊, 刘磊, 路雪森, 刘素平, 师建英. 锂离子电池正极材料Li2FeSiO4的电子结构与输运特性. 物理学报, 2015, 64(24): 248201. doi: 10.7498/aps.64.248201
    [12] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [13] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [14] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [15] 曾祥明, 鄢慧君, 欧阳楚英. 第一性原理计算研究黑磷嵌锂态的动力学性能. 物理学报, 2012, 61(24): 247101. doi: 10.7498/aps.61.247101
    [16] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [17] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
    [18] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [19] 李佳, 杨传铮, 张熙贵, 张建, 夏保佳. 石墨/Li(Ni1/3Co1/3Mn1/3)O2电池充放电过程中电极材料的XRD研究. 物理学报, 2009, 58(9): 6573-6581. doi: 10.7498/aps.58.6573
    [20] 侯柱锋, 刘慧英, 朱梓忠, 黄美纯, 杨 勇. 锂离子电池负极材料CuSn的Li嵌入性质的研究. 物理学报, 2003, 52(4): 952-957. doi: 10.7498/aps.52.952
计量
  • 文章访问数:  314
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-10
  • 修回日期:  2024-11-20
  • 上网日期:  2024-12-10

/

返回文章
返回