搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/MgO/MoS2/Cu结构的电阻开关特性

何小龙 陈鹏

引用本文:
Citation:

Cu/MgO/MoS2/Cu结构的电阻开关特性

何小龙, 陈鹏
cstr: 32037.14.aps.74.20241298

Resistive switching characteristics of Cu/MgO/MoS2/Cu structure

HE Xiaolong, CHEN Peng
cstr: 32037.14.aps.74.20241298
PDF
HTML
导出引用
  • 采用磁控溅射的方法制备了Cu/MgO/Cu, Cu/MgO/MoS2/Cu和Cu/MoS2/MgO/Cu三种器件. 通过对器件的表征测试及I-V曲线的测量, 发现对于Cu/MgO/Cu器件, 加入MoS2插入层后, 器件的电阻开关特性会发生大的变化. 分析结果表明, MoS2插入层并没有改变器件的主要传导机制(空间电荷限制传导), 但影响了界面势垒的调控作用, 这种影响还与MoS2插入层的位置有关. Cu/MgO/Cu, Cu/MgO/MoS2/Cu和Cu/MoS2/MgO/Cu三种器件中, Cu/MgO/MoS2/Cu器件表现出更大的开关比(约为103)和更低的复位电压(约为0.21 V), 这可以归因于MgO与MoS2之间界面势垒的调控. 而Cu/MoS2/MgO/Cu器件表现出较好的可靠性和稳定性. 此外, MoS2层在插入到底电极Cu和MgO之间时, 器件的漏电流有明显的降低.
    During the study of resistive switching devices, researchers have found that the influence of the insertion layer cannot be ignored. Many reports have confirmed that the appropriate insertion layer can significantly improve the performance of the resistive switching devices. Therefore, in this work, we use magnetron sputtering to fabricate three devices: Cu/MgO/Cu, Cu/MgO/MoS2/Cu and Cu/MoS2/MgO/Cu. Through the characterization test of each device and the measurement of the I-V curve, it is found that the resistive switching characteristics of the Cu/MgO/Cu device will change greatly after adding an MoS2 insertion layer. The analysis results show that the inserted MoS2 layer does not change the main transmission mechanism (space charge limited conduction) of the device, but affects the regulating function of interfacial potential barrier, the effect also is related to the location of MoS2 inserted into the layer. Among the Cu/MgO/Cu, Cu/MgO/MoS2/Cu and Cu/MoS2/MgO/Cu devices, the Cu/MgO/MoS2/Cu device exhibits a larger switching ratio (about 103) and a lower reset voltage (about 0.21 V), which can be attributed to the regulation of the interface barrier between MgO and MoS2. In addition, when the MoS2 layer is inserted between the bottom electrodes Cu and MgO, the leakage current of the device is significantly reduced. Therefore, Cu/MoS2/MgO/Cu device has the highest commercial value from the point of view of practical applications. Finally, according to the XPS results and XRD results, we establish the conductive filament models for the three devices, and analyze the reasons for the different resistive switching characteristics of the three devices.
      通信作者: 陈鹏, pchen@swu.edu.cn
      Corresponding author: CHEN Peng, pchen@swu.edu.cn
    [1]

    Sun B, Xiao M, Zhou G, Ren Z, Zhou Y N, Wu Y A 2020 Mater. Today Adv. 6 100056Google Scholar

    [2]

    Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar

    [3]

    Wang Z J, Song Y X, Zhang G B, Luo Q, Xu K, Gao D W, Yu B, Loke D, Zhong S, Zhang Y S 2024 Int. J. Extreme Manuf. 6 032006Google Scholar

    [4]

    Udaya Mohanan K 2024 Nanomaterials 14 527Google Scholar

    [5]

    Sehgal A, Dhull S, Roy S, Kaushik B K 2024 J. Mater. Chem. C 12 5274Google Scholar

    [6]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. , R 83 1Google Scholar

    [7]

    Pan J Y, He H Y, Li T J, Gao Y L, Yang S Y, Lin X Y J 2023 Phys. Status Solidi A 220 2300416Google Scholar

    [8]

    Lee J S, Lee S, Noh T W 2015 Appl. Phys. Rev. 2 031303Google Scholar

    [9]

    Kumar B, Kaushik B K, Negi Y S 2013 J. Mater. Sci. -Mater. Electron. 25 1Google Scholar

    [10]

    Duan X G, Cao Z L, Gao K K, Yan W T, Sun S Y, Zhou G D, Wu Z H, Ren F G, Sun B 2024 Adv. Mater. 36 2310704Google Scholar

    [11]

    Dias C, Guerra L M, Bordalo B D, Lü H, Ferraria A M, Botelho do Rego A M, Cardoso S, Freitas P P, Ventura J 2017 Phys. Chem. Chem. Phys. 19 10898Google Scholar

    [12]

    Guo Z Q, Liu G J, Sun Y, Zhang Y X, Zhao J H, Liu P, Wang H, Zhou Z Y, Zhao Z, Jia X T, Sun J M, Shao Y D, Han X, Zhang Z X, Yan X B 2023 ACS Nano 17 21518Google Scholar

    [13]

    He C T, Lu Y, Tang Y Y, Li X L, Chen P 2021 Appl. Phys. A 127 484Google Scholar

    [14]

    Hsu C C, Shrivastava S, Pratik S, Chandrasekaran S, Tseng T Y 2023 IEEE Trans. Electron Devices 70 1048Google Scholar

    [15]

    Saini S, Lodhi A, Dwivedi A, Khandelwal A, Tiwari S P 2023 IEEE Trans. Electron Devices 70 53Google Scholar

    [16]

    Das O P, Pandey S K 2022 Phys. Status Solidi B 259 2200103Google Scholar

    [17]

    Kumar D, Kalaga P S, Ang D S 2020 IEEE Trans. Electron Devices 67 4274Google Scholar

    [18]

    Lee J, Lee S, Kwak M, Choi W, Mosendz O, Hwang H 2022 IEEE Electron Device Lett. 43 220Google Scholar

    [19]

    Lee S R, Kang B S 2024 Curr. Appl Phys. 61 75Google Scholar

    [20]

    Huang H H, Shih W C, Lai C H 2010 Appl. Phys. Lett. 96 193505Google Scholar

    [21]

    Guerra L M, Dias C, Pereira J, Lv H, Cardoso S, Freitas P P, Ventura J 2017 J. Nanosci. Nanotechnol. 17 564Google Scholar

    [22]

    Aziz I, Ciou J H, Kongcharoen H, Lee P S 2022 J. Appl. Phys. 132 014502Google Scholar

    [23]

    Chow S C W, Dananjaya P A, Ang J M, Loy D J J, Thong J R, Hoo S W, Toh E H, Lew W S 2023 Appl. Surf. Sci. 608 155233Google Scholar

    [24]

    Hu G, Yu Z D, Qu H, et al. 2024 Appl. Phys. Lett. 124 142109Google Scholar

    [25]

    Xiong X Y, Wu F, Ouyang Y, Liu Y M, Wang Z G, Tian H, Dong M D 2023 Adv. Funct. Mater. 34 2213348Google Scholar

    [26]

    Ling Y Y, Li J X, Luo T, Lin Y, Zhang G X, Shou M H, Liao Q 2023 Nanomaterials 13 3117Google Scholar

    [27]

    Jiao Z P, Lan X Y, Zhou X L, Wang K J, Zong H R, Zhang P, Xu B H 2023 J. Mater. Chem. C 11 17050Google Scholar

    [28]

    Li S C, He C T, Shu H Y, Chen P 2024 Mod. Phys. Lett. B 38 2450331Google Scholar

    [29]

    Guo J J, Ren S X, Wu L Q, Kang X, Chen W, Zhao X 2018 Appl. Surf. Sci. 434 1074Google Scholar

    [30]

    Chen T, Yang S W, Wang J, Chen W, Liu L F, Wang Y, Cheng S J, Zhao X 2021 Adv. Electron. Mater. 7 2000882Google Scholar

    [31]

    Qi L Q, Shen J J, Xu Q, Lu P P, Feng P, Sun H Y 2022 Chem. Phys. Lett. 799 139560Google Scholar

    [32]

    Menghini M, Quinteros C, Su C Y, Homm P, Levy P, Kittl J, Locquet J P 2014 Phys. Status Solidi C 12 246Google Scholar

    [33]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [34]

    Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 1Google Scholar

    [35]

    Chiu F C, Shih W C, Feng J J 2012 J. Appl. Phys. 111 094104Google Scholar

    [36]

    Loy D J J, Dananjaya P A, Hong X L, Shum D P, Lew W S 2018 Sci. Rep. 8 14774Google Scholar

    [37]

    Fang S L, Liu W H, Li X, Wang X L, Geng L, Wu M S, Huang X D, Han C Y 2019 Appl. Phys. Lett. 115 244102Google Scholar

    [38]

    Wang S S, Dang B J, Sun J, Zhao M M, Yang M, Ma X H, Wang H, Hao Y 2021 IEEE Electron Device Lett. 42 700Google Scholar

    [39]

    Wang S S, Dang B J, Sun J, Song F, Zhao M M, Yang M, Ma X H, Wang H, Hao Y 2020 IEEE Electron Device Lett. 41 553Google Scholar

    [40]

    Li S C, He C T, Shu H Y, Chen P 2024 Appl. Phys. A 130 534Google Scholar

    [41]

    Lü J X, Wang S S, Li F F, Liang Q, Yang M, Ma X H, Wang H, Hao Y 2021 IEEE Electron Device Lett. 42 1599Google Scholar

  • 图 1  器件结构示意图及XRD图谱 (a) Cu/MgO/Cu的结构; (b) Cu/MoS2/MgO/Cu的结构; (c) Cu/MgO/MoS2/Cu的结构; (d) MgO/MoS2/Cu的XRD图谱

    Fig. 1.  Structure diagram and XRD pattern of device: (a) Structure of Cu/MgO/Cu; (b) structure of Cu/MoS2/MgO/Cu; (c) structure of Cu/MgO/MoS2/Cu; (d) XRD pattern of MgO/MoS2/Cu.

    图 2  器件的XPS谱图 (a) Cu的俄歇电子谱; (b) Cu 2p的XPS谱图; (c) Mg 1s的XPS谱图; (d) O 1s的XPS谱图

    Fig. 2.  XPS spectra of the device: (a) AES of Cu; (b) XPS spectrum of Cu 2p; (c) XPS spectrum of Mg 1s; (d) XPS spectrum of O 1s

    图 3  半对数坐标下三种器件的I-V循环轨迹图 (a) Cu/MgO/Cu的多循环曲线; (b) Cu/MgO/Cu的单循环曲线; (c) Cu/MoS2/MgO/Cu的多循环曲线; (d) Cu/MoS2/MgO/Cu的单循环曲线; (e) Cu/MgO/MoS2/Cu的多循环曲线; (f) Cu/MgO/MoS2/Cu的单循环曲线

    Fig. 3.  I-V cycle trajectories of the three devices in semilog coordinates: (a) Multiple cycle curves of Cu/MgO/Cu; (b) single cycle curve of Cu/MgO/Cu; (c) multiple cycle curves of Cu/MoS2/MgO/Cu; (d) single cycle curve of Cu/MoS2/MgO/Cu; (e) multiple cycle curves of Cu/MgO/MoS2/Cu; (f) single cycle curve of Cu/MgO/MoS2/Cu.

    图 4  半对数坐标下三种器件的单循环对比图

    Fig. 4.  Single cycle comparison diagram of the three devices in semilog coordinates.

    图 5  三种器件的VResetVSet累计概率分布图 (a) Cu/MgO/Cu; (b) Cu/MoS2/MgO/Cu; (c) Cu/MgO/MoS2/Cu

    Fig. 5.  Cumulative probability distribution of VReset and VSet for the three devices: (a) Cu/MgO/Cu; (b) Cu/MoS2/MgO/Cu; (c) Cu/MgO/MoS2/Cu.

    图 6  三种器件的高低阻态分布图 (a) Cu/MgO/Cu; (b) Cu/MoS2/MgO/Cu; (c) Cu/MgO/MoS2/Cu

    Fig. 6.  HRS and LRS distribution of the three devices: (a) Cu/MgO/Cu; (b) Cu/MoS2/MgO/Cu; (c) Cu/MgO/MoS2/Cu.

    图 7  双对数坐标下三种器件的I-V曲线拟合图 (a) 正电压下Cu/MgO/Cu的拟合曲线; (b) 负电压下Cu/MgO/Cu的拟合曲线; (c) 正电压下Cu/MoS2/MgO/Cu的拟合曲线; (d) 负电压下Cu/MoS2/MgO/Cu的拟合曲线; (e) 正电压下Cu/MgO/MoS2/Cu的拟合曲线; (f) 负电压下Cu/MgO/MoS2/Cu的拟合曲线

    Fig. 7.  I-V curves fitting diagram of the three devices in double logarithm coordinates: (a) Fitted curve of Cu/MgO/Cu at positive voltage; (b) fitted curve of Cu/MgO/Cu at negative voltage; (c) fitted curve of Cu/MoS2/MgO/Cu at positive voltage; (d) fitted curve of Cu/MoS2/MgO/Cu at negative voltage; (e) fitted curve of Cu/MgO/MoS2/Cu at positive voltage; (f) fitted curve of Cu/MgO/MoS2/Cu at negative voltage.

    图 8  三种器件的机理解释示意图 (a) Cu/MgO/Cu的reset过程; (b) Cu/MgO/Cu的set过程; (c) Cu/MoS2/MgO/Cu的reset过程; (d) Cu/MoS2/MgO/Cu的set过程; (e) Cu/MgO/MoS2/Cu的reset过程; (f) Cu/MgO/MoS2/Cu的set过程

    Fig. 8.  Schematic diagram of the mechanism explanation of the three devices: (a) Reset process of Cu/MgO/Cu; (b) set process of Cu/MgO/Cu; (c) reset process of Cu/MoS2/MgO/Cu; (d) set process of Cu/MoS2/MgO/Cu; (e) reset process of Cu/MgO/MoS2/Cu; (f) set process of Cu/MgO/MoS2/Cu.

  • [1]

    Sun B, Xiao M, Zhou G, Ren Z, Zhou Y N, Wu Y A 2020 Mater. Today Adv. 6 100056Google Scholar

    [2]

    Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar

    [3]

    Wang Z J, Song Y X, Zhang G B, Luo Q, Xu K, Gao D W, Yu B, Loke D, Zhong S, Zhang Y S 2024 Int. J. Extreme Manuf. 6 032006Google Scholar

    [4]

    Udaya Mohanan K 2024 Nanomaterials 14 527Google Scholar

    [5]

    Sehgal A, Dhull S, Roy S, Kaushik B K 2024 J. Mater. Chem. C 12 5274Google Scholar

    [6]

    Pan F, Gao S, Chen C, Song C, Zeng F 2014 Mater. Sci. Eng. , R 83 1Google Scholar

    [7]

    Pan J Y, He H Y, Li T J, Gao Y L, Yang S Y, Lin X Y J 2023 Phys. Status Solidi A 220 2300416Google Scholar

    [8]

    Lee J S, Lee S, Noh T W 2015 Appl. Phys. Rev. 2 031303Google Scholar

    [9]

    Kumar B, Kaushik B K, Negi Y S 2013 J. Mater. Sci. -Mater. Electron. 25 1Google Scholar

    [10]

    Duan X G, Cao Z L, Gao K K, Yan W T, Sun S Y, Zhou G D, Wu Z H, Ren F G, Sun B 2024 Adv. Mater. 36 2310704Google Scholar

    [11]

    Dias C, Guerra L M, Bordalo B D, Lü H, Ferraria A M, Botelho do Rego A M, Cardoso S, Freitas P P, Ventura J 2017 Phys. Chem. Chem. Phys. 19 10898Google Scholar

    [12]

    Guo Z Q, Liu G J, Sun Y, Zhang Y X, Zhao J H, Liu P, Wang H, Zhou Z Y, Zhao Z, Jia X T, Sun J M, Shao Y D, Han X, Zhang Z X, Yan X B 2023 ACS Nano 17 21518Google Scholar

    [13]

    He C T, Lu Y, Tang Y Y, Li X L, Chen P 2021 Appl. Phys. A 127 484Google Scholar

    [14]

    Hsu C C, Shrivastava S, Pratik S, Chandrasekaran S, Tseng T Y 2023 IEEE Trans. Electron Devices 70 1048Google Scholar

    [15]

    Saini S, Lodhi A, Dwivedi A, Khandelwal A, Tiwari S P 2023 IEEE Trans. Electron Devices 70 53Google Scholar

    [16]

    Das O P, Pandey S K 2022 Phys. Status Solidi B 259 2200103Google Scholar

    [17]

    Kumar D, Kalaga P S, Ang D S 2020 IEEE Trans. Electron Devices 67 4274Google Scholar

    [18]

    Lee J, Lee S, Kwak M, Choi W, Mosendz O, Hwang H 2022 IEEE Electron Device Lett. 43 220Google Scholar

    [19]

    Lee S R, Kang B S 2024 Curr. Appl Phys. 61 75Google Scholar

    [20]

    Huang H H, Shih W C, Lai C H 2010 Appl. Phys. Lett. 96 193505Google Scholar

    [21]

    Guerra L M, Dias C, Pereira J, Lv H, Cardoso S, Freitas P P, Ventura J 2017 J. Nanosci. Nanotechnol. 17 564Google Scholar

    [22]

    Aziz I, Ciou J H, Kongcharoen H, Lee P S 2022 J. Appl. Phys. 132 014502Google Scholar

    [23]

    Chow S C W, Dananjaya P A, Ang J M, Loy D J J, Thong J R, Hoo S W, Toh E H, Lew W S 2023 Appl. Surf. Sci. 608 155233Google Scholar

    [24]

    Hu G, Yu Z D, Qu H, et al. 2024 Appl. Phys. Lett. 124 142109Google Scholar

    [25]

    Xiong X Y, Wu F, Ouyang Y, Liu Y M, Wang Z G, Tian H, Dong M D 2023 Adv. Funct. Mater. 34 2213348Google Scholar

    [26]

    Ling Y Y, Li J X, Luo T, Lin Y, Zhang G X, Shou M H, Liao Q 2023 Nanomaterials 13 3117Google Scholar

    [27]

    Jiao Z P, Lan X Y, Zhou X L, Wang K J, Zong H R, Zhang P, Xu B H 2023 J. Mater. Chem. C 11 17050Google Scholar

    [28]

    Li S C, He C T, Shu H Y, Chen P 2024 Mod. Phys. Lett. B 38 2450331Google Scholar

    [29]

    Guo J J, Ren S X, Wu L Q, Kang X, Chen W, Zhao X 2018 Appl. Surf. Sci. 434 1074Google Scholar

    [30]

    Chen T, Yang S W, Wang J, Chen W, Liu L F, Wang Y, Cheng S J, Zhao X 2021 Adv. Electron. Mater. 7 2000882Google Scholar

    [31]

    Qi L Q, Shen J J, Xu Q, Lu P P, Feng P, Sun H Y 2022 Chem. Phys. Lett. 799 139560Google Scholar

    [32]

    Menghini M, Quinteros C, Su C Y, Homm P, Levy P, Kittl J, Locquet J P 2014 Phys. Status Solidi C 12 246Google Scholar

    [33]

    Yang Y C, Gao P, Gaba S, Chang T, Pan X Q, Lu W 2012 Nat. Commun. 3 732Google Scholar

    [34]

    Chiu F C 2014 Adv. Mater. Sci. Eng. 2014 1Google Scholar

    [35]

    Chiu F C, Shih W C, Feng J J 2012 J. Appl. Phys. 111 094104Google Scholar

    [36]

    Loy D J J, Dananjaya P A, Hong X L, Shum D P, Lew W S 2018 Sci. Rep. 8 14774Google Scholar

    [37]

    Fang S L, Liu W H, Li X, Wang X L, Geng L, Wu M S, Huang X D, Han C Y 2019 Appl. Phys. Lett. 115 244102Google Scholar

    [38]

    Wang S S, Dang B J, Sun J, Zhao M M, Yang M, Ma X H, Wang H, Hao Y 2021 IEEE Electron Device Lett. 42 700Google Scholar

    [39]

    Wang S S, Dang B J, Sun J, Song F, Zhao M M, Yang M, Ma X H, Wang H, Hao Y 2020 IEEE Electron Device Lett. 41 553Google Scholar

    [40]

    Li S C, He C T, Shu H Y, Chen P 2024 Appl. Phys. A 130 534Google Scholar

    [41]

    Lü J X, Wang S S, Li F F, Liang Q, Yang M, Ma X H, Wang H, Hao Y 2021 IEEE Electron Device Lett. 42 1599Google Scholar

  • [1] 陈涛, 张涛, 殷元祥, 谢雨莎, 邱晓燕. HfO2/NiOx/HfO2堆栈的三电阻态开关特性与导电机制. 物理学报, 2023, 72(14): 148401. doi: 10.7498/aps.72.20230331
    [2] 张兴文, 何朝滔, 李秀林, 邱晓燕, 张耘, 陈鹏. Ni/ZnO/BiFeO3/ZnO多层膜中磁场调控的电阻开关效应. 物理学报, 2022, 71(18): 187303. doi: 10.7498/aps.71.20220609
    [3] 何朝滔, 卢羽, 李秀林, 陈鹏. 限制电流对Ta/BaTiO3/Al2O3/ITO忆阻器的开关比和稳定性调控. 物理学报, 2022, 71(8): 086102. doi: 10.7498/aps.71.20211999
    [4] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [5] 龚少康, 周静, 王志青, 朱茂聪, 沈杰, 吴智, 陈文. 尺寸调控SnO2量子点的阻变性能及调控机理. 物理学报, 2021, 70(19): 197301. doi: 10.7498/aps.70.20210608
    [6] 桂淮濛, 施卫. 线性模式下GaAs光电导开关的时间抖动特性. 物理学报, 2018, 67(18): 184207. doi: 10.7498/aps.67.20180548
    [7] 李成, 蔡理, 王森, 刘保军, 崔焕卿, 危波. 石墨烯沟道全自旋逻辑器件开关特性. 物理学报, 2017, 66(20): 208501. doi: 10.7498/aps.66.208501
    [8] 吴孔平, 孙昌旭, 马文飞, 王杰, 魏巍, 蔡俊, 陈昌兆, 任斌, 桑立雯, 廖梅勇. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究. 物理学报, 2017, 66(8): 088102. doi: 10.7498/aps.66.088102
    [9] 廖开升, 李志锋, 李梁, 王超, 周孝好, 戴宁, 李宁. 阻挡杂质带红外探测器中的界面势垒效应. 物理学报, 2015, 64(22): 227302. doi: 10.7498/aps.64.227302
    [10] 廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华. 一种全光开关及任意比能量输出光分束器的设计. 物理学报, 2013, 62(4): 044220. doi: 10.7498/aps.62.044220
    [11] 李红霞, 陈雪平, 陈琪, 毛启楠, 席俊华, 季振国. 下电极对ZnO薄膜电阻开关特性的影响. 物理学报, 2013, 62(7): 077202. doi: 10.7498/aps.62.077202
    [12] 李英德, 李宗良, 冷建材, 李伟, 王传奎. 光致异构体开关特性的理论研究. 物理学报, 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [13] 杨炳星, 夏光琼, 林晓东, 吴正茂. 光脉冲注入下VCSEL的偏振开关特性. 物理学报, 2009, 58(3): 1480-1483. doi: 10.7498/aps.58.1480
    [14] 刚建雷, 黎松林, 孟洋, 廖昭亮, 梁学锦, 陈东敏. 点接触金属/Pr0.7Ca0.3MnO3/Pt结构稳定的低电流电阻开关特性. 物理学报, 2009, 58(8): 5730-5735. doi: 10.7498/aps.58.5730
    [15] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [16] 邱 鑫, 夏光琼, 吴加贵, 吴正茂. 基于频率失谐的光混沌同步开关的特性研究. 物理学报, 2008, 57(3): 1725-1729. doi: 10.7498/aps.57.1725
    [17] 郭 旗, 张霞萍, 胡 巍, 寿 倩. 基于强非局域空间光孤子特性的光子开关和光子逻辑门. 物理学报, 2006, 55(4): 1832-1839. doi: 10.7498/aps.55.1832
    [18] 杨 汝, 张 波. 开关变换器混沌PWM频谱量化特性分析. 物理学报, 2006, 55(11): 5667-5673. doi: 10.7498/aps.55.5667
    [19] 李世忱, 薛挺, 于建. 新颖的PPLN电光开关. 物理学报, 2002, 51(9): 2018-2021. doi: 10.7498/aps.51.2018
    [20] 杨盛谊, 王振家, 陈晓红, 侯延冰, 董金凤, 徐叙. 高场下界面势垒对双层有机器件复合发光的影响. 物理学报, 2000, 49(8): 1627-1631. doi: 10.7498/aps.49.1627
计量
  • 文章访问数:  282
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-14
  • 修回日期:  2024-12-01
  • 上网日期:  2024-12-06
  • 刊出日期:  2025-01-20

/

返回文章
返回