搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌酸锂微米光纤模内后向布里渊散射特性

贺文君 侯雅斐 闫嵩泉 吴泽鹏 刘毅 游亚军 何剑

引用本文:
Citation:

铌酸锂微米光纤模内后向布里渊散射特性

贺文君, 侯雅斐, 闫嵩泉, 吴泽鹏, 刘毅, 游亚军, 何剑
cstr: 32037.14.aps.74.20241329

Intra-mode backward stimulated Brillouin scattering in lithium niobate micron fibers

HE Wenjun, HOU Yafei, YAN Songquan, WU Zepeng, LIU Yi, YOU Yajun, HE Jian
cstr: 32037.14.aps.74.20241329
PDF
HTML
导出引用
  • 多模光纤的布里渊传感技术因其能够同时进行温度、应变等多参量的模态传输, 具备更高的信息容量 和传输效率而备受关注. 此外, 铌酸锂材料凭借其优异的电光特性, 在传感领域展现出潜在应用价值, 有望 提供更高灵敏度和精度. 然而, 受工艺成熟度影响, 目前光纤传感的研究多集中于硅基材料, 以铌酸锂为纤芯材料的研究相对较少, 其应用潜力被普遍低估. 本文针对铌酸锂光纤中的布里渊散射效应的理论研究, 通过有限元仿真技术, 模拟微米量级铌酸锂光纤中各阶数模式的后向布里渊散射特性, 分析光纤中前5个LP模(LP01, LP11, LP21, LP02和LP31)的模内受激布里渊散射特性, 以探明铌酸锂微米光纤模态内后向布里渊散射特性. 结果表明, 铌酸锂光纤的有效折射率(2.1785—1.9797)、布里渊散射频移(20.63—18.747 GHz)以及增益(4.0115—13.503 m–1·W –1)均随着模式阶数的增高而减小. 模拟结果进一步表明, 与普通硅结构光纤相比, 铌酸锂光纤结构的布里渊增益有显著提高, 预示其在传感方面的灵敏度也会更高.
    The Brillouin sensing technology in multimode optical fibers has received much attention due to its ability to simultaneously transmit multiple parameters, such as temperature and strain, and its higher information capacity and transmission efficiency. Additionally, lithium niobate possesses excellent electro-optical properties, so it shows potential application value in the sensing field and is expected to provide higher sensitivity and precision. Owing to the maturity of manufacturing processes, current research on fiber optic sensing focuses on silicon-based materials, however, there are fewer studies of fibers in which lithium niobate is used as the core material, thereby underestimating its application potential. In this work, the Brillouin scattering effects in lithium niobate optical fibers are investigated numerically. We simulate the intra-mode backward Brillouin scattering characteristics of the first five orders of LP modes in micrometer-sized lithium niobate fibers by means of finite-element simulation to explore its intrinsic law.First of all, the relationship between the Brillouin frequency shift and gain for the first five optical mode interactions is analyzed in detail. The results show that in the case of intra-mode backward stimulated Brillouin scattering, the peak of Brillouin frequency shift exhibits a significant redshift ranging from 20.63 GHz to 18.747 GHz. The Brillouin gain coefficient decreases from 13.503 m–1·W–1 to 4.0115 m–1·W–1 with the increase of mode order, in which mode LP01 having the strongest gain intra modal interaction means the best sensing sensitivity. In addition, compared with ordinary silica fiber, the lithium niobate fiber has Brillouin gain increased by about 5 orders of magnitude, which means that fibers with lithium niobate as the core can have higher sensing sensitivity. In addition, it is found that although there are significant differences in the Brillouin frequency shift values of each optical mode under intra modal interactions, the sound velocity of their corresponding acoustic modes is always consistent under the same acoustic mode. In data processing, it is noticed that this is because as the mode order changes, the corresponding effective refractive index decreases to ensure that each acoustic mode of the material always has the same sound velocity. These findings provide a foundation for further studying the lithium niobate fiber sensors with electro-optic properties.
      通信作者: 贺文君, hewenjun@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: U23A20639, U2341210)和山西省基础研究计划(批准号: 20210302124390, 20210302124458)资助的课题.
      Corresponding author: HE Wenjun, hewenjun@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U23A20639, U2341210) and the Fundamental Research Program of Shanxi Province, China (Grant Nos. 20210302124390, 20210302124458).
    [1]

    Hayashi N, Mizuno Y, Nakamura K, Zhang C, Jin L, Set S Y, Yamashita S 2020 Jpn. J. Appl. Phys. 59 088002Google Scholar

    [2]

    Wang L, Zhou B, Shu C, He S L 2013 IEEE Photonics J. 5 6801808Google Scholar

    [3]

    Catalano E, Vallifuoco R, Zeni L, Minardo A 2022 IEEE Sens. J. 22 6601Google Scholar

    [4]

    Zeng Z, Peng D, Zhang Z Y, Zhang S J, Ni G M, Liu Y 2020 IEEE Photonics Tech. L. 32 995Google Scholar

    [5]

    Coscetta, A, Minardo A, Zeni L 2020 Sensors 20 5629Google Scholar

    [6]

    Gao S, Wen Z R, Wang H Y, Baker C, Chen L, Cai Y J, Bao X Y 2023 J. Lightwave Tech. 41 4359Google Scholar

    [7]

    Peng J Q, Lu Y G, Zhang Z L, Wu Z N, Zhang Y Y 2021 IEEE Photonics Tech. L. 33 1217Google Scholar

    [8]

    Ba D X, Chen C, Fu C, Zhang D Y, Lu Z W, Fan Z G, Dong Y K 2018 IEEE Photonics J. 10 1Google Scholar

    [9]

    Liu P K, Lu Y A, Zhang W J, Zhu M 2024 Opt. Commun. 563 130571Google Scholar

    [10]

    Ippen E P, Stolen R H 1972 Appl. Phys. Lett. 21 539Google Scholar

    [11]

    Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1Google Scholar

    [12]

    Hill K O, Kawasaki B S, Johnson D C 1976 Appl. Phys. Lett. 28 608Google Scholar

    [13]

    Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar

    [14]

    Dong Y K 2021 Photonic Sens. 11 69Google Scholar

    [15]

    Feng C, Schneider T 2021 Sensors 21 1881Google Scholar

    [16]

    Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar

    [17]

    Yang Y H, Wang J Q, Zhu Z X, Xu X B, Zhang Q, Lu J J, Zeng Y, Dong C H, Sun L Y, Guo G C, Zou C L 2024 Sci. China Phys. Mec. 67 214221Google Scholar

    [18]

    Rodrigues C C, Zurita R O, Alegre T P, Wiederhecker S G 2023 J. Opt. Soc. Am. B 40 56Google Scholar

    [19]

    Otterstrom N T, Behunin R O, Kittlaus E A 2018 Science 360 1113Google Scholar

    [20]

    Kittlaus E A, Shin H, Rakich P T 2016 Nat. Photonics 10 463Google Scholar

    [21]

    Gyger F, Liu J Q, Yang F, He J J, Raja A S, Wang R N, Bhave S A, Kippenberg T J, Thevenaz L 2020 Phys. Rev. Lett. 124 013902Google Scholar

    [22]

    Xiang C, Guo J, Jin W, Wu L, Peters J, Xie W Q, Chang L, Shen B Q, Wang H M, Yang Q F, Kinghorn D, Paniccia M, Vahala K J, Morton P A, Bowers J E 2021 Nat. Commun. 12 6650Google Scholar

    [23]

    Botter R, Ye K X, Klaver Y, Suryadharma R, Daulay O, Liu G J, van den Hoogen J, Kanger L, van der Slot P, Klein E, Hoekman M, Roeloffzen C, Liu Y, Marpaung D 2022 Sci. Adv. 8 2196Google Scholar

    [24]

    Morrison B, Casas-Bedoya A, Ren G, Vu K, Liu Y, Zarifi A, Nguyen T G, Choi D Y, Marpaung D, Madden S J, Mitchell A, Eggleton B J 2017 Optica 4 847Google Scholar

    [25]

    Choudhary A, Morrison B, Aryanfar I, Shahnia S, Pagani M, Liu Y, Vu K, Madden S, Marpaung D, Eggleton B J 2017 J. Lightwave Tech. 35 846Google Scholar

    [26]

    Florea C M, Bashkansky M, Dutton Z, Sanghera J, Pureza P, Aggarwal I 2006 Opt. Express 14 12063Google Scholar

    [27]

    Balram K C, Davanço M I, Song J D, Srinivasan K 2016 Nat. Photonics 10 346Google Scholar

    [28]

    Kim Y H, Song K Y 2021 Sensors 21 2168Google Scholar

    [29]

    Feng L Y, Liu Y, He W J, You Y J, Wang L Y, Xu X, Chou X J 2022 Applied Sciences 12 6476Google Scholar

    [30]

    Lin J, Bo F, Cheng Y, Xu J J 2020 Photonics Res. 8 1910Google Scholar

    [31]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar

    [32]

    Cao M, Huang L, Tang M, Mi Y A, Ren W H, Ning T G, Pei L, Ren G B 2022 Opt. Commun. 507 127612Google Scholar

    [33]

    Florez O, Jarschel P F, Espinel Y A V, Cordeiro C M B, Alegre T P M, Wiederhecker G S, Dainese P 2016 Nat. Commun. 7 11759Google Scholar

    [34]

    Rakich P T, Reinke C, Camacho R, Davids P, Wang Z 2012 Phys. Rev. X. 2 011008Google Scholar

  • 图 1  后向布里渊散射效应物理过程示意图

    Fig. 1.  Schematic diagram of the physical process of the backward Brillouin scattering effect.

    图 2  LiNbO3光纤结构原理图及光学声学模式分布图 (a) LiNbO3光纤结构原理图; (b) 光学模式分布图; (c) 声学模式分布图

    Fig. 2.  Schematic diagram of LiNbO3 optical fiber structure and distribution diagram of optical acoustic mode: (a) Schematic diagram of LiNbO3 optical fiber structure; (b) optical pattern distribution; (c) acoustic pattern distribution.

    图 3  不同模式内布里渊增益谱以及SiO2光纤与LiNbO3光纤增益谱对比图 (a) LP01-LP01模式; (b) LP11-LP11模式; (c) LP21-LP21模式; (d) LP02-LP02模式; (e) LP31-LP31模式; (f) SiO2光纤与LiNbO3光纤增益谱对比图

    Fig. 3.  Gain spectrum within Brillouin in different modes and comparison of gain spectra between SiO2 and LiNbO3 fibers: (a) LP01-LP01 mode; (b) LP11-LP11 mode; (c) LP21-LP21 mode; (d) LP02-LP02 mode; (e) LP31-LP31 mode; (f) comparison of gain spectra between SiO2 and LiNbO3 fibers.

    图 4  5个LPmn -LPmn的Pump-Stokes模式对相互作用的BGS的总洛伦兹曲线以及BFS和相对增益关系 (a) BGS的总洛伦兹曲线; (b) Pump-Stokes模式对中最高峰对应的BFS和增益关系

    Fig. 4.  Total Lorentz curves of BGS for the interaction of the pump-Stokes mode pairs of 5LPmn -LPmn as well as the BFS and relative gain relationship: (a) Total Lorentz curves of BGS; (b) the BFS and gain relationship for the highest peak of the pump-Stokes mode pairs.

    图 5  声模速度与BFS的关系以及声模频率差关系 (a) 5个pump-Stokes模式对之间BFS与声速的关系; (b)模态间的频率差关系

    Fig. 5.  Relationship between the velocity of the sound model and the BFS and the relationship between the frequency difference of the sound mode: (a) BFS and sound velocity between five Pump-Stokes mode pairs; (b) frequency difference relationship between modalities.

    表 1  光纤结构和材料参数[29]

    Table 1.  Fiber structure and material parameters.

    Parameters Values
    Core Clading
    Radius/μm 3
    Refractive index 2.213 1
    Mass density/(kg·m–3) 4700 1.29
    Longitudinal acoustic
    velocity/(m·s–1)
    7318 340
    Photo-elastic coefficients p11 = –0.02, p12 = 0.08,
    p44 = 0.12
    Transmission loss at
    1550 nm /(dB·cm–1)
    0.89
    下载: 导出CSV
  • [1]

    Hayashi N, Mizuno Y, Nakamura K, Zhang C, Jin L, Set S Y, Yamashita S 2020 Jpn. J. Appl. Phys. 59 088002Google Scholar

    [2]

    Wang L, Zhou B, Shu C, He S L 2013 IEEE Photonics J. 5 6801808Google Scholar

    [3]

    Catalano E, Vallifuoco R, Zeni L, Minardo A 2022 IEEE Sens. J. 22 6601Google Scholar

    [4]

    Zeng Z, Peng D, Zhang Z Y, Zhang S J, Ni G M, Liu Y 2020 IEEE Photonics Tech. L. 32 995Google Scholar

    [5]

    Coscetta, A, Minardo A, Zeni L 2020 Sensors 20 5629Google Scholar

    [6]

    Gao S, Wen Z R, Wang H Y, Baker C, Chen L, Cai Y J, Bao X Y 2023 J. Lightwave Tech. 41 4359Google Scholar

    [7]

    Peng J Q, Lu Y G, Zhang Z L, Wu Z N, Zhang Y Y 2021 IEEE Photonics Tech. L. 33 1217Google Scholar

    [8]

    Ba D X, Chen C, Fu C, Zhang D Y, Lu Z W, Fan Z G, Dong Y K 2018 IEEE Photonics J. 10 1Google Scholar

    [9]

    Liu P K, Lu Y A, Zhang W J, Zhu M 2024 Opt. Commun. 563 130571Google Scholar

    [10]

    Ippen E P, Stolen R H 1972 Appl. Phys. Lett. 21 539Google Scholar

    [11]

    Kobyakov A, Sauer M, Chowdhury D 2009 Adv. Opt. Photonics 2 1Google Scholar

    [12]

    Hill K O, Kawasaki B S, Johnson D C 1976 Appl. Phys. Lett. 28 608Google Scholar

    [13]

    Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar

    [14]

    Dong Y K 2021 Photonic Sens. 11 69Google Scholar

    [15]

    Feng C, Schneider T 2021 Sensors 21 1881Google Scholar

    [16]

    Eggleton B J, Poulton C G, Pant R 2013 Adv. Opt. Photonics 5 536Google Scholar

    [17]

    Yang Y H, Wang J Q, Zhu Z X, Xu X B, Zhang Q, Lu J J, Zeng Y, Dong C H, Sun L Y, Guo G C, Zou C L 2024 Sci. China Phys. Mec. 67 214221Google Scholar

    [18]

    Rodrigues C C, Zurita R O, Alegre T P, Wiederhecker S G 2023 J. Opt. Soc. Am. B 40 56Google Scholar

    [19]

    Otterstrom N T, Behunin R O, Kittlaus E A 2018 Science 360 1113Google Scholar

    [20]

    Kittlaus E A, Shin H, Rakich P T 2016 Nat. Photonics 10 463Google Scholar

    [21]

    Gyger F, Liu J Q, Yang F, He J J, Raja A S, Wang R N, Bhave S A, Kippenberg T J, Thevenaz L 2020 Phys. Rev. Lett. 124 013902Google Scholar

    [22]

    Xiang C, Guo J, Jin W, Wu L, Peters J, Xie W Q, Chang L, Shen B Q, Wang H M, Yang Q F, Kinghorn D, Paniccia M, Vahala K J, Morton P A, Bowers J E 2021 Nat. Commun. 12 6650Google Scholar

    [23]

    Botter R, Ye K X, Klaver Y, Suryadharma R, Daulay O, Liu G J, van den Hoogen J, Kanger L, van der Slot P, Klein E, Hoekman M, Roeloffzen C, Liu Y, Marpaung D 2022 Sci. Adv. 8 2196Google Scholar

    [24]

    Morrison B, Casas-Bedoya A, Ren G, Vu K, Liu Y, Zarifi A, Nguyen T G, Choi D Y, Marpaung D, Madden S J, Mitchell A, Eggleton B J 2017 Optica 4 847Google Scholar

    [25]

    Choudhary A, Morrison B, Aryanfar I, Shahnia S, Pagani M, Liu Y, Vu K, Madden S, Marpaung D, Eggleton B J 2017 J. Lightwave Tech. 35 846Google Scholar

    [26]

    Florea C M, Bashkansky M, Dutton Z, Sanghera J, Pureza P, Aggarwal I 2006 Opt. Express 14 12063Google Scholar

    [27]

    Balram K C, Davanço M I, Song J D, Srinivasan K 2016 Nat. Photonics 10 346Google Scholar

    [28]

    Kim Y H, Song K Y 2021 Sensors 21 2168Google Scholar

    [29]

    Feng L Y, Liu Y, He W J, You Y J, Wang L Y, Xu X, Chou X J 2022 Applied Sciences 12 6476Google Scholar

    [30]

    Lin J, Bo F, Cheng Y, Xu J J 2020 Photonics Res. 8 1910Google Scholar

    [31]

    Eggleton B J, Poulton C G, Rakich P T, Steel M J, Bahl G 2019 Nat. Photonics 13 664Google Scholar

    [32]

    Cao M, Huang L, Tang M, Mi Y A, Ren W H, Ning T G, Pei L, Ren G B 2022 Opt. Commun. 507 127612Google Scholar

    [33]

    Florez O, Jarschel P F, Espinel Y A V, Cordeiro C M B, Alegre T P M, Wiederhecker G S, Dainese P 2016 Nat. Commun. 7 11759Google Scholar

    [34]

    Rakich P T, Reinke C, Camacho R, Davids P, Wang Z 2012 Phys. Rev. X. 2 011008Google Scholar

  • [1] 李佳芮, 乐陶然, 尉昊赟, 李岩. 基于脉冲受激布里渊散射光谱的非接触式黏弹性测量. 物理学报, 2024, 73(12): 127801. doi: 10.7498/aps.73.20231974
    [2] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇. 物理学报, 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [3] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [4] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [5] 辛成舟, 马健男, 马静, 南策文. 伸缩-剪切模式自偏置铌酸锂基复合材料的磁电性能和高频谐振响应. 物理学报, 2018, 67(15): 157502. doi: 10.7498/aps.67.20180810
    [6] 商景诚, 吴涛, 何兴道, 杨传音. 气体自发瑞利-布里渊散射的理论分析及压强反演. 物理学报, 2018, 67(3): 037801. doi: 10.7498/aps.67.20171672
    [7] 辛成舟, 马健男, 马静, 南策文. 厚度剪切模式铌酸锂基复合材料的磁电性能优化. 物理学报, 2017, 66(6): 067502. doi: 10.7498/aps.66.067502
    [8] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [9] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [10] 侯尚林, 薛乐梅, 黎锁平, 刘延君, 徐永钊. 光子晶体光纤中布里渊散射声波模式特性的分析. 物理学报, 2012, 61(13): 134206. doi: 10.7498/aps.61.134206
    [11] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究. 物理学报, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [12] 赵丽娟. 环境温度宽范围变化对光纤布里渊频移的影响. 物理学报, 2010, 59(9): 6219-6223. doi: 10.7498/aps.59.6219
    [13] 夏俊峰, 张冶文, 郑飞虎, 雷清泉. 基于类耿氏效应的低密度聚乙烯中空间电荷包行为的模拟仿真. 物理学报, 2010, 59(1): 508-514. doi: 10.7498/aps.59.508
    [14] 师丽红, 阎文博. 纯铌酸锂晶体红外光谱的低温研究. 物理学报, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [15] 黄俨, 张巍, 王胤, 黄翊东, 彭江得. 基于石英柱模型的光子晶体光纤异常布里渊散射特性的理论研究. 物理学报, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [16] 刘 霞, 牛金艳, 孙 江, 米 辛, 姜 谦, 吴令安, 傅盘铭. 布里渊增强非简并四波混频. 物理学报, 2008, 57(8): 4991-4994. doi: 10.7498/aps.57.4991
    [17] 高 玮, 吕志伟, 何伟明, 朱成禹, 董永康. 水中微弱光散射布里渊频谱选择性光放大研究. 物理学报, 2007, 56(5): 2693-2698. doi: 10.7498/aps.56.2693
    [18] 闫卫国, 陈云琳, 王栋栋, 郭 娟, 张光寅. 掺镁铌酸锂亚微米结构畴反转的研究. 物理学报, 2006, 55(11): 5855-5858. doi: 10.7498/aps.55.5855
    [19] 薛挺, 于建, 杨天新, 倪文俊, 李世忱. 准位相匹配铌酸锂波导倍频特性分析与优化设计. 物理学报, 2002, 51(3): 565-572. doi: 10.7498/aps.51.565
    [20] 冯少新, 李宝会, 金庆华, 郭振亚, 丁大同. LiNbO3晶体中离子间相互作用势的经验参量的确定. 物理学报, 2000, 49(12): 2433-2436. doi: 10.7498/aps.49.2433
计量
  • 文章访问数:  239
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-21
  • 修回日期:  2024-12-11
  • 上网日期:  2024-12-16

/

返回文章
返回