-
稀土元素具有相似的基态电子性质, 其独特的镧系收缩效应可以降低高熵材料中稀土元素的混合焓, 这对于制备廉价且高性能的高熵稀土金属间化合物至关重要. 本文在分析磁化和反磁化曲线的基础上, 辅以Henkel曲线和磁黏滞系数S计算, 研究了Nd11.76Fe82.36B5.88(NdFeB), 以及高熵稀土永磁合金化合物(La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88和(La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88等快淬条带的反磁化机理. 研究结果发现, 与纯NdFeB相比, 高熵稀土永磁材料的晶间耦合作用显著增强, 而磁偶极相互作用减弱. 这表明, 含重稀土的高熵材料中元素扩散机制在使样品均匀化的同时, 其矫顽力有大幅度提高, 矫顽力机制为硬磁相晶粒中的反磁化畴形核. (La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88的磁黏滞系数大于纯NdFeB, (La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88由于硬磁相反转与磁晶间耦合作用不同步, 导致样品在具有较大各向异性场的同时, 磁黏滞系数较小. 这表明高熵稀土永磁材料的反磁化机理与传统稀土永磁材料显著不同, 值得进一步深入研究.Rare-earth elements share similar ground-state electronic properties, and their unique lanthanide contraction effect can lower the mixing enthalpy of rare-earth elements in high-entropy materials, which is of great significance for fabricating low-cost and high-performance high-entropy rare-earth intermetallic compounds. In this work, the magnetization reversal mechanisms of rapidly quenched ribbons such as Nd11.76Fe82.36B5.88 (NdFeB) and the relevant high-entropy rare-earth permanent magnet alloy compounds (La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88 and (La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88 are studied by analyzing the magnetization and demagnetization curves, supplemented by Henkel curves and magnetic viscosity coefficient S. Compared with the pure NdFeB sample, the high-entropy rare-earth permanent magnet has the inter-grain exchange coupling significantly enhanced and the magnetic dipole interaction weakened, indicating that the element diffusion mechanism in heavy rare-earth containing high-entropy material homogenizes the sample, and significantly increases the coercivity. The mechanism of the coercivity is the nucleation of magnetization reversal domains in the grains of the hard magnetic phase. The magnetization mechanism is dominated by pinning at low magnetic fields and by nucleation at high magnetic fields, which is different from the magnetization mechanism of pure NdFeB and has some similarities with the self-pinning mechanism. The magnetic viscosity coefficient of (La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88 is larger than that of pure NdFeB. Due to the asynchrony of hard magnetic phase reversal and intergranular magnetic coupling in (La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88, the magnetic viscosity coefficient is small but the anisotropy field is large. This indicates that high-entropy sample reduces the magnetocrystalline anisotropy field barrier but increases the magnetocrystalline coupling length. This suggests that the magnetization reversal of high-entropy rare-earth permanent magnet material is significantly different from that of conventional rare earth permanent magnet material and it is worthy of further in-depth research.
-
Keywords:
- high-entropy permanent magnets /
- Henkel /
- intergrain exchange coupling /
- magnetic viscosity coefficient
[1] Balaji V, Xavior M A 2024 Heliyon 10 e26464Google Scholar
[2] Zhao H C, Qiao Y L, Liang X B, Hu Z F, Chen Y X 2020 Rare Metal Mat. Eng. 49 1457
[3] Fu H, Jiang Y, Zhang M Z, Zhong Z Y, Liang Z, Wang S Y, Du Y P, Yan C H 2024 Chem. Soc. Rev. 53 2211Google Scholar
[4] Chen H Y, Gou, J M, Jia W T, Song X, Ma T Y 2023 Acta Mater. 246 118702Google Scholar
[5] Zhou C, Liu Y, Li J 2023 Mater. Lett. 347 134534Google Scholar
[6] 董霄鹏, 赵兴, 殷林瀚, 彭思琦, 王京南, 郭永权 2023 物理学报 72 107501Google Scholar
Dong X P, Zhao X, Yin L H, Peng S Q, Wang J N, Guo Y 2023 Acta Phys. Sin. 72 107501Google Scholar
[7] Li Z, Li Y Q, Liu W Q, Wu D, Chen H, Xia W X, Yue M 2021 Rare Metals 40 180Google Scholar
[8] 陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根 2005 物理学报 54 5890Google Scholar
Chen Y Z, He S L, Zhang H W, Chen R J, Rong C B, Sun J R, Shen B G 2005 Acta Phys. Sin. 54 5890Google Scholar
[9] 张宏伟, 荣传兵, 张健, 张绍英, 沈保根 2003 物理学报 52 718Google Scholar
Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Acta Phys. Sin. 52 718Google Scholar
[10] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳 2014 物理学报 63 167505Google Scholar
Peng Y, Zhao G P, Wu S Q, Si W J, Wan X L 2014 Acta Phys. Sin. 63 167505Google Scholar
[11] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根 2019 物理学报 68 177501Google Scholar
Li Z B, Li Y, Qin Y, Zhang, X F, Shen B G 2019 Acta Phys. Sin. 68 177501Google Scholar
[12] 高汝伟, 姜寿亭, 李华, 丘梅影, 郭贻诚 1989 物理学报 38 439Google Scholar
Gao R W, Jiang S T, Li H, Qiu M Y, Kuo Y C 1989 Acta Phys. Sin. 38 439Google Scholar
[13] Zhao G P, Wang X L, Yang C, Xie L H, Zhou, G 2007 J. Appl. Phys. 101 09K102Google Scholar
[14] 鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509Google Scholar
Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509Google Scholar
[15] Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Appl. Phys. Lett. 82 4098Google Scholar
[16] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫 2018 金属学报 54 457Google Scholar
Sun Y C, Zhu M G, Han R, Shi X N, Yu N J, Song L W, Li W 2018 Acta Metall. Sin. 54 457Google Scholar
[17] 李维丹, 谭晓华, 任科智, 刘洁, 徐晖 2016 金属学报 52 561Google Scholar
Li W D, Tan X H, Ren K Z, Liu J, Xu H 2016 Acta Metall. Sin. 52 561Google Scholar
[18] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 物理学报 72 027501Google Scholar
Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar
[19] 张宏伟, 荣传兵, 张绍英, 沈保根 2004 物理学报 53 4347Google Scholar
Zhang H W, Rong C B, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4347Google Scholar
[20] Feutrill E H, McCormick P G, Street R 1996 J. Phys. D Appl. Phys. 29 2320Google Scholar
[21] Street R, Woolley J C 1949 Proc. Phys. Soc. 62 562Google Scholar
[22] Crew D C, McCormick P G, Street R 1996 Ieee T. Magn. 32 4356Google Scholar
-
图 5 逐渐递增外场至37 kOe所测量的样品A(a)和样品B(c)磁滞回线; (b), (d)由(a)和(c)得到的矫顽力和剩磁与最大外场H的关系, +为第2象限值, –为第4象限值
Fig. 5. Magnetization hysteresis loops measured for sample A (a) and sample B (c) with the external field gradually increased up to 37 kOe; (b), (d) the relationship between the coercivity and remanence obtained from (a) and (c) with the maximum external field H, “+” represents a value in the second quadrant, “–” represents a value in the fourth quadrant.
-
[1] Balaji V, Xavior M A 2024 Heliyon 10 e26464Google Scholar
[2] Zhao H C, Qiao Y L, Liang X B, Hu Z F, Chen Y X 2020 Rare Metal Mat. Eng. 49 1457
[3] Fu H, Jiang Y, Zhang M Z, Zhong Z Y, Liang Z, Wang S Y, Du Y P, Yan C H 2024 Chem. Soc. Rev. 53 2211Google Scholar
[4] Chen H Y, Gou, J M, Jia W T, Song X, Ma T Y 2023 Acta Mater. 246 118702Google Scholar
[5] Zhou C, Liu Y, Li J 2023 Mater. Lett. 347 134534Google Scholar
[6] 董霄鹏, 赵兴, 殷林瀚, 彭思琦, 王京南, 郭永权 2023 物理学报 72 107501Google Scholar
Dong X P, Zhao X, Yin L H, Peng S Q, Wang J N, Guo Y 2023 Acta Phys. Sin. 72 107501Google Scholar
[7] Li Z, Li Y Q, Liu W Q, Wu D, Chen H, Xia W X, Yue M 2021 Rare Metals 40 180Google Scholar
[8] 陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根 2005 物理学报 54 5890Google Scholar
Chen Y Z, He S L, Zhang H W, Chen R J, Rong C B, Sun J R, Shen B G 2005 Acta Phys. Sin. 54 5890Google Scholar
[9] 张宏伟, 荣传兵, 张健, 张绍英, 沈保根 2003 物理学报 52 718Google Scholar
Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Acta Phys. Sin. 52 718Google Scholar
[10] 彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳 2014 物理学报 63 167505Google Scholar
Peng Y, Zhao G P, Wu S Q, Si W J, Wan X L 2014 Acta Phys. Sin. 63 167505Google Scholar
[11] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根 2019 物理学报 68 177501Google Scholar
Li Z B, Li Y, Qin Y, Zhang, X F, Shen B G 2019 Acta Phys. Sin. 68 177501Google Scholar
[12] 高汝伟, 姜寿亭, 李华, 丘梅影, 郭贻诚 1989 物理学报 38 439Google Scholar
Gao R W, Jiang S T, Li H, Qiu M Y, Kuo Y C 1989 Acta Phys. Sin. 38 439Google Scholar
[13] Zhao G P, Wang X L, Yang C, Xie L H, Zhou, G 2007 J. Appl. Phys. 101 09K102Google Scholar
[14] 鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509Google Scholar
Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509Google Scholar
[15] Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Appl. Phys. Lett. 82 4098Google Scholar
[16] 孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫 2018 金属学报 54 457Google Scholar
Sun Y C, Zhu M G, Han R, Shi X N, Yu N J, Song L W, Li W 2018 Acta Metall. Sin. 54 457Google Scholar
[17] 李维丹, 谭晓华, 任科智, 刘洁, 徐晖 2016 金属学报 52 561Google Scholar
Li W D, Tan X H, Ren K Z, Liu J, Xu H 2016 Acta Metall. Sin. 52 561Google Scholar
[18] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 物理学报 72 027501Google Scholar
Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar
[19] 张宏伟, 荣传兵, 张绍英, 沈保根 2004 物理学报 53 4347Google Scholar
Zhang H W, Rong C B, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4347Google Scholar
[20] Feutrill E H, McCormick P G, Street R 1996 J. Phys. D Appl. Phys. 29 2320Google Scholar
[21] Street R, Woolley J C 1949 Proc. Phys. Soc. 62 562Google Scholar
[22] Crew D C, McCormick P G, Street R 1996 Ieee T. Magn. 32 4356Google Scholar
计量
- 文章访问数: 253
- PDF下载量: 6
- 被引次数: 0