搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2:14:1型高熵稀土永磁材料的反磁化机理

史镇华 胡新哲 周厚博 田正营 胡凤霞 陈允忠 孙志刚 沈保根

引用本文:
Citation:

2:14:1型高熵稀土永磁材料的反磁化机理

史镇华, 胡新哲, 周厚博, 田正营, 胡凤霞, 陈允忠, 孙志刚, 沈保根
cstr: 32037.14.aps.74.20241340

Mechanism of magnetization reversal of 2∶14∶1 high-entropy rare-earth permanent magnets

SHI Zhenhua, HU Xinzhe, ZHOU Houbo, TIAN Zhengying, HU Fengxia, CHEN Yunzhong, SUN Zhigang, SHEN Baogen
cstr: 32037.14.aps.74.20241340
PDF
HTML
导出引用
  • 稀土元素具有相似的基态电子性质, 其独特的镧系收缩效应可以降低高熵材料中稀土元素的混合焓, 这对于制备廉价且高性能的高熵稀土金属间化合物至关重要. 本文在分析磁化和反磁化曲线的基础上, 辅以Henkel曲线和磁黏滞系数S计算, 研究了Nd11.76Fe82.36B5.88(NdFeB), 以及高熵稀土永磁合金化合物(La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88和(La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88等快淬条带的反磁化机理. 研究结果发现, 与纯NdFeB相比, 高熵稀土永磁材料的晶间耦合作用显著增强, 而磁偶极相互作用减弱. 这表明, 含重稀土的高熵材料中元素扩散机制在使样品均匀化的同时, 其矫顽力有大幅度提高, 矫顽力机制为硬磁相晶粒中的反磁化畴形核. (La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88的磁黏滞系数大于纯NdFeB, (La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88由于硬磁相反转与磁晶间耦合作用不同步, 导致样品在具有较大各向异性场的同时, 磁黏滞系数较小. 这表明高熵稀土永磁材料的反磁化机理与传统稀土永磁材料显著不同, 值得进一步深入研究.
    Rare-earth elements share similar ground-state electronic properties, and their unique lanthanide contraction effect can lower the mixing enthalpy of rare-earth elements in high-entropy materials, which is of great significance for fabricating low-cost and high-performance high-entropy rare-earth intermetallic compounds. In this work, the magnetization reversal mechanisms of rapidly quenched ribbons such as Nd11.76Fe82.36B5.88 (NdFeB) and the relevant high-entropy rare-earth permanent magnet alloy compounds (La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88 and (La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88 are studied by analyzing the magnetization and demagnetization curves, supplemented by Henkel curves and magnetic viscosity coefficient S. Compared with the pure NdFeB sample, the high-entropy rare-earth permanent magnet has the inter-grain exchange coupling significantly enhanced and the magnetic dipole interaction weakened, indicating that the element diffusion mechanism in heavy rare-earth containing high-entropy material homogenizes the sample, and significantly increases the coercivity. The mechanism of the coercivity is the nucleation of magnetization reversal domains in the grains of the hard magnetic phase. The magnetization mechanism is dominated by pinning at low magnetic fields and by nucleation at high magnetic fields, which is different from the magnetization mechanism of pure NdFeB and has some similarities with the self-pinning mechanism. The magnetic viscosity coefficient of (La0.2Pr0.2Nd0.2Gd0.2Dy0.2)11.76Fe82.36B5.88 is larger than that of pure NdFeB. Due to the asynchrony of hard magnetic phase reversal and intergranular magnetic coupling in (La0.2Pr0.2Nd0.2Gd0.2Tb0.2)11.76Fe82.36B5.88, the magnetic viscosity coefficient is small but the anisotropy field is large. This indicates that high-entropy sample reduces the magnetocrystalline anisotropy field barrier but increases the magnetocrystalline coupling length. This suggests that the magnetization reversal of high-entropy rare-earth permanent magnet material is significantly different from that of conventional rare earth permanent magnet material and it is worthy of further in-depth research.
      通信作者: 陈允忠, yzchen@iphy.ac.cn ; 孙志刚, sun_zg@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174297, 12204342)、基础科学中心项目(批准号: 52088101)、山西省基础研究计划(批准号: 202103021224283, 202203021212323)、太原科技大学科研启动基金(批准号: 20222015, 20222002)、来晋工作优秀博士奖励项目(批准号: 20222039, 20222040)和山西省高等学校科技创新项目(批准号: 2022L288)资助的课题.
      Corresponding author: CHEN Yunzhong, yzchen@iphy.ac.cn ; SUN Zhigang, sun_zg@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174297, 12204342), the Science Center of the National Science Foundation of China (Grant No. 52088101), the Basic Research Program of Shanxi Province, China (Grant Nos. 202103021224283, 202203021212323), the Scientific Research Start-up Fund of Taiyuan University of Science and Technology, China (Grant Nos. 20222015, 20222002), the Outstanding Doctoral Award Program for Working in Shanxi Province, China (Grant Nos. 20222039, 20222040), and the Science and Technology Innovation Project of Higher Education Institutions in Shanxi Province, China (Grant No. 2022L288).
    [1]

    Balaji V, Xavior M A 2024 Heliyon 10 e26464Google Scholar

    [2]

    Zhao H C, Qiao Y L, Liang X B, Hu Z F, Chen Y X 2020 Rare Metal Mat. Eng. 49 1457

    [3]

    Fu H, Jiang Y, Zhang M Z, Zhong Z Y, Liang Z, Wang S Y, Du Y P, Yan C H 2024 Chem. Soc. Rev. 53 2211Google Scholar

    [4]

    Chen H Y, Gou, J M, Jia W T, Song X, Ma T Y 2023 Acta Mater. 246 118702Google Scholar

    [5]

    Zhou C, Liu Y, Li J 2023 Mater. Lett. 347 134534Google Scholar

    [6]

    董霄鹏, 赵兴, 殷林瀚, 彭思琦, 王京南, 郭永权 2023 物理学报 72 107501Google Scholar

    Dong X P, Zhao X, Yin L H, Peng S Q, Wang J N, Guo Y 2023 Acta Phys. Sin. 72 107501Google Scholar

    [7]

    Li Z, Li Y Q, Liu W Q, Wu D, Chen H, Xia W X, Yue M 2021 Rare Metals 40 180Google Scholar

    [8]

    陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根 2005 物理学报 54 5890Google Scholar

    Chen Y Z, He S L, Zhang H W, Chen R J, Rong C B, Sun J R, Shen B G 2005 Acta Phys. Sin. 54 5890Google Scholar

    [9]

    张宏伟, 荣传兵, 张健, 张绍英, 沈保根 2003 物理学报 52 718Google Scholar

    Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Acta Phys. Sin. 52 718Google Scholar

    [10]

    彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳 2014 物理学报 63 167505Google Scholar

    Peng Y, Zhao G P, Wu S Q, Si W J, Wan X L 2014 Acta Phys. Sin. 63 167505Google Scholar

    [11]

    李柱柏, 李赟, 秦渊, 张雪峰, 沈保根 2019 物理学报 68 177501Google Scholar

    Li Z B, Li Y, Qin Y, Zhang, X F, Shen B G 2019 Acta Phys. Sin. 68 177501Google Scholar

    [12]

    高汝伟, 姜寿亭, 李华, 丘梅影, 郭贻诚 1989 物理学报 38 439Google Scholar

    Gao R W, Jiang S T, Li H, Qiu M Y, Kuo Y C 1989 Acta Phys. Sin. 38 439Google Scholar

    [13]

    Zhao G P, Wang X L, Yang C, Xie L H, Zhou, G 2007 J. Appl. Phys. 101 09K102Google Scholar

    [14]

    鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509Google Scholar

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509Google Scholar

    [15]

    Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Appl. Phys. Lett. 82 4098Google Scholar

    [16]

    孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫 2018 金属学报 54 457Google Scholar

    Sun Y C, Zhu M G, Han R, Shi X N, Yu N J, Song L W, Li W 2018 Acta Metall. Sin. 54 457Google Scholar

    [17]

    李维丹, 谭晓华, 任科智, 刘洁, 徐晖 2016 金属学报 52 561Google Scholar

    Li W D, Tan X H, Ren K Z, Liu J, Xu H 2016 Acta Metall. Sin. 52 561Google Scholar

    [18]

    邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 物理学报 72 027501Google Scholar

    Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar

    [19]

    张宏伟, 荣传兵, 张绍英, 沈保根 2004 物理学报 53 4347Google Scholar

    Zhang H W, Rong C B, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4347Google Scholar

    [20]

    Feutrill E H, McCormick P G, Street R 1996 J. Phys. D Appl. Phys. 29 2320Google Scholar

    [21]

    Street R, Woolley J C 1949 Proc. Phys. Soc. 62 562Google Scholar

    [22]

    Crew D C, McCormick P G, Street R 1996 Ieee T. Magn. 32 4356Google Scholar

  • 图 1  样品的XRD图谱

    Fig. 1.  XRD patterns of all samples.

    图 2  样品在室温下的磁滞回线 (a)和M-T曲线 (b)

    Fig. 2.  (a)The magnetic hysteresis loops and (b) the temperature-dependent magnetization (M-T) curves of all the samples.

    图 3  样品A (a)和B (b)的起始磁化曲线和相应至零场的回复曲线

    Fig. 3.  The initial magnetization curves and corresponding recovery curves to zero field of samples A (a) and B (b).

    图 4  样品A(a)和B(b)的退磁曲线和退磁过程中的回复曲线

    Fig. 4.  The demagnetization curves and recovery curves during demagnetization of samples A (a) and B (b).

    图 5  逐渐递增外场至37 kOe所测量的样品A(a)和样品B(c)磁滞回线; (b), (d)由(a)和(c)得到的矫顽力和剩磁与最大外场H的关系, +为第2象限值, –为第4象限值

    Fig. 5.  Magnetization hysteresis loops measured for sample A (a) and sample B (c) with the external field gradually increased up to 37 kOe; (b), (d) the relationship between the coercivity and remanence obtained from (a) and (c) with the maximum external field H, “+” represents a value in the second quadrant, “–” represents a value in the fourth quadrant.

    图 6  Nd11.76Fe82.36B5.88、样品A、样品B的Henkel曲线

    Fig. 6.  The Henkel curves of Nd11.76Fe82.36B5.88, sample A and sample B.

    图 7  室温下总磁化率χtot (a)和磁黏滞系数S (b)与外场H的关系

    Fig. 7.  (a)The total susceptibility (χtot) and (b) magnetic viscosity coefficient(S ) of the samples measured at 300 K.

  • [1]

    Balaji V, Xavior M A 2024 Heliyon 10 e26464Google Scholar

    [2]

    Zhao H C, Qiao Y L, Liang X B, Hu Z F, Chen Y X 2020 Rare Metal Mat. Eng. 49 1457

    [3]

    Fu H, Jiang Y, Zhang M Z, Zhong Z Y, Liang Z, Wang S Y, Du Y P, Yan C H 2024 Chem. Soc. Rev. 53 2211Google Scholar

    [4]

    Chen H Y, Gou, J M, Jia W T, Song X, Ma T Y 2023 Acta Mater. 246 118702Google Scholar

    [5]

    Zhou C, Liu Y, Li J 2023 Mater. Lett. 347 134534Google Scholar

    [6]

    董霄鹏, 赵兴, 殷林瀚, 彭思琦, 王京南, 郭永权 2023 物理学报 72 107501Google Scholar

    Dong X P, Zhao X, Yin L H, Peng S Q, Wang J N, Guo Y 2023 Acta Phys. Sin. 72 107501Google Scholar

    [7]

    Li Z, Li Y Q, Liu W Q, Wu D, Chen H, Xia W X, Yue M 2021 Rare Metals 40 180Google Scholar

    [8]

    陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根 2005 物理学报 54 5890Google Scholar

    Chen Y Z, He S L, Zhang H W, Chen R J, Rong C B, Sun J R, Shen B G 2005 Acta Phys. Sin. 54 5890Google Scholar

    [9]

    张宏伟, 荣传兵, 张健, 张绍英, 沈保根 2003 物理学报 52 718Google Scholar

    Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Acta Phys. Sin. 52 718Google Scholar

    [10]

    彭懿, 赵国平, 吴绍全, 斯文静, 万秀琳 2014 物理学报 63 167505Google Scholar

    Peng Y, Zhao G P, Wu S Q, Si W J, Wan X L 2014 Acta Phys. Sin. 63 167505Google Scholar

    [11]

    李柱柏, 李赟, 秦渊, 张雪峰, 沈保根 2019 物理学报 68 177501Google Scholar

    Li Z B, Li Y, Qin Y, Zhang, X F, Shen B G 2019 Acta Phys. Sin. 68 177501Google Scholar

    [12]

    高汝伟, 姜寿亭, 李华, 丘梅影, 郭贻诚 1989 物理学报 38 439Google Scholar

    Gao R W, Jiang S T, Li H, Qiu M Y, Kuo Y C 1989 Acta Phys. Sin. 38 439Google Scholar

    [13]

    Zhao G P, Wang X L, Yang C, Xie L H, Zhou, G 2007 J. Appl. Phys. 101 09K102Google Scholar

    [14]

    鲜承伟, 赵国平, 张庆香, 徐劲松 2009 物理学报 58 3509Google Scholar

    Xian C W, Zhao G P, Zhang Q X, Xu J S 2009 Acta Phys. Sin. 58 3509Google Scholar

    [15]

    Zhang H W, Rong C B, Du X B, Zhang J, Zhang S Y, Shen B G 2003 Appl. Phys. Lett. 82 4098Google Scholar

    [16]

    孙亚超, 朱明刚, 韩瑞, 石晓宁, 俞能君, 宋利伟, 李卫 2018 金属学报 54 457Google Scholar

    Sun Y C, Zhu M G, Han R, Shi X N, Yu N J, Song L W, Li W 2018 Acta Metall. Sin. 54 457Google Scholar

    [17]

    李维丹, 谭晓华, 任科智, 刘洁, 徐晖 2016 金属学报 52 561Google Scholar

    Li W D, Tan X H, Ren K Z, Liu J, Xu H 2016 Acta Metall. Sin. 52 561Google Scholar

    [18]

    邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森 2023 物理学报 72 027501Google Scholar

    Deng C H, Yu Z H, Wang Y T, Kong S, Zhou C, Yang S 2023 Acta Phys. Sin. 72 027501Google Scholar

    [19]

    张宏伟, 荣传兵, 张绍英, 沈保根 2004 物理学报 53 4347Google Scholar

    Zhang H W, Rong C B, Zhang S Y, Shen B G 2004 Acta Phys. Sin. 53 4347Google Scholar

    [20]

    Feutrill E H, McCormick P G, Street R 1996 J. Phys. D Appl. Phys. 29 2320Google Scholar

    [21]

    Street R, Woolley J C 1949 Proc. Phys. Soc. 62 562Google Scholar

    [22]

    Crew D C, McCormick P G, Street R 1996 Ieee T. Magn. 32 4356Google Scholar

  • [1] 王壮, 金凡, 李伟, 阮嘉艺, 王龙飞, 吴雪莲, 张义坤, 袁晨晨. 设计制备具有优异形成能力和磁热效应的GdHoErCoNiAl高熵非晶合金. 物理学报, 2024, 73(21): 217101. doi: 10.7498/aps.73.20241132
    [2] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学. 物理学报, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [3] 朱玉洁, 朱涛, 盛洁, 周琪, 蒋中英. 基于单畴表征的高/低黏滞磷脂膜中的相分离. 物理学报, 2022, 71(18): 188702. doi: 10.7498/aps.71.20220752
    [4] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析. 物理学报, 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [5] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力. 物理学报, 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [6] 吴涛, 商景诚, 何兴道, 杨传音. 基于自发瑞利-布里渊散射的氮气体黏滞系数的测量. 物理学报, 2018, 67(7): 077801. doi: 10.7498/aps.67.20172438
    [7] 王宏明, 朱弋, 李桂荣, 郑瑞. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为. 物理学报, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [8] 刘忠深, 特古斯, 欧志强, 范文迪, 宋志强, 哈斯朝鲁, 伟伟, 韩睿. 在永磁体强磁场中Mn1.2Fe0.8P1-xSix系列化合物热磁发电研究. 物理学报, 2015, 64(4): 047103. doi: 10.7498/aps.64.047103
    [9] 何永周. 永磁体外部磁场的不均匀性研究. 物理学报, 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [10] 高若瑞, 喻伟, 费春龙, 张悦, 熊锐, 石兢. CoFe2O4和MnFe2O4纳米复合介质的制备及其磁性研究. 物理学报, 2012, 61(20): 207502. doi: 10.7498/aps.61.207502
    [11] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究. 物理学报, 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [12] 张 然, 刘 颖, 高升吉, 谢 治, 涂铭旌. 添加Dy在快淬NdFeB永磁体中的作用. 物理学报, 2008, 57(1): 526-530. doi: 10.7498/aps.57.526
    [13] 张 然, 刘 颖, 李 军, 马毅龙, 高升吉, 涂铭旌. 添加Nb在快淬NdFeB永磁体中的作用研究. 物理学报, 2007, 56(1): 518-521. doi: 10.7498/aps.56.518
    [14] 陈允忠, 贺淑莉, 张宏伟, 陈仁杰, 荣传兵, 孙继荣, 沈保根. 纳米复合永磁Pr9Fe74Co12B5Snx(x=0, 0.5)的磁化行为与磁黏滞性. 物理学报, 2005, 54(12): 5890-5894. doi: 10.7498/aps.54.5890
    [15] 荣传兵, 张宏伟, 陈仁杰, 贺淑莉, 张绍英, 沈保根. 纳米晶永磁材料晶间交换耦合作用的模拟计算研究. 物理学报, 2004, 53(12): 4353-4358. doi: 10.7498/aps.53.4353
    [16] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为. 纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用. 物理学报, 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
    [17] 成问好, 李卫, 李传健. Nb含量对烧结NbFeB永磁体磁性能及显微结构的影响. 物理学报, 2001, 50(1): 139-143. doi: 10.7498/aps.50.139
    [18] 张宏伟, 张文勇, 阎阿儒, 沈保根. 快淬Nd3.6Pr5.4Fe83Co3B5薄带的反磁化行为和磁黏滞性. 物理学报, 1999, 48(13): 211-216. doi: 10.7498/aps.48.211
    [19] 赵骥万, 夏元复, 刘荣川, 王桂琴, 吕丽亚, 王坤明, 华文标. SmCo3.66Fe0.13Sn0.06永磁体Sn处超精细作用的研究. 物理学报, 1986, 35(3): 346-351. doi: 10.7498/aps.35.346
    [20] 新材料室. 液相烧结SmCo5永磁体磁滞回线与温度的关系. 物理学报, 1976, 25(6): 536-540. doi: 10.7498/aps.25.536
计量
  • 文章访问数:  254
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-24
  • 修回日期:  2024-11-21
  • 上网日期:  2024-12-09

/

返回文章
返回