搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DAST晶体的连续太赫兹差频辐射源研究

王泽龙 王与烨 李海滨 张敬喜 徐德刚 姚建铨

引用本文:
Citation:

基于DAST晶体的连续太赫兹差频辐射源研究

王泽龙, 王与烨, 李海滨, 张敬喜, 徐德刚, 姚建铨
cstr: 32037.14.aps.74.20241349

Tunable continuous-wave terahertz generator based on difference frequency generation with DAST crystal

WANG Zelong, WANG Yuye, LI Haibin, ZHANG Jingxi, XU Degang, YAO Jianquan
cstr: 32037.14.aps.74.20241349
PDF
HTML
导出引用
  • 基于DAST晶体的太赫兹差频辐射源具有宽调谐、室温运转等优点, 但DAST晶体熔点低、热导率低的特性使其在连续泵浦条件下热积累严重、晶体易损伤, 这限制了其实际应用. 本文理论研究了基于金刚石衬底的DAST晶体的热分布特性, 实验分析了金刚石衬底对DAST晶体中热效应的改善. 进一步, 基于连续单频激光器与金刚石衬底DAST晶体搭建了差频太赫兹辐射源, 其太赫兹波频率调谐范围为1.1—3 THz, 在2.493 THz处获得最大输出功率为3.39 nW, 30 min内太赫兹波的功率不稳定度为2.19%. 该窄线宽、可调谐太赫兹辐射源在高精度光谱检测等领域具有较高的应用潜力.
    Terahertz (THz) waves have been widely investigated recently due to their ability to reflect the fingerprint characteristics of samples. As a promising method, THz technology has aroused great interest in various applications, especially biological imaging, environmental monitoring, non-destructive evaluation, spectroscopy and molecular analysis. In order to reveal the intramolecular vibration/rotation information of various compounds, the linewidths of their absorption lines are usually in a range of GHz or even MHz, and THz waves with wide tunability, narrow linewidth, high frequency accuracy, and high power stability are required. Currently, the linewidth with GHz level and low SNR at higher frequency still limit its further applications in reveal intramolecular information. In this work, the thermal distribution characteristics of DAST crystals based on diamond substrates under continuous laser pumping conditions are theoretically studied by COMSOL Multiphysics, and the effectiveness of diamond substrates in dissipating heat from DAST crystals is experimentally verified. Then, a narrow-linewidth and tunable organic-crystal continuous-wave terahertz source is demonstrated. Two narrow-linewidth continuous-wave (CW) fiber lasers are used as the pump sources for generating difference frequency. The terahertz wave is continuously tunable in a range of 1.1–3 THz. The maximum output power of 3.39 nW is obtained at 2.493 THz. The power fluctuation in 30 min is measured to be 2.19%. In addition, the generated THz wave has a high polarization extinction ratio of 9.44 dB. Using this CW-THz source for high-precision spectral detection of air with different humidity, the results correspond well with the gas absorption spectral lines in the Hitran database, proving that the CW-THz source has narrow linewidth, high frequency accuracy and stability. Therefore, it can promote the practical application of tunable CW-THz source, thus having good potential in THz high-precision spectroscopic detection and multispectral imaging.
      通信作者: 王与烨, yuyewang@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175182, 62275193, U22A20123, U22A20353)资助的课题.
      Corresponding author: WANG Yuye, yuyewang@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62175182, 62275193, U22A20123, U22A20353).
    [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [2]

    Sirtori C 2002 Nature 417 132Google Scholar

    [3]

    Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2020 ACS Photonics 7 1082Google Scholar

    [4]

    Stinson H T, Sternbach A, Najera O, Jing R, McLeod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 3604Google Scholar

    [5]

    穆宁, 杨川艳, 马康, 全玉莲, 王诗, 赖颖, 李飞, 王与烨, 陈图南, 徐德刚, 冯华 2022 物理学报 71 178702Google Scholar

    Mu N, Yang C Y, Ma K, Quan Y L, Wang S, Lai Y, Li F, Wang Y Y, Chen T N, Xu D G, Feng H 2022 Acta Phys. Sin. 71 178702Google Scholar

    [6]

    王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞 2016 物理学报 65 134101Google Scholar

    Wang Y W, Dong Z W, Li H Y, Zhou X, Luo Z F 2016 Acta Phys. Sin. 65 134101Google Scholar

    [7]

    Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar

    [8]

    Aghasi H, Naghavi S M H, Taba M T, Aseeri M A, Cathelin A, Afshari E 2020 Appl. Phys. Rev. 7 021302Google Scholar

    [9]

    Cherkassky V S, Knyazev B A, Kubarev V V, Kulipanov G N, Kruyshev G L, Matveenko A N, Petrov A K, Petrov V M, Scheglov M A, Shevchenko O A, Vmokurov N A 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Teraheriz Electronics Karlsruhe, Germany, September 17–October 1, 2004 p567

    [10]

    Chhantyal-Pun R, Valavanis A, Keeley J T, Rubino P, Kundu I, Han Y, Dean P, Li L, Davies A G, Linfield E H 2018 Opt. Lett. 43 2225Google Scholar

    [11]

    Mueller E R, Henschke R, Robotham W E, Newman L A, Laughman L M, Hart R A, Kennedy J, Pickett H M 2007 Appl. Optics 46 4907Google Scholar

    [12]

    Chen K, Tang L, Xu D, Wang Y, Yan C, Nie G, Hu C, Wu B, Zhu J, Yao J 2021 ACS Photonics 8 3141Google Scholar

    [13]

    Mansourzadeh S, Vogel T, Shalaby M, Wulf F, Saraceno C J 2021 Opt. Express 29 38946Google Scholar

    [14]

    Lee A J, Pask H M 2014 Opt. Lett. 39 442Google Scholar

    [15]

    He Y, Wang Y, Xu D, Nie M, Yan C, Tang L, Shi J, Feng J, Yan D, Liu H, Teng B, Feng H, Yao J 2018 Appl. Phys. B 124 16Google Scholar

    [16]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta. Phys. Sin. 65 070702Google Scholar

    [17]

    Tang M, Minamide H, Wang Y, Notake T, Ohno S, Ito H 2011 Opt. Express 19 779Google Scholar

    [18]

    Walsh D, Stothard D J M, Edwards T J, Browne P G, Rae C E, Dunn M H 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 1196Google Scholar

    [19]

    Paul J R, Scheller M, Laurain A, Young A, Koch S W, Moloney J 2013 Opt. Lett. 38 3654Google Scholar

    [20]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta. Phys. Sin. 57 5662Google Scholar

    [21]

    Cunningham P D, Hayden L M 2010 Opt. Express 18 23620Google Scholar

    [22]

    Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C, Zhang L, Shalaby M 2019 Appl. Phys. Lett. 114 241101Google Scholar

    [23]

    Wang Z, Wang Y, Li H, Ge M, Xu D, Yao J 2023 Opt. Express 31 39030Google Scholar

    [24]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

  • 图 1  DAST晶体热分布仿真结果 (a) DAST; (b) Diamond-DAST

    Fig. 1.  Simulation results of heat distribution of organic crystals: (a) Without and (b) with diamond substrate.

    图 2  晶体温度随泵浦功率的变化曲线 (a)最高温度; (b)最低温度

    Fig. 2.  Curves of crystal temperature variation with pump power: (a) Maximum temperature; (b) minimum temperature.

    图 3  (a)热损伤实验示意图; (b) DAST晶体热损伤表面; (c) Diamond-DAST内表面(Surface A); (d) Diamond -DAST晶体内部; (e) Diamond-DAST晶体外表面(Surface B)

    Fig. 3.  (a) Schematic diagram of thermal damage experiment; (b) thermal damage surface (Surface A) of DAST crystal; (c) surface of Diamond-DAST crystal; (d) inside the Diamond-DAST crystal; (e) outer surface (Surface B) of the Diamond-DAST crystal.

    图 4  连续太赫兹辐射源实验装置图(插图为Diamond -DAST晶体实物照片)

    Fig. 4.  Schematic diagram of the CW-THz source. The inset is DAST crystal with diamond substrate.

    图 5  (a)双波长泵浦光偏振特性; (b)波长稳定性 (插图为功率调谐特性)

    Fig. 5.  (a) Polarization characteristics of the dual-wavelength pump; (b) wavelength stability, where the inset is power tuning characteristics.

    图 6  (a)连续太赫兹辐射源调谐输出特性; (b)输出频率2.493 THz时太赫兹波功率稳定性(插图太赫兹波偏振特性)

    Fig. 6.  (a) Tunable characteristics of the CW-THz source; (b) stability of the generated THz power over a time frame of 30 min at 2.493 THz, where the inset is polarization characteristics of the THz wave.

    图 7  太赫兹输出强度与(a)双波长泵浦总功率以及(b) λ1, λ2泵浦功率的关系

    Fig. 7.  Relationship of the THz wave intensity with (a) the dual-wavelength pump power and (b) the pump power of λ1 or λ2.

    图 8  不同湿度空气1.90—2.85 THz透射特性

    Fig. 8.  Transmission characteristics of air with different humidity of 1.90–2.85 THz.

    表 1  有/无金刚石衬底DAST晶体热损伤情况与泵浦功率的关系

    Table 1.  Dependence of pump power and thermal damage of DAST crystal with/without diamond substrate.

    晶体无形变 热应力导致晶体内部发生可恢复
    微小形变(降低功率可复原)
    热应力导致晶体内部发生不可
    恢复形变(降低功率不可复原)
    晶体熔化
    DAST P < 0.45 W 0.45 W ≤ P < 0.75 W 0.75 W ≤ P < 1.20 W P ≥ 1.20 W
    Diamond-DAST P < 1.10 W 1.10 W ≤ P < 1.70 W 1.70 W ≤ P < 2.65 W P ≥ 2.65 W
    下载: 导出CSV
  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [2]

    Sirtori C 2002 Nature 417 132Google Scholar

    [3]

    Sterczewski L A, Westberg J, Yang Y, Burghoff D, Reno J, Hu Q, Wysocki G 2020 ACS Photonics 7 1082Google Scholar

    [4]

    Stinson H T, Sternbach A, Najera O, Jing R, McLeod A S, Slusar T V, Mueller A, Anderegg L, Kim H T, Rozenberg M, Basov D N 2018 Nat. Commun. 9 3604Google Scholar

    [5]

    穆宁, 杨川艳, 马康, 全玉莲, 王诗, 赖颖, 李飞, 王与烨, 陈图南, 徐德刚, 冯华 2022 物理学报 71 178702Google Scholar

    Mu N, Yang C Y, Ma K, Quan Y L, Wang S, Lai Y, Li F, Wang Y Y, Chen T N, Xu D G, Feng H 2022 Acta Phys. Sin. 71 178702Google Scholar

    [6]

    王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞 2016 物理学报 65 134101Google Scholar

    Wang Y W, Dong Z W, Li H Y, Zhou X, Luo Z F 2016 Acta Phys. Sin. 65 134101Google Scholar

    [7]

    Yang X, Zhao X, Yang K, Liu Y, Liu Y, Fu W, Luo Y 2016 Trends Biotechnol. 34 810Google Scholar

    [8]

    Aghasi H, Naghavi S M H, Taba M T, Aseeri M A, Cathelin A, Afshari E 2020 Appl. Phys. Rev. 7 021302Google Scholar

    [9]

    Cherkassky V S, Knyazev B A, Kubarev V V, Kulipanov G N, Kruyshev G L, Matveenko A N, Petrov A K, Petrov V M, Scheglov M A, Shevchenko O A, Vmokurov N A 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Teraheriz Electronics Karlsruhe, Germany, September 17–October 1, 2004 p567

    [10]

    Chhantyal-Pun R, Valavanis A, Keeley J T, Rubino P, Kundu I, Han Y, Dean P, Li L, Davies A G, Linfield E H 2018 Opt. Lett. 43 2225Google Scholar

    [11]

    Mueller E R, Henschke R, Robotham W E, Newman L A, Laughman L M, Hart R A, Kennedy J, Pickett H M 2007 Appl. Optics 46 4907Google Scholar

    [12]

    Chen K, Tang L, Xu D, Wang Y, Yan C, Nie G, Hu C, Wu B, Zhu J, Yao J 2021 ACS Photonics 8 3141Google Scholar

    [13]

    Mansourzadeh S, Vogel T, Shalaby M, Wulf F, Saraceno C J 2021 Opt. Express 29 38946Google Scholar

    [14]

    Lee A J, Pask H M 2014 Opt. Lett. 39 442Google Scholar

    [15]

    He Y, Wang Y, Xu D, Nie M, Yan C, Tang L, Shi J, Feng J, Yan D, Liu H, Teng B, Feng H, Yao J 2018 Appl. Phys. B 124 16Google Scholar

    [16]

    柴路, 牛跃, 栗岩锋, 胡明列, 王清月 2016 物理学报 65 070702Google Scholar

    Chai L, Niu Y, Li Y F, Hu M L, Wang Q Y 2016 Acta. Phys. Sin. 65 070702Google Scholar

    [17]

    Tang M, Minamide H, Wang Y, Notake T, Ohno S, Ito H 2011 Opt. Express 19 779Google Scholar

    [18]

    Walsh D, Stothard D J M, Edwards T J, Browne P G, Rae C E, Dunn M H 2009 J. Opt. Soc. Am. B: Opt. Phys. 26 1196Google Scholar

    [19]

    Paul J R, Scheller M, Laurain A, Young A, Koch S W, Moloney J 2013 Opt. Lett. 38 3654Google Scholar

    [20]

    刘欢, 徐德刚, 姚建铨 2008 物理学报 57 5662Google Scholar

    Liu H, Xu D G, Yao J Q 2008 Acta. Phys. Sin. 57 5662Google Scholar

    [21]

    Cunningham P D, Hayden L M 2010 Opt. Express 18 23620Google Scholar

    [22]

    Zhao H, Tan Y, Wu T, Steinfeld G, Zhang Y, Zhang C, Zhang L, Shalaby M 2019 Appl. Phys. Lett. 114 241101Google Scholar

    [23]

    Wang Z, Wang Y, Li H, Ge M, Xu D, Yao J 2023 Opt. Express 31 39030Google Scholar

    [24]

    Rothman L S, Jacquemart D, Barbe A, Benner D C, Birk M, Brown L R, Carleer M R, Chackerian C, Chance K, Coudert L H, Dana V, Devi V M, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Vander Auwera J, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Radiat. Transfer 96 139Google Scholar

  • [1] 梁世杰, 邹家祺, 王文静, 刘迪, 霍燕燕, 宁廷银. Q几何扰动光栅-波导结构中差频产生可调谐太赫兹辐射的数值研究. 物理学报, 2025, 74(3): 034204. doi: 10.7498/aps.74.20240854
    [2] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [3] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [4] 谢仕永, 张小富, 杨程亮, 乐小云, 薄勇, 崔大复, 许祖彦. 周期极化KTiOPO4晶体和频单块非平面环形腔激光产生连续单频589nm黄光. 物理学报, 2016, 65(9): 094203. doi: 10.7498/aps.65.094203
    [5] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [6] 张会云, 刘蒙, 张玉萍, 申端龙, 吴志心, 尹贻恒, 李德华. 连续波抽运气体波导产生太赫兹激光的理论研究. 物理学报, 2014, 63(2): 020702. doi: 10.7498/aps.63.020702
    [7] 李忠洋, 邴丕彬, 徐德刚, 曹小龙, 姚建铨. 级联参量振荡产生太赫兹辐射的理论研究. 物理学报, 2013, 62(8): 084212. doi: 10.7498/aps.62.084212
    [8] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩. 磷化镓高功率太赫兹共线差频源的研究. 物理学报, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [9] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计. 物理学报, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [10] 陆金星, 黄志明, 黄敬国, 王兵兵, 沈学民. 相位失配与材料吸收对利用GaSe差频产生太赫兹波功率影响的研究. 物理学报, 2011, 60(2): 024209. doi: 10.7498/aps.60.024209
    [11] 钟凯, 姚建铨, 徐德刚, 张会云, 王鹏. 级联差频产生太赫兹辐射的理论研究. 物理学报, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [12] 张戎, 曹俊诚. 光子晶体对太赫兹波的调制特性研究. 物理学报, 2010, 59(6): 3924-3929. doi: 10.7498/aps.59.3924
    [13] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究. 物理学报, 2010, 59(9): 6237-6242. doi: 10.7498/aps.59.6237
    [14] 王卓, 王与烨, 姚建铨, 王鹏. 周期结构GaAs晶体ps脉冲差频产生窄带THz辐射的研究. 物理学报, 2010, 59(5): 3249-3254. doi: 10.7498/aps.59.3249
    [15] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [16] 黄楠, 李雪峰, 刘红军, 夏彩鹏. 增益饱和对光学差频产生太赫兹辐射的功率和稳定性的影响. 物理学报, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [17] 刘 欢, 徐德刚, 姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究. 物理学报, 2008, 57(9): 5662-5669. doi: 10.7498/aps.57.5662
    [18] 韩海年, 赵研英, 张 炜, 朱江峰, 王 鹏, 魏志义, 李师群. PPLN晶体差频测量飞秒激光脉冲的载波包络相移. 物理学报, 2007, 56(5): 2756-2759. doi: 10.7498/aps.56.2756
    [19] 孙 博, 姚建铨, 王 卓, 王 鹏. 利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究. 物理学报, 2007, 56(3): 1390-1396. doi: 10.7498/aps.56.1390
    [20] 霍崇儒, 黄锡毅. 利用表面波的差频以产生远红外辐射. 物理学报, 1980, 29(12): 1581-1587. doi: 10.7498/aps.29.1581
计量
  • 文章访问数:  233
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25
  • 修回日期:  2024-12-02
  • 上网日期:  2024-12-11

/

返回文章
返回