搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cs2AgBiI6双空穴传输层太阳能电池的分析与优化

王纪伟 田汉民 王月荣 曹蕊 许武

引用本文:
Citation:

Cs2AgBiI6双空穴传输层太阳能电池的分析与优化

王纪伟, 田汉民, 王月荣, 曹蕊, 许武
cstr: 32037.14.aps.74.20241361

Theoretical analysis and performance optimization of Cs2AgBiI6 solar cells with dual hole transport layers

WANG Jiwei, TIAN Hanmin, WANG Yuerong, CAO Rui, XU Wu
cstr: 32037.14.aps.74.20241361
PDF
HTML
导出引用
  • 双钙钛矿材料以其低成本、环境友好等优势在太阳能电池领域引起广泛关注. 本研究在已报道的ITO/ZnO/Cs2AgBiI6/HTL/Au单空穴传输层太阳能电池结构基础上, 提出了ITO/ZnO/Cs2AgBiI6/HTL1/HTL2/Au的双空穴传输层结构, 并使用Silvaco TCAD进一步分析了基于Cs2AgBiI6的双空穴传输层太阳能电池的内部物理机制. 结果表明, 与各单空穴传输层钙钛矿太阳能电池相比, 使用Cu2O/NiO和NiO/Si作为双空穴传输层的太阳能电池效率有所提高. 与Spiro-OMeTAD/CZTS双空穴传输层太阳能电池相比, 使用Cu2O/CZTS和MoO3/CZTS作为双空穴传输层的效率也有所提高. 其中, 性能最好的Cu2O/CZTS双空穴传输层太阳能电池效率为22.85%. 经过钙钛矿层和传输层的厚度优化后, 光电转换效率提升至25.62%. 此外, 模拟结果还揭示了温度和掺杂浓度对太阳能电池特性的影响. 这将有利于在无铅、无毒、环保的基础上, 为双钙钛矿太阳能电池的能效提高提供理论指导.
    Double perovskite materials have received significant attention in the photovoltaic field due to their low cost, environmental friendliness, and lead-free composition, which make them ideal candidates for next-generation solar cell applications. In this work, the photovoltaic performance of solar cells using Cs2AgBiI6 as the light-absorbing layer is systematically investigated through simulations using Silvaco ATLAS software. Based on the previously reported single hole transport layer device architecture, namely ITO/ZnO/Cs2AgBiI6/HTL/Au, a new dual hole transport layer structure ITO/ZnO/Cs2AgBiI6/HTL1/HTL2/Au is proposed. Different dual hole transport layer combinations are explored, and their influence on the internal physical mechanism and the device performance are analyzed and optimized in detail. The simulation results show that the devices using Cu2O/NiO and NiO/Si respectively as dual hole transport layer significantly improve charge extraction and generate a negative electric field at the interface, thereby reducing recombination losse and accelerating the transport of hole carriers. These two configurations exhibit substantially higher efficiencies than those configurations with a single hole transport layer, confirming the advantages of the dual hole transport layer structure. Additionally, devices using Cu2O/CZTS and MoO3/CZTS as dual hole transport layer show better performance than the reference structure using Spiro-OMeTAD/CZTS, indicating the potential for further improvement by optimizing material selection and layer properties. Of the various dual hole transport layer combinations tested, the structure utilizing Cu2O/CZTS achieves the highest simulated power conversion efficiency (PCE) of 22.85%. By optimizing the thickness of each functional layer, the efficiency can be further increased to 25.62%, and the optimal layer thickness is determined to be 40 nm for ZnO, 850 nm for Cs2AgBiI6, 140 nm for Cu2O, and 150 nm for CZTS. Furthermore, the effects of environmental and material parameters, such as temperature and hole transport layer doping concentration, on device performance are investigated. This study lays a theoretical foundation for the design and enhancement of double perovskite solar cells. By demonstrating the potential that the dual hole transport layer structures can significantly improve device efficiency, their value in advancing environmentally friendly and lead-free photovoltaic technologies becomes very prominent. The insights gained from this research pave the way for developing high-performance double perovskite solar cells with optimized architectures and material properties.
      通信作者: 田汉民, tianhanmin@hebut.edu.cn
      Corresponding author: TIAN Hanmin, tianhanmin@hebut.edu.cn
    [1]

    Hasan S A U, Zahid M A, Park S, Yi J 2024 Sol. RRL 8 2300967Google Scholar

    [2]

    Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul A B, Jiang Q 2024 Nanomaterials 14 391Google Scholar

    [3]

    Liu H R, Zhang Z H, Yang F, Yang J E, Grace A N, Li J M, Tripathi S, Jain S M 2021 Coatings 11 1045Google Scholar

    [4]

    Machin A, Marquez F 2024 Materials 17 1165Google Scholar

    [5]

    万婷婷, 朱安康, 郭友敏, 汪春昌 2017 材料导报 31 16Google Scholar

    Wan T T, Zhu A K, Guo Y M, Wang C C 2017 Mater. Rev. 31 16Google Scholar

    [6]

    Zhai M, Chen C, Cheng M 2023 Sol. Energy 253 563Google Scholar

    [7]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [8]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132Google Scholar

    [9]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [10]

    Ji F, Boschloo G, Wang F, Gao F 2023 Sol. RRL 7 2201112Google Scholar

    [11]

    chrafih Y, Al Hattab M, Rahmani K 2023 J. Alloys Compd. 960 170650Google Scholar

    [12]

    Amraoui S, Feraoun A, Kerouad M 2022 Inorg. Chem. Commun. 140 109395Google Scholar

    [13]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [14]

    Huang Q, Liu J, Qi F, Pu Y, Zhang N, Yang J, Liang Z, Tian C 2023 J. Environ. Chem. Eng. 11 109960Google Scholar

    [15]

    Creutz S E, Crites E N, De Siena M C, Gamelin D R 2018 Nano Lett. 18 1118Google Scholar

    [16]

    Rehman M A, Ur Rehman J, Tahir M B 2023 J. Phys. Chem. Solids. 181 111443Google Scholar

    [17]

    Yadav S C, Srivastava A, Manjunath V, Kanwade A, Devan R S, Shirage P M 2022 Mater. Today Phys. 26 100731Google Scholar

    [18]

    Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J, Giustino F 2016 J. Phys. Chem. Lett. 7 1254Google Scholar

    [19]

    Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y 2019 Nano Lett. 19 2066Google Scholar

    [20]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman M F, Rubel M H K, Islam M R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar

    [21]

    Alla M, Manjunath V, Choudhary E, Samtham M, Sharma S, Shaikh P A, Rouchdi M, Fares B 2023 Phys. Status Solidi A 220 2200642Google Scholar

    [22]

    Zarabinia N, Rasuli R 2021 Energy Sources Part A 43 2443Google Scholar

    [23]

    Chen Q M, Ni Y, Dou X M, Yoshinori Y 2022 Crystals 12 68Google Scholar

    [24]

    Azadinia M, Ameri M, Ghahrizjani R T, Fathollahi M 2021 Mater. Today Energy 20 100647Google Scholar

    [25]

    Yoon S, Kim H, Shin E Y, Bae I G, Park B, Noh Y Y, Hwang I 2016 Org. Electron. 32 200Google Scholar

    [26]

    Chen G S, Chen Y C, Lee C T, Lee H Y 2018 Sol. Energy 174 897Google Scholar

    [27]

    Dahal B, Rezaee M D, Gotame R C, Li W 2023 Mater. Today Commun. 36 106846Google Scholar

    [28]

    Kim D I, Lee J W, Jeong R H, Nam S H, Hwang K H, Boo J H 2019 Surf. Coat. Technol. 357 189Google Scholar

    [29]

    Chen Y, Zhang M, Li F Q, Yang Z Y 2023 Coatings 13 644Google Scholar

    [30]

    Islam T, Jani R, Amin S M A, Shorowordi K M, Nishat S S, Kabir A, Taufique M F N, Chowdhury S, Banerjee S, Ahmed S 2020 Comput. Mater. Sci. 184 109865Google Scholar

    [31]

    Anoop K M, Ahipa T N 2023 Sol. Energy 263 111937Google Scholar

    [32]

    Kumar A 2021 Superlattices Microstructure. 153 106872Google Scholar

    [33]

    Hossain M K, Arnab A A, Das R C, Hossain K M, Rubel M H K, Rahman M F, Bencherif H, Emetere M E, Mohammed M K A, Pandey R 2022 RSC Adv. 12 34850Google Scholar

    [34]

    Bhattarai S, Hossain M K, Pandey R, Madan J, Samajdar D P, Rahman M F, Ansari M Z, Amami M 2023 Energy Fuels 37 10631Google Scholar

  • 图 1  (a) Cs2AgBiI6单HTL钙钛矿太阳能电池; (b) Cs2AgBiI6双HTL钙钛矿太阳电池结构

    Fig. 1.  Device structure of (a) Cs2AgBiI6-based single HTL perovskite solar cell and (b) Cs2AgBiI6-based dual HTLs perovskite solar cell.

    图 2  基于Cs2AgBiI6的不同单空穴传输层太阳能电池的J-V参数曲线

    Fig. 2.  J-V parameter curves for different single HTL solar cells based on Cs2AgBiI6.

    图 3  基于Cs2AgBiI6的不同双空穴传输层太阳能电池的J-V参数曲线

    Fig. 3.  J-V parameter curves for different dual HTLs solar cells based on Cs2AgBiI6.

    图 4  具有不同双空穴传输层的Cs2AgBiI6太阳能电池界面电场 (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O; (d) MoO3/Spiro

    Fig. 4.  Electric fields at the interfaces of Cs2AgBiI6 PSCs with different HTL combinations: (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O; (d) MoO3/Spiro.

    图 5  具有不同双空穴传输层的Cs2AgBiI6太阳能电池复合率 (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O, (d) MoO3/Spiro

    Fig. 5.  Charge recombination rate of Cs2AgBiI6 PSCs with different HTL combinations: (a) Cu2O/NiO; (b) NiO/Si; (c) MoO3/Cu2O; (d) MoO3/Spiro.

    图 6  具有不同双空穴传输层的Cs2AgBiI6太阳能电池的能带图 (a) NiO/Si; (b) Cu2O/NiO.

    Fig. 6.  Energy band diagram of Cs2AgBiI6 PSCs with different HTL combinations: (a) NiO/Si; (b) Cu2O/NiO.

    图 7  基于Cs2AgBiI6的不同HTL/CZTS双空穴传输层太阳能电池的J-V参数曲线

    Fig. 7.  J-V parameter curves for different HTL/CZTS solar cells based on Cs2AgBiI6.

    图 8  Cs2AgBiI6太阳能电池中(a) Spiro/CZTS, (b) MoO3/CZTS, (c) Cu2O/CZTS双空穴传输层界面上的电场, 以及(d) Spiro/CZTS, (e) MoO3/CZTS, (f) Cu2O/CZTS双空穴传输层的复合率

    Fig. 8.  Electric fields at the interfaces of Cs2AgBiI6 PSCs with different HTL combinations: (a) Spiro/CZTS; (b) MoO3/CZTS; (c) Cu2O/CZTS. Charge recombination dynamics of Cs2AgBiI6 PSCs with different HTL combinations: (d) Spiro/CZTS; (e) MoO3/ CZTS; (f) Cu2O/CZTS.

    图 9  Cu2O/CZTS双空穴传输层Cs2AgBiI6太阳能电池的能带图

    Fig. 9.  Energy band diagram of Cs2AgBiI6 solar cell with Cu2O/CZTS dual hole transport layer.

    图 10  (a)电子传输层ZnO、(b)钙钛矿层Cs2AgBiI6、双空穴传输层(c) CZTS和(d) Cu2O厚度对钙钛矿太阳能电池VOC, JSC, FF和PCE的影响

    Fig. 10.  Effects of thicknesses of (a) electron transport layer ZnO, (b) perovskite layer Cs2AgBiI6, (c) hole transport layer Ⅰ CZTS, (d) hole transport layer Ⅱ Cu2O on VOC, JSC, FF and PCE of dual HTLs perovskite solar cell.

    图 11  基于Cs2AgBiI6的Cu2O/CZTS钙钛矿太阳能电池优化前后J-V参数曲线

    Fig. 11.  J-V parameter curves before and after optimization of Cu2O/CZTS dual HTLs perovskite solar cell based on Cs2AgBiI6.

    图 12  空穴传输层CZTS和Cu2O浓度对Cs2AgBiI6钙钛矿太阳能电池的(a) JSC, (b) VOC, (c) PCE和(d) FF的影响

    Fig. 12.  Effects of the concentrations of the CZTS and Cu2O on (a) JSC, (b) VOC, (c) PCE and (d) FF of the Cs2AgBiI6 perovskite solar cell.

    图 13  电池输出参数随HTL空穴迁移率的变化

    Fig. 13.  Variations of solar cell output parameters with HTL hole mobility.

    图 14  温度对Cs2AgBiI6钙钛矿太阳能电池的(a)VOC, (b) JSC, (c) PCE和(d)FF的影响  

    Fig. 14.  Effects of the temperature on (a) JSC, (b) VOC, (c) PCE and (d) FF of the Cs2AgBiI6 perovskite solar cell.

    表 1  太阳能电池不同层材料的参数

    Table 1.  Device parameters for different layers of the cells.

    Parameter ZnO Cs2AgBiI6 Cu2O MoO3 CZTS Spiro-OMeTAD NiO P3HT Si
    Thickness/nm 50 800 50 50 100 200 100 50 50
    Permittivity εr 9 6.5 7.5 12.5 9 3 10.7 3 11.9
    Band gap/eV 3.3 1.6 2.17 3 1.4 2.2 3.8 1.7 1.12
    Affinity/eV 4 3.9 3.2 2.5 3.8 3 1.46 3.5 4.17
    NC/(1018 cm–3) 3.7 10.0 2.0 2.2 2.2 2.2 28.0 2000.0 250.0
    NV/(1018 cm–3) 18.0 10.0 11.0 18.0 1.8 250.0 10.0 2000.0 180.0
    ND(1018 cm–3) 1 0 0 0 0 0 0 0 0
    NA/(1015 cm–3) 0 1 1000 1000 10000 1000 1000 1000 10
    μn/(cm2·V–1·s–1) 100 2 200 25 100 2×10–4 12 1.8×10–3 1500
    μp/(cm2·V–1·s–1) 25 2 80 100 12.5 2×10–4 2.8 1.86×10–2 480
    下载: 导出CSV

    表 2  不同单空穴传输层电池的输出参数

    Table 2.  Performance parameters of PSCs with various HTLs.

    电池结构 VOC/V JSC/(mA·cm–2) PCE/% FF/%
    FTO/ZnO/Cs2AgBiI6/Cu2O/Au 1.096 23.02 21.17 83.91
    FTO/ZnO/Cs2AgBiI6/MoO3/Au 1.097 23.01 21.16 83.83
    FTO/ZnO/Cs2AgBiI6/CZTS/Au 1.088 22.07 20.00 83.29
    FTO/ZnO/Cs2AgBiI6/Spiro/Au 1.095 23.08 20.14 79.69
    FTO/ZnO/Cs2AgBiI6/NiO/Au 1.095 23.00 20.64 82.10
    FTO/ZnO/Cs2AgBiI6/P3HT/Au 1.070 23.04 17.91 72.65
    FTO/ZnO/Cs2AgBiI6/Si/Au 1.055 22.00 17.18 74.02
    ITO/ZnO/Cs2AgBiI6/Spiro/Au[34] 1.08 24.20 21.72 83.14
    ITO/ZnO/Cs2AgBiI6/Spiro/Au[33] 1.08 23.74 20.31 79.28
    下载: 导出CSV

    表 3  不同双空穴传输层电池的输出参数

    Table 3.  Performance parameters of PSCs with dual HTLs.

    Device structures VOC/V JSC/(mA·cm–2) PCE/% FF/%
    FTO/ZnO/Cs2AgBiI6/Cu2O/NiO/Au 1.098 23.19 21.39 83.46
    FTO/ZnO/Cs2AgBiI6/NiO/Si/Au 1.093 23.05 20.71 82.21
    FTO/ZnO/Cs2AgBiI6/MoO3/Cu2O/Au 1.097 22.9 21.13 83.44
    FTO/ZnO/Cs2AgBiI6/MoO3/Spiro/Au 1.097 23.96 21.12 83.77
    下载: 导出CSV

    表 4  不同HTL/CZTS双空穴传输层电池的输出参数

    Table 4.  Performance parameters of PSCs with HTL/CZTS.

    Device structures VOC/V JSC/(mA·cm–2) PCE/% FF/%
    FTO/ZnO/Cs2AgBiI6/Spiro/CZTS/Au 1.1 24.73 22.62 83.15
    FTO/ZnO/Cs2AgBiI6/Cu2O/CZTS/Au 1.1 24.89 22.85 83.46
    FTO/ZnO/Cs2AgBiI6/MoO3/CZTS/Au 1.1 24.83 22.79 83.44
    下载: 导出CSV

    表 5  正交实验中Cu2O和CZTS作为HTL的太阳能电池性能参数

    Table 5.  Performance parameters of PSCs with Cu2O and CZTS as HTL in orthogonal experiments.

    Experiment No. Thickness/nm VOC/V JSC/(mA·cm–2) PCE/% FF/%
    ZnO Cs2AgBiI6 CZTS Cu2O
    1 40 850 150 140 1.103 28.31 25.62 82.05
    2 40 900 170 150 1.100 28.36 25.46 81.61
    3 40 950 160 160 1.098 28.37 25.25 81.06
    4 50 850 170 160 1.102 27.92 25.26 82.10
    5 50 900 160 140 1.101 28.10 25.21 81.49
    6 50 950 150 150 1.098 28.09 25.01 81.09
    7 60 850 160 150 1.103 27.80 25.15 82.02
    8 60 900 150 160 1.100 27.56 24.75 81.64
    9 60 950 170 140 1.098 28.30 25.15 80.94
    下载: 导出CSV
  • [1]

    Hasan S A U, Zahid M A, Park S, Yi J 2024 Sol. RRL 8 2300967Google Scholar

    [2]

    Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul A B, Jiang Q 2024 Nanomaterials 14 391Google Scholar

    [3]

    Liu H R, Zhang Z H, Yang F, Yang J E, Grace A N, Li J M, Tripathi S, Jain S M 2021 Coatings 11 1045Google Scholar

    [4]

    Machin A, Marquez F 2024 Materials 17 1165Google Scholar

    [5]

    万婷婷, 朱安康, 郭友敏, 汪春昌 2017 材料导报 31 16Google Scholar

    Wan T T, Zhu A K, Guo Y M, Wang C C 2017 Mater. Rev. 31 16Google Scholar

    [6]

    Zhai M, Chen C, Cheng M 2023 Sol. Energy 253 563Google Scholar

    [7]

    Meyer E, Mutukwa D, Zingwe N, Taziwa R 2018 Metals 8 667Google Scholar

    [8]

    Yuan Y, Yan G, Hong R, Liang Z, Kirchartz T 2022 Adv. Mater. 34 2108132Google Scholar

    [9]

    Zhao X G, Yang J H, Fu Y, Yang D, Xu Q, Yu L, Wei S H, Zhang L 2017 J. Am. Chem. Soc. 139 2630Google Scholar

    [10]

    Ji F, Boschloo G, Wang F, Gao F 2023 Sol. RRL 7 2201112Google Scholar

    [11]

    chrafih Y, Al Hattab M, Rahmani K 2023 J. Alloys Compd. 960 170650Google Scholar

    [12]

    Amraoui S, Feraoun A, Kerouad M 2022 Inorg. Chem. Commun. 140 109395Google Scholar

    [13]

    Slavney A H, Hu T, Lindenberg A M, Karunadasa H I 2016 J. Am. Chem. Soc. 138 2138Google Scholar

    [14]

    Huang Q, Liu J, Qi F, Pu Y, Zhang N, Yang J, Liang Z, Tian C 2023 J. Environ. Chem. Eng. 11 109960Google Scholar

    [15]

    Creutz S E, Crites E N, De Siena M C, Gamelin D R 2018 Nano Lett. 18 1118Google Scholar

    [16]

    Rehman M A, Ur Rehman J, Tahir M B 2023 J. Phys. Chem. Solids. 181 111443Google Scholar

    [17]

    Yadav S C, Srivastava A, Manjunath V, Kanwade A, Devan R S, Shirage P M 2022 Mater. Today Phys. 26 100731Google Scholar

    [18]

    Volonakis G, Filip M R, Haghighirad A A, Sakai N, Wenger B, Snaith H J, Giustino F 2016 J. Phys. Chem. Lett. 7 1254Google Scholar

    [19]

    Igbari F, Wang R, Wang Z K, Ma X J, Wang Q, Wang K L, Zhang Y, Liao L S, Yang Y 2019 Nano Lett. 19 2066Google Scholar

    [20]

    Hossain M K, Samajdar D P, Das R C, Arnab A A, Rahman M F, Rubel M H K, Islam M R, Bencherif H, Pandey R, Madan J, Mohammed M K A 2023 Energy Fuels 37 3957Google Scholar

    [21]

    Alla M, Manjunath V, Choudhary E, Samtham M, Sharma S, Shaikh P A, Rouchdi M, Fares B 2023 Phys. Status Solidi A 220 2200642Google Scholar

    [22]

    Zarabinia N, Rasuli R 2021 Energy Sources Part A 43 2443Google Scholar

    [23]

    Chen Q M, Ni Y, Dou X M, Yoshinori Y 2022 Crystals 12 68Google Scholar

    [24]

    Azadinia M, Ameri M, Ghahrizjani R T, Fathollahi M 2021 Mater. Today Energy 20 100647Google Scholar

    [25]

    Yoon S, Kim H, Shin E Y, Bae I G, Park B, Noh Y Y, Hwang I 2016 Org. Electron. 32 200Google Scholar

    [26]

    Chen G S, Chen Y C, Lee C T, Lee H Y 2018 Sol. Energy 174 897Google Scholar

    [27]

    Dahal B, Rezaee M D, Gotame R C, Li W 2023 Mater. Today Commun. 36 106846Google Scholar

    [28]

    Kim D I, Lee J W, Jeong R H, Nam S H, Hwang K H, Boo J H 2019 Surf. Coat. Technol. 357 189Google Scholar

    [29]

    Chen Y, Zhang M, Li F Q, Yang Z Y 2023 Coatings 13 644Google Scholar

    [30]

    Islam T, Jani R, Amin S M A, Shorowordi K M, Nishat S S, Kabir A, Taufique M F N, Chowdhury S, Banerjee S, Ahmed S 2020 Comput. Mater. Sci. 184 109865Google Scholar

    [31]

    Anoop K M, Ahipa T N 2023 Sol. Energy 263 111937Google Scholar

    [32]

    Kumar A 2021 Superlattices Microstructure. 153 106872Google Scholar

    [33]

    Hossain M K, Arnab A A, Das R C, Hossain K M, Rubel M H K, Rahman M F, Bencherif H, Emetere M E, Mohammed M K A, Pandey R 2022 RSC Adv. 12 34850Google Scholar

    [34]

    Bhattarai S, Hossain M K, Pandey R, Madan J, Samajdar D P, Rahman M F, Ansari M Z, Amami M 2023 Energy Fuels 37 10631Google Scholar

  • [1] 熊祥杰, 钟防, 张资文, 陈芳, 罗婧澜, 赵宇清, 朱慧平, 蒋绍龙. 二维范德瓦耳斯异质结Cs3X2I9/InSe (X = Bi, Sb)的光电性能. 物理学报, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [2] 王月荣, 田汉民, 张登琪, 刘维龙, 马旭蕾. Cs2AgBi0.75Sb0.25Br6钙钛矿太阳能电池的优化设计. 物理学报, 2024, 73(2): 028802. doi: 10.7498/aps.73.20231299
    [3] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化. 物理学报, 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [4] 王兰, 程思远, 曾航航, 谢聪伟, 龚元昊, 郑植, 范晓丽. CuBiI三元化合物晶体结构预测及光电性能第一性原理研究. 物理学报, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [5] 陈卓, 方磊, 陈远富. 三维多孔复合碳层对电极的制备及其光伏性能研究. 物理学报, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [6] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [7] 韩定定, 姚清清, 陈趣, 钱江海. 基于时变小世界模型的航空网优化评估. 物理学报, 2017, 66(24): 248901. doi: 10.7498/aps.66.248901
    [8] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展. 物理学报, 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [9] 王云峰, 顾成明, 张晓辉, 王雨顺, 韩月琪, 王耘锋. 优化模式物理参数的扩展四维变分同化方法. 物理学报, 2014, 63(24): 240202. doi: 10.7498/aps.63.240202
    [10] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 黄守芳. 一个修改的混沌蚁群优化算法. 物理学报, 2013, 62(17): 170501. doi: 10.7498/aps.62.170501
    [11] 姜冰一, 郑建邦, 王春锋, 郝娟, 曹崇德. 基于GaAs/InAs-GaAs/ZnSe量子点太阳电池结构的优化. 物理学报, 2012, 61(13): 138801. doi: 10.7498/aps.61.138801
    [12] 耿俊杰, 张军, 张俊, 张义, 丁建军, 孙松, 罗震林, 鲍骏, 高琛. 叠层荧光集光太阳能光伏器件的性能模拟和优化. 物理学报, 2012, 61(3): 034201. doi: 10.7498/aps.61.034201
    [13] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [14] 张春涛, 马千里, 彭宏. 基于信息熵优化相空间重构参数的混沌时间序列预测. 物理学报, 2010, 59(11): 7623-7629. doi: 10.7498/aps.59.7623
    [15] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [16] 戴存礼, 刘曙娥, 田 亮, 施大宁. 推广的失活网络动力学同步优化. 物理学报, 2008, 57(8): 4800-4804. doi: 10.7498/aps.57.4800
    [17] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [18] 颜森林, 迟泽英, 陈文建, 王泽农. 激光混沌同步和解码以及优化. 物理学报, 2004, 53(6): 1704-1709. doi: 10.7498/aps.53.1704
    [19] 陆明珠, 万明习, 施雨. 相控阵超声热疗场共轭直接合成的模式优化研究. 物理学报, 2001, 50(2): 347-353. doi: 10.7498/aps.50.347
    [20] 程 成, 何赛灵. 大口径铜蒸气激光“黑心”的优化消除. 物理学报, 2000, 49(7): 1267-1272. doi: 10.7498/aps.49.1267
计量
  • 文章访问数:  290
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-26
  • 修回日期:  2024-12-04
  • 上网日期:  2024-12-12

/

返回文章
返回