搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

S, Se共掺杂Si光电特性的第一性原理计算分析

陈福松 杜玲艳 谭兴毅 李强

引用本文:
Citation:

S, Se共掺杂Si光电特性的第一性原理计算分析

陈福松, 杜玲艳, 谭兴毅, 李强
cstr: 32037.14.aps.74.20241434

First principles study of photoelectric properties of (S, Se) co-doped Si

CHEN Fusong, DU Lingyan, TAN Xingyi, LI Qiang
cstr: 32037.14.aps.74.20241434
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于第一性原理研究了S, Se单掺杂以及共掺杂Si的光电特性, 对掺杂前后晶体的几何结构、稳定性、能带结构和电子态密度以及光学性质进行比较分析. 计算结果表明, S掺杂Si与Se掺杂Si的光电特性极其相似, 其禁带中均出现一条新的杂质能级, 主要由S的3s态与Se的4s态电子形成, 杂质能级的形成促进低能光子的吸收, 增大了掺杂Si材料在近红外波段的光吸收率; 与单晶硅相比, S掺杂Si与Se掺杂Si的光吸收谱, 在0.6 eV处出现了一个新的峰值, 该峰值正是由电子从杂质能级向导带跃迁产生. S, Se共掺杂Si在工作温度下表现出良好的稳定性; 价带与导带之间出现两条杂质能级, 分别由S的3s态与Se的4s态电子形成; S, Se共掺杂Si的光吸收率在低能区较单掺杂Si有较大提升, 新增吸收峰出现在0.65 eV处, 形成原因与单掺杂相似. 然而, 由于两条杂质能带间的间接跃迁过程, 共掺杂Si在低能区的吸收峰更大. 且与相同浓度的单掺杂Si相比, S, Se共掺杂Si的光吸收率在0.81—1.06 eV范围内明显提高.
    In order to provide more accurate theoretical guidance for improving photoelectric properties of chalcogens doped silicon, the lattice structure, stability, band structure, density of state and optical properties of (S, Se) co-doped silicon are systematically investigated based on the first principles, and the related properties are compared with those of S-doped and Se-doped silicon. The calculated results show that the photoelectric characteristics of S-doped Si and Se-doped Si are extremely similar to each other, with a new impurity band appearing in their bandgap. This new impurity band primarily results from the contributions of the 3s state electrons of S and the 4s state electrons of Se, promoting the absorption of low-energy photons and increasing the optical absorptivity of doped Si in the near infrared region. Compared with monocrystalline silicon, the S-doped Si and Se-doped Si have the optical absorption spectra, each with a new peak at 0.6 eV, which is caused by the transition of electrons from the impurity band to the conduction band. The (S, Se) co-doped Si exhibits good stability at operating temperature, and two impurity bands appear between the valence band and conduction band, which are formed by electrons from the 3s state of S and the 4s state of Se, respectively. The optical absorptivity of (S, Se) co-doped Si is greatly improved in the low energy region compared with that of single doped Si, with a new absorption peak appearing at 0.65 eV, similar to the formation observed in singly doped Si. However, due to the indirect transition process between two impurity energy bands, the absorption peak of (S, Se) co-doped Si is larger in the low energy region. Compared with S-doped silicon and Se-doped silicon with the same concentration, the (S, Se) co-doped Si has optical absorptivity that is significantly improved in the range from 0.81 eV to 1.06 eV. This study provides theoretical guidance for applying the (S, Se) co-doped Si to the field of photoelectron such as infrared photodetectors and solar cells.
      通信作者: 杜玲艳, dulingyan@suse.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12304469)资助的课题.
      Corresponding author: DU Lingyan, dulingyan@suse.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12304469).
    [1]

    周治平 2014 武汉光电论坛论文集 (武汉: 华中科技大学出版社) 第249页

    Zhou Z P 2014 Proceedings of Wuhan Opto-Electronic Forum (Wuhan: Huazhong University of Science & Technology Press) p249

    [2]

    Michael O, Mathias K, Steffen E, Maurice W, Zili Y, Daniel S, Köllner A C, Joachim N B, Jörg S 2021 IEEE Sens. J. 20 18696Google Scholar

    [3]

    Yang J J, Jurczak P, Cui F, Li K S, Tang M C, Billiald L, Beanland R 2019 J. Cryst. Growth 514 109Google Scholar

    [4]

    Her T H, Finlay R J, Mazur E, Wu C, Deliwala S 1998 Appl. Phys. Lett. 73 1673Google Scholar

    [5]

    Wu C, Crouch C H, Zhao L, Carey J E, Younkin R, Levinson J A, Mazur E, Farrell R M, Gothoskar P, Karger A 2001 Appl. Phys. Lett. 78 1850Google Scholar

    [6]

    Tansel T, Aydin O 2024 J. Phys. D 57 295103Google Scholar

    [7]

    Zhao X N, Lin K, Zhao B, Du W H, Nivas J J, Amoruso S, Wang X 2023 Appl. Surf. Sci. 619 156624Google Scholar

    [8]

    钟豪 2019 硕士学位论文 (成都: 电子科技大学)

    Zhong H 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [9]

    Du L Y, Yin J, Zeng W, Pang S Z, Yi H 2023 Mater. Lett. 331 133463Google Scholar

    [10]

    高宇辰 2022 硕士学位论文 (吉林: 吉林大学)

    Gao Y C 2022 M. S. Thesis (Jilin: Jilin University

    [11]

    Yang Y, Yi Z R, Chao L, Zhao J H 2023 Opt. Quantum Electron. 55 259Google Scholar

    [12]

    任哲毅 2024 硕士学位论文 (吉林: 吉林大学)

    Ren Z Y 2024 M. S. Thesis (Jilin: Jilin University

    [13]

    Zhu J, Gandi N A, Schwingenschlögl U 2018 Adv. Theor. Simul. 1 1800017Google Scholar

    [14]

    Wang X Y, Wang T, Ren Q, Xu J T, Cui Y A 2023 Micro Nanostruct. 184 207695Google Scholar

    [15]

    薛晓晚 2018 硕士学位论文 (大连: 大连理工大学)

    Xue X W 2018 M. S. Thesis (Dalian: Dalian University of Technology

    [16]

    梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071Google Scholar

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071Google Scholar

    [17]

    Tang X, Li W, Xu W, Ren Q Y, Chen Q Y 2024 Mater. Sci. Semicond. Process. 184 108797Google Scholar

    [18]

    Wu M, Cai G K, Li Z, Ye L, Wang C 2024 Vacuum 225 113222Google Scholar

    [19]

    Li J Y, Zhao C L, Li W, Ren Q Y, Xu J, Xu W 2023 Phys. Scr. 98 115408Google Scholar

    [20]

    Sharif M N, Yang J S, Zhang X K, Tang Y H, Yang G, Wang K F 2024 Vacuum 219 112714Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [23]

    Shuichi N 1984 J. Chem. Phys. 81 511Google Scholar

    [24]

    关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624Google Scholar

    Guan L, Li Q, Zhao Q X, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624Google Scholar

    [25]

    Kumaravelu G, Alkaisi M M, Bittar A 2002 29th IEEE Photovoltaic Specialists Conference New Orleans, LA, USA, May 19–24, 2002 p258

    [26]

    杜玲艳 2018 博士学位论文 (成都: 电子科技大学)

    Du L Y 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [27]

    宣曜宇 2017 硕士学位论文 (成都: 电子科技大学)

    Xuan Y Y 2017 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [28]

    Khan M, Xu J N, Chen N, Cao W B 2012 J. Alloys Compd. 513 539Google Scholar

    [29]

    Feng J, Xiao B, Chen C J, Zhou C T, Du Y P, Zhou R 2009 Solid State Commun. 149 1569Google Scholar

  • 图 1  S, Se单掺杂模型示意图

    Fig. 1.  Schematic diagram of S and Se single doping model.

    图 2  S, Se共掺杂模型示意图(数字代表Si原子序号)

    Fig. 2.  Schematic diagram of the co-doping model of S and Se (Numbers represent Si atomic number).

    图 3  S (a), Se (b)原子与周围Si原子成键键长随时间变化图

    Fig. 3.  Plot of the bond length of S (a) and Se (b) atoms with the surrounding Si atoms as a function of time.

    图 4  S (a), Se (b)原子位置偏移的RMSD随时间的变化图

    Fig. 4.  Plot of the RMSD of the position offset of S (a) and Se (b) atoms as a function of time.

    图 5  纯Si与掺杂Si的能带结构 (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S)

    Fig. 5.  Band structure of pure Si and doped Si: (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S).

    图 6  纯Si与掺杂Si的总态密度

    Fig. 6.  Total density of states of pure Si and doped Si.

    图 7  相同浓度单掺杂与共掺杂Si的总态密度

    Fig. 7.  Total density of states of single and co-doped Si at the same concentration.

    图 8  纯Si与掺杂Si的分态密度 (a)纯Si中的Si; (b) Si63S中的S; (c) Si63S中的Si; (d) Si63Se中的Se; (e) Si63Se中的Si; (f) Si62(Se, S)中的S; (g) Si62(Se, S)中的Se; (h) Si62(Se, S)中的Si

    Fig. 8.  Partial density of state of pure Si and doped Si: (a) Si in pure Si; (b) S in Si63S; (c) Si in Si63S; (d) Se in Si63Se; (e) Si in Si63Se; (f) S in Si62(Se, S); (g) Se in Si62(Se, S); (h) Si in Si62(Se, S).

    图 9  纯Si与掺杂Si介电函数的虚部 (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S)

    Fig. 9.  Imaginary part of the pure Si and doped Si dielectric function: (a) Si; (b) Si63S; (c) Si63Se; (d) Si62(Se, S).

    图 10  纯Si与掺杂Si的光吸收谱(a)、反射谱(b)、消光系数谱(c)和能量损失谱(d), 其中图(a)中插图为纯Si与掺杂Si的光吸收谱在0—3 eV部分的放大

    Fig. 10.  Optical absorption spectrum (a), reflection spectrum (b), extinction coefficient spectrum (c) and energy loss spectrum (d) of pure Si and doped Si, the inset in panel (a) shows the amplification of the optical absorption spectrum of pure Si and doped Si at 0–3 eV.

    图 11  S, Se单掺杂Si在近红外区域的光激发示意图

    Fig. 11.  Schematic of the photoexcitation of S and Se single-doped Si in the NIR region.

    图 12  相同浓度单掺杂与共掺杂Si在近红外区域的光吸收谱

    Fig. 12.  Optical absorption spectra of single and co-doped Si at the same concentration in the near infrared region.

    图 13  S, Se共掺杂Si在近红外区域的光激发示意图

    Fig. 13.  Schematic of the photoexcitation of S and Se co-doped Si in the NIR region.

    表 1  结构优化后单晶硅、Si超晶胞、S, Se单掺杂及共掺杂硅的晶格常数及键长

    Table 1.  Lattice constants and bond lengths of single crystal silicon, Si supercell, S, Se single doping and co-doping silicon after structure optimization.

    Compound Lattice
    constant/Å
    Bond length/Å ${E^{\text{f}}}$/eV
    Si—X Si—Si
    Si单晶胞5.4672.367
    Si(2×2×2)10.9342.367
    ${\text{S}}{{\text{i}}_{{63}}}{{\text{S}}_{}}$10.9282.4632.3651.24
    ${\text{S}}{{\text{i}}_{{63}}}{\text{Se}}$10.9462.5582.3681.27
    $ {\text{S}}{{\text{i}}_{{62}}}{\text{(Se, S)}} $10.9442.457
    (Si—S)
    2.3642.54
    2.552
    (Si—Se)
    2.367
    下载: 导出CSV
  • [1]

    周治平 2014 武汉光电论坛论文集 (武汉: 华中科技大学出版社) 第249页

    Zhou Z P 2014 Proceedings of Wuhan Opto-Electronic Forum (Wuhan: Huazhong University of Science & Technology Press) p249

    [2]

    Michael O, Mathias K, Steffen E, Maurice W, Zili Y, Daniel S, Köllner A C, Joachim N B, Jörg S 2021 IEEE Sens. J. 20 18696Google Scholar

    [3]

    Yang J J, Jurczak P, Cui F, Li K S, Tang M C, Billiald L, Beanland R 2019 J. Cryst. Growth 514 109Google Scholar

    [4]

    Her T H, Finlay R J, Mazur E, Wu C, Deliwala S 1998 Appl. Phys. Lett. 73 1673Google Scholar

    [5]

    Wu C, Crouch C H, Zhao L, Carey J E, Younkin R, Levinson J A, Mazur E, Farrell R M, Gothoskar P, Karger A 2001 Appl. Phys. Lett. 78 1850Google Scholar

    [6]

    Tansel T, Aydin O 2024 J. Phys. D 57 295103Google Scholar

    [7]

    Zhao X N, Lin K, Zhao B, Du W H, Nivas J J, Amoruso S, Wang X 2023 Appl. Surf. Sci. 619 156624Google Scholar

    [8]

    钟豪 2019 硕士学位论文 (成都: 电子科技大学)

    Zhong H 2019 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [9]

    Du L Y, Yin J, Zeng W, Pang S Z, Yi H 2023 Mater. Lett. 331 133463Google Scholar

    [10]

    高宇辰 2022 硕士学位论文 (吉林: 吉林大学)

    Gao Y C 2022 M. S. Thesis (Jilin: Jilin University

    [11]

    Yang Y, Yi Z R, Chao L, Zhao J H 2023 Opt. Quantum Electron. 55 259Google Scholar

    [12]

    任哲毅 2024 硕士学位论文 (吉林: 吉林大学)

    Ren Z Y 2024 M. S. Thesis (Jilin: Jilin University

    [13]

    Zhu J, Gandi N A, Schwingenschlögl U 2018 Adv. Theor. Simul. 1 1800017Google Scholar

    [14]

    Wang X Y, Wang T, Ren Q, Xu J T, Cui Y A 2023 Micro Nanostruct. 184 207695Google Scholar

    [15]

    薛晓晚 2018 硕士学位论文 (大连: 大连理工大学)

    Xue X W 2018 M. S. Thesis (Dalian: Dalian University of Technology

    [16]

    梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙 2010 物理学报 59 8071Google Scholar

    Liang W H, Ding X C, Chu L Z, Deng Z C, Guo J X, Wu Z H, Wang Y L 2010 Acta Phys. Sin. 59 8071Google Scholar

    [17]

    Tang X, Li W, Xu W, Ren Q Y, Chen Q Y 2024 Mater. Sci. Semicond. Process. 184 108797Google Scholar

    [18]

    Wu M, Cai G K, Li Z, Ye L, Wang C 2024 Vacuum 225 113222Google Scholar

    [19]

    Li J Y, Zhao C L, Li W, Ren Q Y, Xu J, Xu W 2023 Phys. Scr. 98 115408Google Scholar

    [20]

    Sharif M N, Yang J S, Zhang X K, Tang Y H, Yang G, Wang K F 2024 Vacuum 219 112714Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [23]

    Shuichi N 1984 J. Chem. Phys. 81 511Google Scholar

    [24]

    关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭 2009 物理学报 58 5624Google Scholar

    Guan L, Li Q, Zhao Q X, Guo J X, Zhou Y, Jin L T, Geng B, Liu B T 2009 Acta Phys. Sin. 58 5624Google Scholar

    [25]

    Kumaravelu G, Alkaisi M M, Bittar A 2002 29th IEEE Photovoltaic Specialists Conference New Orleans, LA, USA, May 19–24, 2002 p258

    [26]

    杜玲艳 2018 博士学位论文 (成都: 电子科技大学)

    Du L Y 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China

    [27]

    宣曜宇 2017 硕士学位论文 (成都: 电子科技大学)

    Xuan Y Y 2017 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China

    [28]

    Khan M, Xu J N, Chen N, Cao W B 2012 J. Alloys Compd. 513 539Google Scholar

    [29]

    Feng J, Xiao B, Chen C J, Zhou C T, Du Y P, Zhou R 2009 Solid State Commun. 149 1569Google Scholar

  • [1] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋. 基于第一性原理研究杂质补偿对硅光电性能的影响. 物理学报, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [3] 刘郅澄, 周杰, 陈凡, 彭彪, 彭文屹, 章爱生, 邓晓华, 罗显芝, 刘日新, 刘德武, 黄雨, 阎军. Si对Inconel 718合金中γ相影响的第一性原理研究. 物理学报, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [4] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响. 物理学报, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [5] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究. 物理学报, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [6] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [7] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性. 物理学报, 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [8] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [9] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究. 物理学报, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [10] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [11] 石彦立, 韩伟, 卢铁城, 陈军. 含羟基结构熔石英光电性质的第一性原理研究. 物理学报, 2014, 63(8): 083101. doi: 10.7498/aps.63.083101
    [12] 何静芳, 郑树凯, 周鹏力, 史茹倩, 闫小兵. Cu-Co共掺杂ZnO光电性质的第一性原理计算. 物理学报, 2014, 63(4): 046301. doi: 10.7498/aps.63.046301
    [13] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [14] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [15] 余志强. 硅基外延OsSi2电子结构及光电特性研究. 物理学报, 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [16] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [18] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [19] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [20] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
计量
  • 文章访问数:  542
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-13
  • 修回日期:  2025-01-17
  • 上网日期:  2025-02-14
  • 刊出日期:  2025-04-05

/

返回文章
返回