搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤锌矿铁电材料自发极化强度的本征影响因素

康瑶 陈健 童祎 王新朋 段坤 王嘉琪 王旭东 周大雨 姚曼

引用本文:
Citation:

纤锌矿铁电材料自发极化强度的本征影响因素

康瑶, 陈健, 童祎, 王新朋, 段坤, 王嘉琪, 王旭东, 周大雨, 姚曼
cstr: 32037.14.aps.74.20241520

Key factors of spontaneous polarization magnitude in wurtzite materials

KANG Yao, CHEN Jian, TONG Yi, WANG Xinpeng, DUAN Kun, WANG Jiaqi, WANG Xudong, ZHOU Dayu, YAO Man
cstr: 32037.14.aps.74.20241520
PDF
HTML
导出引用
  • 自发极化强度是衡量铁电材料极化能力的关键指标. 新兴的纤锌矿铁电材料因较高的自发极化而受到广泛关注, 但目前对影响这一性质的关键因素的理解仍然不足. 本文旨在通过结合机器学习和第一性原理方法来解决这一问题. 首先, 计算了40种二元和89种简单三元纤锌矿材料的自发极化强度, 并从元素基本属性、晶体结构参数和电子性质中提取了多种特征. 随后, 采用Boruta算法和距离相关系数分析方法进行特征筛选, 提出了一个全面而精确的纤锌矿材料自发极化强度的机器学习预测模型. 进一步借助SHapley Additive exPlanations分析方法, 阐明了影响自发极化强度的关键因素是阳离子离子势的均值IPi_Aave和晶胞参数a等. 本研究弥补了目前对自发极化强度多因素的影响机制理解的缺乏, 为系统评估新兴纤锌矿材料的自发极化强度提供了帮助, 有助于加快性能优异的纤锌矿铁电材料的筛选. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00073中访问获取.
    Emerging wurtzite ferroelectric materials have aroused significant interest due to their high spontaneous polarization magnitude (Ps). However, there is a limited understanding of the key factors that influence Ps. Herein, a machine-learning regression model is developed to predict the Ps using a dataset consisting of 40 binary and 89 simple ternary wurtzite materials. Features are extracted based on elemental properties, crystal parameters and electronic properties. Feature selection is carried out using the Boruta algorithm and distance correlation analysis, resulting in a comprehensive machine learning model. Furthermore, SHapley Additive exPlanations analysis identifies the average cation-ion potential (IPi_Aave) and the lattice parameter (a) as significant determinants of Ps, with IPi_Aave having the most prominent effect. A lower IPi_Aave corresponds to a lower Ps in the material. Additionally, a exhibits an approximately negative correlation with Ps.This multifactorial analysis fills the existing gap in understanding the determinants of Ps, and makes a foundational contribution to the evaluating emerging wurtzite materials and expediting the discovery of high-performance ferroelectric materials.The dataset in this work can be accessed in the Scientific Data Bank https://www.doi.org/10.57760/sciencedb.j00213.00073.
      通信作者: 周大雨, zhoudayu@dlut.edu.cn ; 姚曼, yaoman@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51974056, 51474047, 52472120)、中央高校基本科研业务费 (批准号: DUT24LAB117)和苏州实验室科研项目(批准号: SK-1202-2024-012)资助的课题.
      Corresponding author: ZHOU Dayu, zhoudayu@dlut.edu.cn ; YAO Man, yaoman@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51974056, 51474047, 52472120), the Fundamental Research Funds for the Central Universities of China (Grant No. DUT24LAB117), and the Suzhou Laboratory Project (Grant No. SK-1202-2024-012).
    [1]

    Ishiwara H 2012 J. Nanosci. Nanotechnol. 12 7619Google Scholar

    [2]

    Arimoto Y, Ishiwara H 2004 Mrs. Bull. 29 823Google Scholar

    [3]

    Song S, Kim K H, Chakravarthi S, Han Z, Kim G, Ma K Y, Shin H S, Olsson R H, Jariwala D 2023 Appl. Phys. Lett. 123 183501Google Scholar

    [4]

    Muralt P 2000 J. Micromech. Microeng. 10 136Google Scholar

    [5]

    Takayama R, Tomita Y, Iijima K, Ueda I 1991 Ferroelectrics 118 325Google Scholar

    [6]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [7]

    钟维烈 1996 (北京: 科学出版社) 第1页

    Zhong W L 1996 Physics of Ferroelectric Materials (Beijing: Science Press) p1

    [8]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [9]

    Fan Y T, Tan G J 2022 Mater. Lab 1 220008

    [10]

    Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B 2019 J. Appl. Phys. 125 114103Google Scholar

    [11]

    Zhao Z, Chen Y R, Wang J F, Chen Y W, Zou J R, Lin Y X, Xing Y F, Liu C W, Hu C M 2022 IEEE Electr. Device L 43 553Google Scholar

    [12]

    Hayden J, Hossain M D, Xiong Y H, Ferri K, Zhu W L, Imperatore M V, Giebink N, Trolier-McKinstry S, Dabo I, Maria J P 2021 Phys. Rev. Mater. 5 044412Google Scholar

    [13]

    Wang D, Mondal S, Liu J N, Hu M T, Wang P, Yang S, Wang D H, Xiao Y X, Wu Y P, Ma T, Mi Z 2023 Appl. Phys. Lett. 123 033504Google Scholar

    [14]

    Wang D, Wang P, Wang B Y, Mi Z 2021 Appl. Phys. Lett. 119 111902Google Scholar

    [15]

    Ferri K, Bachu S, Zhu W L, Imperatore M, Hayden J , Alem N, Giebink N, Trolier-McKinstry S, Maria J P 2021 J. Appl. Phys. 130 044101Google Scholar

    [16]

    Zhang Y L, Zhu Q X, Tian B B, Duan C G 2024 Nano-Micro Lett. 16 227Google Scholar

    [17]

    Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M, Hiranaga Y, Yasuo C, Funakubo H 2020 J. Appl. Phys. 128 114103Google Scholar

    [18]

    Ye K H, Han G, Yeu I W, Hwang C S, Choi J H 2021 Phys. Status Solidi R 15 2100009Google Scholar

    [19]

    Wang P, Wang D, Vu N M, Chiang T, Heron J T, Mi Z 2021 Appl. Phys. Lett. 118 223504Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [24]

    Dreyer C E, Janotti A, Van de Walle C G, Vanderbilt D 2016 Phys. Rev. X 6 021038

    [25]

    Fichtner S, Yassine M, Van de Walle C G, Ambacher O 2024 Appl. Phys. Lett. 125 040501Google Scholar

    [26]

    Liu Z J, Wang X Y, Ma X Y, Yang Y R, Wu D 2023 Appl. Phys. Lett. 122 122901Google Scholar

    [27]

    Calderon S, Hayden J, Baksa S M, Tzou W, McKinstry S T, Dabo I, Maria J P, Dickey E C 2023 Science 380 1034Google Scholar

    [28]

    Lee C W, Yazawa K, Zakutayev A, Brennecka G L, Gorai P 2024 Sci. Adv. 10 eadl0848Google Scholar

    [29]

    Lee C W, Din N U, Yazawa K, Brennecka G L, Zakutayev A, Gorai P 2024 Matter 7 1644Google Scholar

    [30]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [31]

    Kursa M B, Rudnicki W R 2010 J. Stat. Softw. 36 1

    [32]

    Kim Y, Kim Y 2022 Sustain. Cities Soc. 79 103677Google Scholar

    [33]

    Moriwake H, Yokoi R, Taguchi A, Ogawa T, Fisher C AJ, Kuwabara A, Sato Y, Shimizu T, Hamasaki Y, Takashima H, Itoh M 2020 APL Mater. 8 121102Google Scholar

    [34]

    Kang Y, Chen J, Sui J Y, Wang X D, Zhou D Y, Yao M 2024 ACS Appl. Mater. Interfaces. 16 49484Google Scholar

    [35]

    Sun J A, Zhang J F, Yan J Y, Wang Y L, Lou J Z, Yan X B, Guo J X 2022 Phys. Status. Solidi. B 259 2200079Google Scholar

    [36]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 NPJ Comput Mater. 1 15010Google Scholar

    [37]

    杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 物理学报 68 210502Google Scholar

    Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar

  • 图 1  (a)初始筛选元素在元素周期表内的体现, 其中蓝色代表阳离子, 橙色代表阴离子; (b)元素筛选的条件和具体流程; (c) 二元纤锌矿材料合理的元素组成

    Fig. 1.  (a) The representation of initial screening elements in the periodic table, where blue represents cations and orange represents anions; (b) the conditions and specific process for screening; (c) reasonable composition elements of binary wurtzite materials obtained through screening.

    图 2  (a) AB, (b) A1A2B, (c) AB1B2体系的Ps数值; (d)单价、二价、三价阳离子和整个数据集的箱线图

    Fig. 2.  Ps of (a) AB, (b) A1A2B, and (c) AB1B2 systems; (d) box plots of Ps for monovalent, divalent, and trivalent cations as well as all systems.

    图 3  四面体结构参数示意图

    Fig. 3.  Schematic diagram of tetrahedral structure parameters

    图 4  曲线路径示意图

    Fig. 4.  Schematic diagram of curve path.

    图 5  组内距离自相关系数热图 (a) 元素基本属性特征; (b) 晶体结构特征; (c) DC特征; (d) COHP, BC, ELF特征; (e) DOS特征. (f) 保留特征的组间距离自相关系数热图

    Fig. 5.  Heatmap of distance correlation coefficients: (a) element properties; (b) crystal parameters; (c) DC properties; (d) COHP, BC, ELF properties; (e) DOS properties. (f) Feature preserving inter group distance autocorrelation coefficient heat map.

    图 6  6种含105特征机器学习模型的(a) R2, (b) RMSE, (c) XGBR模型的预测散点图; 6种含10特征机器学习模型的(d) R2, (e)RMSE, (f) XGBR模型的预测散点图

    Fig. 6.  (a) R2 and (b) RMSE values of six machine-learning models and (c) scatter plot of the XGBR model with 105 features; (d) R2 and (e) RMSE values of six machine-learning models and (f) scatter plot of the XGBR model with 10 features.

    图 7  含10个特征XGBR模型的 (a) SHAP散点图和(b) SHAP特征重要性; (c) IPi_Aave, (d) a, (e) IPi_Bave特征的部分依赖图

    Fig. 7.  (a) SHAP summary plot, (b) SHAP feature importance of XGBR model with 10 features; partial dependence plots for the top three important features of (c) IPi_Aave, (d)a, (e) IPi_Bave.

    表 1  用于描述纤锌矿材料的特征类型——元素基本属性

    Table 1.  Parameters describing the characteristic types of wurtzite materials—Basic element attributes.

    特征定义特征定义
    aN原子序数aM相对原子质量
    ICVICSD数据库内晶体体积aD原子密度
    X电负性VE价电子
    Rc共价半径Ri离子半径
    Ra原子半径IPi离子势(VE/Ri)
    FIP第一电离势SIP第二电离势
    TIP第三电离势CP化学势
    FAE自由原子能量Men门捷列夫数
    下载: 导出CSV

    表 3  用于描述纤锌矿材料的特征类型——电子结构参数

    Table 3.  Parameters describing the characteristic types of wurtzite materials—Electronic parameters.

    分析特征定义特征定义
    COHP分析ICa, ICe轴向键与平向键键强ICa-ICe轴向键与平向键键强的差值
    ICa/ICe轴向键与平向键键强的比值IC四面体内平均键强
    BC分析AtV原子体积Bad巴德电荷
    DOS分析Bc_tot总能带中心Bc_out外层轨道的能带中心
    Bw_tot总能带宽度Bw_out外层轨道的能带宽度
    Bs_tot总能带偏度Bs_out外层轨道的能带偏度
    Bk_tot总能带峰度Bk_out外层轨道的能带峰度
    ELF分析ELF _Cat阳离子位置的ELF值ELF_Ani阴离子位置的ELF值
    ELF_dCA阴阳离子位置ELF值的差值ELF_MaxELF曲线峰值
    ELF_MPELF曲线峰值的位置ELF_FELF曲线半峰全宽
    DC分析DC_Cat阳离子位置的DC值DC_Ani阴离子位置的DC值
    DC_dCA阴阳离子位置DC值的差值DC_MaxDC曲线峰值
    DC_MPDC曲线峰值的位置DC_FDC曲线半峰全宽
    下载: 导出CSV

    表 2  用于描述纤锌矿材料的特征类型——晶体结构参数

    Table 2.  Parameters describing the characteristic types of wurtzite materials—Crystal structure parameters.

    特征 定义 特征 定义
    c, a 晶胞参数 c/a 晶胞参数比值
    V 晶胞体积 S 晶胞底面积
    H_tetra 四面体高度 V_tetra 四面体体积
    d 阳离子到四面体底部的距离 μ 四面体内部曲折度(d/H_tetra)
    La, Le 轴向键与平向键键长 LaLe 轴向键与平向键键长的差值
    La/Le 轴向键与平向键键长的比值 L 四面体内平均键长
    Aa, Ae 轴向键与平向键键角 AaAe 轴向键与平向键键角的差值
    Aa/Ae 轴向键与平向键键角的比值 A 四面体内平均键角
    下载: 导出CSV
  • [1]

    Ishiwara H 2012 J. Nanosci. Nanotechnol. 12 7619Google Scholar

    [2]

    Arimoto Y, Ishiwara H 2004 Mrs. Bull. 29 823Google Scholar

    [3]

    Song S, Kim K H, Chakravarthi S, Han Z, Kim G, Ma K Y, Shin H S, Olsson R H, Jariwala D 2023 Appl. Phys. Lett. 123 183501Google Scholar

    [4]

    Muralt P 2000 J. Micromech. Microeng. 10 136Google Scholar

    [5]

    Takayama R, Tomita Y, Iijima K, Ueda I 1991 Ferroelectrics 118 325Google Scholar

    [6]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [7]

    钟维烈 1996 (北京: 科学出版社) 第1页

    Zhong W L 1996 Physics of Ferroelectric Materials (Beijing: Science Press) p1

    [8]

    李飞, 张树君, 徐卓 2020 物理学报 69 217703Google Scholar

    Li F, Zhang S J, Xu Z 2020 Acta Phys. Sin. 69 217703Google Scholar

    [9]

    Fan Y T, Tan G J 2022 Mater. Lab 1 220008

    [10]

    Fichtner S, Wolff N, Lofink F, Kienle L, Wagner B 2019 J. Appl. Phys. 125 114103Google Scholar

    [11]

    Zhao Z, Chen Y R, Wang J F, Chen Y W, Zou J R, Lin Y X, Xing Y F, Liu C W, Hu C M 2022 IEEE Electr. Device L 43 553Google Scholar

    [12]

    Hayden J, Hossain M D, Xiong Y H, Ferri K, Zhu W L, Imperatore M V, Giebink N, Trolier-McKinstry S, Dabo I, Maria J P 2021 Phys. Rev. Mater. 5 044412Google Scholar

    [13]

    Wang D, Mondal S, Liu J N, Hu M T, Wang P, Yang S, Wang D H, Xiao Y X, Wu Y P, Ma T, Mi Z 2023 Appl. Phys. Lett. 123 033504Google Scholar

    [14]

    Wang D, Wang P, Wang B Y, Mi Z 2021 Appl. Phys. Lett. 119 111902Google Scholar

    [15]

    Ferri K, Bachu S, Zhu W L, Imperatore M, Hayden J , Alem N, Giebink N, Trolier-McKinstry S, Maria J P 2021 J. Appl. Phys. 130 044101Google Scholar

    [16]

    Zhang Y L, Zhu Q X, Tian B B, Duan C G 2024 Nano-Micro Lett. 16 227Google Scholar

    [17]

    Yasuoka S, Shimizu T, Tateyama A, Uehara M, Yamada H, Akiyama M, Hiranaga Y, Yasuo C, Funakubo H 2020 J. Appl. Phys. 128 114103Google Scholar

    [18]

    Ye K H, Han G, Yeu I W, Hwang C S, Choi J H 2021 Phys. Status Solidi R 15 2100009Google Scholar

    [19]

    Wang P, Wang D, Vu N M, Chiang T, Heron J T, Mi Z 2021 Appl. Phys. Lett. 118 223504Google Scholar

    [20]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [23]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [24]

    Dreyer C E, Janotti A, Van de Walle C G, Vanderbilt D 2016 Phys. Rev. X 6 021038

    [25]

    Fichtner S, Yassine M, Van de Walle C G, Ambacher O 2024 Appl. Phys. Lett. 125 040501Google Scholar

    [26]

    Liu Z J, Wang X Y, Ma X Y, Yang Y R, Wu D 2023 Appl. Phys. Lett. 122 122901Google Scholar

    [27]

    Calderon S, Hayden J, Baksa S M, Tzou W, McKinstry S T, Dabo I, Maria J P, Dickey E C 2023 Science 380 1034Google Scholar

    [28]

    Lee C W, Yazawa K, Zakutayev A, Brennecka G L, Gorai P 2024 Sci. Adv. 10 eadl0848Google Scholar

    [29]

    Lee C W, Din N U, Yazawa K, Brennecka G L, Zakutayev A, Gorai P 2024 Matter 7 1644Google Scholar

    [30]

    Spaldin N A 2012 J. Solid State Chem. 195 2Google Scholar

    [31]

    Kursa M B, Rudnicki W R 2010 J. Stat. Softw. 36 1

    [32]

    Kim Y, Kim Y 2022 Sustain. Cities Soc. 79 103677Google Scholar

    [33]

    Moriwake H, Yokoi R, Taguchi A, Ogawa T, Fisher C AJ, Kuwabara A, Sato Y, Shimizu T, Hamasaki Y, Takashima H, Itoh M 2020 APL Mater. 8 121102Google Scholar

    [34]

    Kang Y, Chen J, Sui J Y, Wang X D, Zhou D Y, Yao M 2024 ACS Appl. Mater. Interfaces. 16 49484Google Scholar

    [35]

    Sun J A, Zhang J F, Yan J Y, Wang Y L, Lou J Z, Yan X B, Guo J X 2022 Phys. Status. Solidi. B 259 2200079Google Scholar

    [36]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 NPJ Comput Mater. 1 15010Google Scholar

    [37]

    杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山 2019 物理学报 68 210502Google Scholar

    Yang Z X, Gao Z R, Sun X F, Cai H L, Zhang F M, Wu X S 2019 Acta Phys. Sin. 68 210502Google Scholar

  • [1] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [4] 黎威, 龙连春, 刘静毅, 杨洋. 基于机器学习的无机磁性材料磁性基态分类与磁矩预测. 物理学报, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [5] 祝平, 张强, 芶华松, 王平平, 邵溥真, 小林郁夫, 武高辉. 金刚石/铝复合材料界面性质第一性原理计算及界面反应. 物理学报, 2021, 70(17): 178101. doi: 10.7498/aps.70.20210341
    [6] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [7] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [8] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [9] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [10] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究. 物理学报, 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [11] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [12] 周鹏力, 郑树凯, 田言, 张朔铭, 史茹倩, 何静芳, 闫小兵. Al-N共掺杂3C-SiC介电性质的第一性原理计算. 物理学报, 2014, 63(5): 053102. doi: 10.7498/aps.63.053102
    [13] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能. 物理学报, 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [14] 李青坤, 孙毅, 周玉, 曾凡林. 第一性原理研究bct-C4碳材料的强度性质. 物理学报, 2012, 61(9): 093104. doi: 10.7498/aps.61.093104
    [15] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [16] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [17] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [18] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [19] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质. 物理学报, 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [20] 孙源, 明星, 孟醒, 孙正昊, 向鹏, 兰民, 陈岗. 多铁材料BaCoF4电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
计量
  • 文章访问数:  515
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2024-11-28
  • 上网日期:  2024-12-04
  • 刊出日期:  2025-01-20

/

返回文章
返回