搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au/CeO2(111)表面吸附的电荷转移特性研究

田馨 舒鹏丽 张珂童 曾德超 姚志飞 赵波慧 任晓森 秦丽 朱强 魏久焱 温焕飞 李艳君 菅原康弘 唐军 马宗敏 刘俊

引用本文:
Citation:

Au/CeO2(111)表面吸附的电荷转移特性研究

田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊

The charge transfer of Au adsorption on CeO2(111) surface

TIAN Xin, SHU PengLi, ZHANG KeTong, ZENG DeChao, YAO ZhiFei, ZHAO BoHui, REN XiaoSen, QIN Li, ZHU Qiang, WEI JiuYan, WEN HuanFei, LI YanJun, YASUHIRO Sugawara, TANG Jun, MA ZongMin, LIU Jun
PDF
导出引用
  • Au/CeO2(111)作为一种重要的催化剂体系,在催化氧化、水气转换反应等多个领域展现出优异的催化性能。为了深入揭示其催化机理,特别是在原子尺度上理解活性组分的相互作用。本文采用密度泛函理论(DFT+U)计算方法,构建了Au/CeO₂(111)体系的原子尺度模型,通过计算该模型的吸附能、差分电荷密度、巴德电荷以及态密度,揭示了Au/CeO₂(111)的表面吸附行为。在CeO2(111)的平面区域内,经过结构弛豫与优化,确定了五个Au吸附位点。其中最为稳定的吸附位点并非传统上认为的氧顶位,而是氧-氧桥位。在这种吸附构型下,电荷从Au向Ce4+转移,导致Ce4+被还原为Ce3+伴随着显著的电荷转移现象。过去的研究更多地关注了平面区域的吸附行为,而忽视了台阶边缘区域在催化过程中的重要性。因此,本研究进一步扩展了研究范围,深入探讨了四种不同台阶结构对Au吸附的影响,其中,Type II*和Type III台阶因高度欠配位的Ce原子增强了对Au原子的吸附,特别是Type III台阶通过显著的电荷转移成为Au的首选吸附位点。本研究通过构建更全面的Au/CeO₂模型,突破了以往仅关注平面吸附的局限性,揭示了Au/CeO₂在台阶边缘的吸附机制,为我们深入理解Au/CeO₂(111)的催化机理提供了新的视角。
    Au/CeO2(111), as an important catalyst system, has demonstrated excellent catalytic performance in a variety of fields such as the catalytic oxidation and the water-gas shift reactions. In order to deeply reVeal Au/CeO2(111) catalytic mechanism, especially to understand the interaction of the active components on the atomic scale. In this paper, the adsorption properties on the Au/CeO2(111) surface are investigated by calculating the adsorption energy, differential charge density, Bader charge, and the density of states using density functional theory (DFT+U). First, five adsorption sites of Au/CeO2(111) were identified in the planar region of CeO2(111), and the most stable adsorption configuration was found to be located at the bridging position between surface oxygen atoms (the oxygen-oxygen bridging site). It suggests that Au interacts more closely with the oxygen-oxygen bridging sites. Further, the differential charge density and Bader charge reVeal the charge transfer mechanism during the adsorption process: the Au atoms are oxidized to Au+, while the Ce4+ ions in the second nearest neighbor of Au are reduced to Ce3+, and the adsorption process is accompanied by a charge transfer phenomenon. Au also exhibits a unique adsorption behavior in the CeO2(111) step-edge region, where a highly under-allocated environment is formed due to the decrease in the coordination number of atoms in the step edge, which enhances the adsorption of Au in a highly under-allocated environment. The adsorption of Au at the step edge is enhanced by the lower coordinated environment due to the reduced coordination number of the atoms at the step edge. By comparing four different types of step structures (Type I, Type II, Type II*, and Type III), we find that the higher adsorption energies of Au at the Type II* and Type III sites are mainly attributed to the lower coordinated state of Ce atoms at these sites. Charge transfer is also particularly pronounced at the Type III sites. It is also accompanied by electron transfer from Au to Ce4+ ions, making Type III the preferred adsorption site for Au atoms. By constructing a more comprehensive Au/CeO₂ model, this study breaks through the preVious limitation of focusing only on planar adsorption and reVeals the adsorption mechanism of Au/CeO₂ at the edge of the step, which provides a new perspective for us to deeply understand the catalytic mechanism of Au/CeO₂(111).
  • [1]

    Haruta M, Kobayashi T, Sano H, Yamada N 1987Chem. Lett. 16 405

    [2]

    Li Y J, Wen H, Zhang Q, Adachi Y, Arima E, Kinoshita Y, Nomura H, Ma Z, Kou L, Tsukuda Y, Naitoh Y, Sugawara Y, Xu R, Cheng Z 2018Ultramicroscopy 191 51

    [3]

    Zielinski M, Juszczyk W, Kaszkur Z 2022RSC Adv. 12 5312

    [4]

    Berrichi A, Bailiche Z, Bachir R 2022Res. Chem. Intermed. 48 4119

    [5]

    Megías-Sayago C, Lolli A, Ivanova S, Albonetti S, Cavani F, Odriozola J A 2019Catal. Today 333 169

    [6]

    Li Q, Xie W, Chen G, Li Y, Huang Y, Chen X 2015Nano Res. 8 3075

    [7]

    Liu H, Cao Z, Yang S, Ren Q, Dong Z, Liu W, Li Z A, Chen X, Luo L 2024Nano Res. 174986

    [8]

    Kim C, Thompson L 2006J. Catal. 244 248

    [9]

    Chen Y, Hu P, Lee M H, Wang H 2008Surf. Sci. 602 1736

    [10]

    Hernández N C, Grau-Crespo R, De Leeuw N H, Sanz J Fdez 2009Phys. Chem. Chem. Phys. 11 5246

    [11]

    Zhang C, Michaelides A, King D A, Jenkins S J 2010J. Am. Chem. Soc. 132 2175

    [12]

    Engel J, Francis S, Roldan A 2019Phys. Chem. Chem. Phys. 21 19011

    [13]

    Shu P, Tian X, Guo Q, Ren X, Zhao B, Wen H, Tang J, Li Y, Yasuhiro S, Ma Z, Liu J 2024Phys. Scr. 99 105990

    [14]

    Teng B, Wu F, Huang W, Wen X, Zhao L, Luo M 2012ChemPhysChem 13 1261

    [15]

    Lu Y, Quardokus R, Lent C S, Justaud F, Lapinte C, Kandel S A 2010J. Am. Chem. Soc. 132 13519

    [16]

    Lustemberg P G, Pan Y, Shaw B J, Grinter D, Pang C, Thornton G, Pérez R, Ganduglia-Pirovano M V, Nilius N 2016Phys. ReV. Lett. 116 236101

    [17]

    Fu Q, Saltsburg H, Flytzani-Stephanopoulos M 2003Science 301 935

    [18]

    Bezkrovnyi O, Bruix A, Blaumeiser D, Piliai L, Schötz S, Bauer T, Khalakhan I, Skála T, Matvija P, Kraszkiewicz P, Pawlyta M, Vorokhta M, Matolínová I, Libuda J, Neyman K M, Kȩpiński L 2022Chem. Mater. 34 7916

    [19]

    Tibiletti D, Amieiro-Fonseca A, Burch R, Chen Y, Fisher J M, Goguet A, Hardacre C, Hu P, Thompsett D 2005J. Phys. Chem. B 109 22553

    [20]

    Feng J, Guo Q, Shu P L,Wen Y, Wen H F, Ma Z M, Li Y J, Liu J 2023Acta Phys. Sin. 72 110701(in Chinese) [冯婕, 郭强, 舒鹏丽, 温阳, 温焕飞, 马宗敏, 李艳君, 刘俊, 伊戈尔·弗拉基米罗维奇·雅明斯基2023物理学报72 110701]

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996Phys. ReV. Lett. 77 3865

    [22]

    Cococcioni M, De Gironcoli S 2005 Phys. Rev. B 71035105

    [23]

    Zheng Z Y, Wang D, Zhang Y, Yang F, Gong X Q 2020Chin. J. Cata. 41 1360

    [24]

    Wilson E L, Grau-Crespo R, Pang C L, Cabailh G, Chen Q, Purton J A, Catlow C R A, Brown W A, De Leeuw N H, Thornton G 2008J. Phys. Chem. C 112 10918

    [25]

    Ma Z M, Shi Y B, Mu J L, Qu Z, Zhang X M, Li Q, Liu J 2017Appl. Surf. Sci. 394 472

    [26]

    Owen C J, Jenkins S J 2021J. Chem. Phys. 154 164703

    [27]

    Chen L J, Tang Y, Cui L, Ouyang C, Shi S 2013J. of Power Sources 234 69

    [28]

    Kim H Y, Henkelman G 2013J. Phys. Chem. Lett. 4 216

    [29]

    Kozlov S M, Neyman K M 2014Phys. Chem. Chem. Phys. 16 7823

    [30]

    Olbrich R, Pieper H H, Oelke R, Wilkens H, Wollschläger J, Zoellner M H, Schroeder T, Reichling M 2014Appl. Phys. Lett. 104 081910

    [31]

    Barth C, Laffon C, Olbrich R, Ranguis A, Parent Ph, Reichling M 2016Sci Rep. 6 21165

    [32]

    Shu P, Guo Q, Tian X, Wei J, Qu Z, Ren X, Wen H, Tang J, Li Y, Sugawara Y, Ma Z, Liu J 2024Surf. Interfaces 51 104738

    [33]

    Kozlov S M, Viñes F, Nilius N, Shaikhutdinov S, Neyman K M 2012J. Phys. Chem. Lett. 3 1956

    [34]

    Chu D R, Wang Z Q, Gong X Q 2022Surf. Sci 722 122096

    [35]

    Wen H F, Sugawara Y, Li Y J 2020Acta Phys. Sin. 69 210701(in Chinese) [温焕飞, 菅原康弘, 李艳君2020物理学报69 210701]

    [36]

    Zhou H, Wang D, Gong X Q 2020Phys. Chem. Chem. Phys. 22 7738

    [37]

    Zhou C Y, Wang D, Gong X Q 2019Phys. Chem. Chem. Phys. 21 19987

    [38]

    Piliai L, Matvija P, Dinhová T N, Khalakhan I, Skála T, Doležal Z, Bezkrovnyi O, Kepinski L, Vorokhta M, Matolínová I 2022ACS Appl. Mater. Interfaces 14 56280

    [39]

    Janssen E M W, Wiegers G A 1978J. Less-Common Met. 57 P47

  • [1] 周斌, 肖事成, 王一楠, 张晓毓, 钟雪, 马丹, 戴赢, 范志强, 唐贵平. VS2作为锂离子电池负极材料的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231681
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, doi: 10.7498/aps.71.20211631
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211631
    [4] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [5] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [6] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20202043
    [7] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, doi: 10.7498/aps.67.20172220
    [8] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, doi: 10.7498/aps.67.20180759
    [9] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.086801
    [10] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.246801
    [11] 陈鑫, 颜晓红, 肖杨. Li掺杂少层MoS2的电荷分布及与石墨和氮化硼片的比较. 物理学报, doi: 10.7498/aps.64.087102
    [12] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.62.077101
    [13] 李沛娟, 周薇薇, 唐元昊, 张华, 施思齐. CeO2的电子结构,光学和晶格动力学性质:第一性原理研究. 物理学报, doi: 10.7498/aps.59.3426
    [14] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, doi: 10.7498/aps.59.7880
    [15] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [16] 吴小霞, 王乾恩, 王福合, 周云松. Cl原子在γ-TiAl(111)表面吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.59.7278
    [17] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, doi: 10.7498/aps.58.1924
    [18] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.438
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [20] 于 洋, 徐力方, 顾长志. 氢吸附金刚石(001)表面的第一性原理研究. 物理学报, doi: 10.7498/aps.53.2710
计量
  • 文章访问数:  40
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回