搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主被动分解法的微纳激光混沌系统的复用同步实现

穆鹏华 王译乔 贺鹏飞 徐源

引用本文:
Citation:

基于主被动分解法的微纳激光混沌系统的复用同步实现

穆鹏华, 王译乔, 贺鹏飞, 徐源
cstr: 32037.14.aps.74.20241659

Multiplexing synchronization implementation of micro-nano laser chaotic system based on active-passive decomposition method

MU Penghua, WANG Yiqiao, HE Pengfei, XU Yuan
cstr: 32037.14.aps.74.20241659
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 纳米激光器(NL)是实现光集成的重要光学元件, 近年来成为研究热点之一. 然而, 对于NL在混沌同步方向上的研究仍较为稀少. 本文提出一种基于NL的双路激光混沌复用系统, 并详细研究了其同步性能. 研究中还创新性地引入了主被动分解法, 通过主动和被动信号的分解实现高效的信号处理和复用. 具体而言, 通过建立速率方程模型, 探究了NL两个关键参数(Purcell因子$F$、自发辐射耦合因子$\beta $)、系统参数、单参数失配以及多参数同时失配对同步性能的影响. 结果表明, 通过合理选择系统的参数配置, 两主激光器可以在较大的参数范围内保持较低的相关性, 同时确保主从激光器间保持高品质的混沌同步, 满足混沌复用系统的条件. 此外, 单参数失配对主激光器间同步性的影响具有差异性, 但对配对激光器的同步性影响较小; 多参数失配时, 系统仍能在广泛的参数失配范围内满足两主激光器混沌输出的“伪正交性”要求. 本文结果不仅验证了所提系统的可行性, 还充分体现了主动被动分解法在推动NL混沌同步研究中的重要价值, 为该领域的发展提供了新思路.
    Nanolaser (NL), as an important optical source device, has a significant influence on photonic integrated circuits and has become a research hotspot in recent years. In this work, the synchronization performance of a dual-channel laser chaotic multiplexing system is investigated based on NLs and an active-passive decomposition is used to enhance signal processing and multiplexing efficiency. By establishing a rate equation model, the synchronization characteristics of the system are analyzed, with a focus on two key parameters— Purcell factor (F ) and spontaneous emission coupling factor (β )—as well as the effects of system parameters, single-parameter mismatch, and multi-parameter mismatch. Numerical simulations show that with appropriate parameter configurations, the two master NLs can maintain low correlation, ensuring the "pseudo-orthogonality" of chaotic signals while achieving high-quality chaotic synchronization with their paired slave NLs. In this work it is found that both the Purcell factor (F ) and the spontaneous emission coupling factor (β ) significantly affect the synchronization performance of the system, and the optimal parameter ranges for achieving high-quality synchronization are identified. Additionally, the effects of feedback strength and frequency detuning are explored, revealing that frequency detuning plays a more critical role in the synchronization between the master NLs. The influence of parameter mismatches on system synchronization performance is also emphasized. The system exhibits robustness against single-parameter mismatch and has minimum influence on master-slave synchronization quality. However, multi-parameter mismatch gives rise to more complex effects. Compared with the traditional semiconductor laser systems, this system can maintain “pseudo-orthogonality” over a wider range of parameters, thus achieving higher security and lower channel interference. This research lays a theoretical foundation for chaos synchronization based on NLs and provides new insights for designing secure, stable, and efficient optical communication systems.
      通信作者: 穆鹏华, ph_mu@ytu.edu.cn ; 徐源, xuyuan@ytu.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2020QF090)和烟台市2023年校地融合发展项目(批准号: 2323013-2023XDRH001)资助的课题.
      Corresponding author: MU Penghua, ph_mu@ytu.edu.cn ; XU Yuan, xuyuan@ytu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2020QF090) and the Yantai City 2023 School-Land Integration Development Project Fund, China (Grant No. 2323013-2023XDRH001).
    [1]

    Jiang N, Zhao A K, Liu S Q, Xue C P, Qiu K 2018 Opt. Express 26 32404Google Scholar

    [2]

    Tang Y W, Li Q L, Dong W L, Hu M, Zeng R 2021 Opt. Commun. 498 127232Google Scholar

    [3]

    Wang L S, Du X Y, Mao X X, Guo Y Y, Wang A B, Wang Y C 2024 Opt. Lett. 49 5901Google Scholar

    [4]

    Wang Y M, Huang Y, Zhou P, Li N Q 2023 Electronics 12 509Google Scholar

    [5]

    Wang L S, Guo Y Y, Wang D M, Wang Y C, Wang A B 2019 Opt. Commun. 453 124350Google Scholar

    [6]

    Rontani D, Choi D, Chang C Y, Locquet A, Citrin D S 2016 Sci. Rep. 6 35206Google Scholar

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quant. 10 991Google Scholar

    [8]

    Cai D Y, Mu P H, Huang Y, Zhou P, Li N Q 2024 Chaos Soliton. Fract. 189 115652Google Scholar

    [9]

    Li X Y, Jiang N, Zhang Q, Tang C J, Zhang Y Q, Hu G, Cao Y S, Qiu K 2023 Opt. Express 31 28764Google Scholar

    [10]

    Liu Y, Wu Z M, Tan S L, Xia G Q 2023 Opt. Laser Technol. 161 109200Google Scholar

    [11]

    Jin J Y, Jiang N, Zhang Y Q, Feng W Z, Zhao A K, Liu S Q, Peng J F, Qiu K, Zhang Q W 2022 Opt. Express 30 13647Google Scholar

    [12]

    Wang Q P, Xia G Q, Tan S L, Liu Y, Liu Y T, Zhao M R, Wu Z M 2022 Appl. Opt. 61 10086Google Scholar

    [13]

    Zhou C D, Huang Y, Yang Y G, Cai D Y, Zhou P, Lau K, Li N Q, Li X F 2024 Opto-Electron Adv. 8 240135

    [14]

    Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A 2019 IEEE J. Sel. Top. Quant. 26 1

    [15]

    Xiang S Y, Wen A J, Pan W 2016 IEEE Photonics J. 8 1

    [16]

    Fan X Q, Mao X X, Wang L S, Fu S N, Wang A B, Wang Y C 2024 Opt. Lett. 49 4445Google Scholar

    [17]

    Xiang S Y, Song Z W, Gao S, Han Y N, Zhang Y H, Guo X X, Hao Y 2021 Acta Photonica Sin. 50 1020001Google Scholar

    [18]

    Xiang S Y, Ren Z X, Song Z W, Zhang Y H, Guo X X, Han G Q, Hao Y 2021 IEEE T. Neur. Net. Lear. 32 2494

    [19]

    Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Lightwave Technol. JLT 37 3987Google Scholar

    [20]

    Zhang S Y, Tang X, Xia G Q, Wu Z M 2020 Semiconductor Lasers and Applications X 11545 70

    [21]

    Huang Y, Zhou P, Lau K Y, Li N Q 2024 ACS Photonics 11 5012Google Scholar

    [22]

    Kinzel W, Kanter I 2007 Handbook of Chaos Control pp301–324

    [23]

    Li A R, Jiang N, Geng Y, Zhang Q, Xiao Y L, Zhang Y Q, Xu B, Qiu K 2024 J. Lightw. Technol. 42 8730Google Scholar

    [24]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Chin. Phys. 16 1996Google Scholar

    [25]

    Wang Z R, Li P, Jia Z W, Wang W J, Xu B J, Shore K A, Wang Y C 2021 Opt. Express 29 17940Google Scholar

    [26]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. 19 1874Google Scholar

    [27]

    Saldutti M, Yu Y, Mørk J 2024 Laser Photonics Rev. 18 2300840Google Scholar

    [28]

    Fan Y L, Shi T, Zhang J, Shore K A 2024 Opt. Express 32 19361Google Scholar

    [29]

    Fan Y L, Shore K A, Shao X P 2023 Photonics 10 1249Google Scholar

    [30]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016Google Scholar

    [31]

    Flunkert V, Schöll E 2012 New J. Phys. 14 033039Google Scholar

    [32]

    El-Azab J, El-Khodary A, Hassab-Elnaby S 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 2013, pp199–203

    [33]

    Liu H J, Feng J C 2011 J. Electron. (China) 28 126Google Scholar

    [34]

    赵跃鹏, 张明, 江安义, 王云才 2008 光学学报 28 1236

    Zhao Y P, Zhang M, Jiang A Y, Wang Y C 2008 Acta Opt. Sin. 28 1236

    [35]

    Jiang N, Zhao A K, Xue C P, et al. 2019 Opt. Lett. 44 1536Google Scholar

    [36]

    Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208Google Scholar

    [37]

    穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206Google Scholar

    Mu P H, Pan W, Li N Q, Yan L S, Lou B, Zou X H, Xu M F 2015 Acta Phys Sin. 64 124206Google Scholar

    [38]

    Zhang X T, Guo G, Liu X T, Hu G S, Wang K, Mu P H 2023 Photonics 10 1196Google Scholar

    [39]

    Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar

    [40]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quant. 55 1

    [41]

    Jiang P, Zhou P, Li N Q, et al. 2020 Opt. Express 28 26421Google Scholar

    [42]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101Google Scholar

    [43]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Topi. Quant. 21 500Google Scholar

    [44]

    Sattar Z A, Shore K A 2016 IEEE J. Quant. 52 1

    [45]

    蒋培, 周沛, 李念强, 穆鹏华, 李孝峰 2021 物理学报 70 114201Google Scholar

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2021 Acta Phys. Sin. 70 114201Google Scholar

  • 图 1  基于纳米激光器的双路激光混沌复用系统结构图

    Fig. 1.  Structure diagram of the dual-laser chaotic multiplexing system based on nanolasers.

    图 2  M1/S1和M2/S2的混沌时间序列 (a) M1; (b) M2; (c) S1; (d) S2

    Fig. 2.  The time series of M1/S1 and M2/S2: (a) M1; (b) M2; (c) S1; (d) S2.

    图 3  (a) M1/S1和(b) M2/S2的互相关函数图

    Fig. 3.  Cross-correlation function plots of (a) M1/S1 and (b) M2/S2.

    图 4  M1/M2的同步图

    Fig. 4.  Synchronization diagram of M1/M2.

    图 5  $F$和$\beta $不同时, NLs之间的CCF图 (a) M1/M2; (b) M1/S1; (c) M2/S2

    Fig. 5.  CCF plots between NLs under different values of $F$ and $\beta $: (a) M1/M2; (b) M1/S1; (c) M2/S2.

    图 6  不同$I$值对M1/M2, M1/S1和M2/S2同步影响图 (a) M1/M2; (b) M1/S1; (c) M2/S2

    Fig. 6.  Effect of different I values on the synchronization of M1/M2, M1/S1, and M2/S2: (a) M1/M2; (b) M1/S1; (c) M2/S2.

    图 7  反馈强度和频率失谐对(a) M1/M2, (b) M1/S1和(c) M2/S2同步性影响的二维彩图

    Fig. 7.  The two-dimensional colormap of feedback intensity and frequency detuning on the synchronization of (a) M1/M2, (b) M1/S1, and (c) M2/S2.

    图 8  单个参数失配对(a) M1/M2, (b) M1/S1和(c) M2/S2同步影响图

    Fig. 8.  Effect of single parameter mismatch on the synchronization of (a) M1/M2, (b) M1/S1, and (c) M2/S2.

    图 9  参数失配对(a) M1/M2, (b) M1/S1和(c) M2/S2同步影响的二维图

    Fig. 9.  The two-dimensional colormap of the effects of parameter mismatch on the synchronization of (a) M1/M2, (b) M1/S1, and (c) M2/S2.

    表 1  仿真中使用的参数[41]

    Table 1.  Parameters used in the simulation[41].

    参数符号参考值
    约束因子$\varGamma $0.645
    载流子寿命/ns${\tau _{\text{n}}}$1
    光子寿命/ps${\tau _{\text{p}}}$0.36
    反馈延迟/ns${\tau _{\text{d}}}$0.2
    差分增益/(cm3·s–1)${g_n}$1.64 × 10–6
    透明载流子密度/cm–3${N_0}$1.1 × 10–18
    增益饱和因子/cm3$\varepsilon $2.3 × 10–17
    线宽增强因子$\alpha $5
    活性区体积/cm3${V_{\text{α }}}$3.96 × 10–13
    纳米激光器的波长/nm${\lambda _0}$1591
    激光面反射率$R$0.85
    注入比${R_{{\text{inj}}}}$0—0.1
    外镜的功率反射率${R_{{\text{ext}}}}$0.95
    折射率$n$3.4
    空腔长度/μm$L$1.39
    反馈耦合分数$f$0—0.9
    下载: 导出CSV
  • [1]

    Jiang N, Zhao A K, Liu S Q, Xue C P, Qiu K 2018 Opt. Express 26 32404Google Scholar

    [2]

    Tang Y W, Li Q L, Dong W L, Hu M, Zeng R 2021 Opt. Commun. 498 127232Google Scholar

    [3]

    Wang L S, Du X Y, Mao X X, Guo Y Y, Wang A B, Wang Y C 2024 Opt. Lett. 49 5901Google Scholar

    [4]

    Wang Y M, Huang Y, Zhou P, Li N Q 2023 Electronics 12 509Google Scholar

    [5]

    Wang L S, Guo Y Y, Wang D M, Wang Y C, Wang A B 2019 Opt. Commun. 453 124350Google Scholar

    [6]

    Rontani D, Choi D, Chang C Y, Locquet A, Citrin D S 2016 Sci. Rep. 6 35206Google Scholar

    [7]

    Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quant. 10 991Google Scholar

    [8]

    Cai D Y, Mu P H, Huang Y, Zhou P, Li N Q 2024 Chaos Soliton. Fract. 189 115652Google Scholar

    [9]

    Li X Y, Jiang N, Zhang Q, Tang C J, Zhang Y Q, Hu G, Cao Y S, Qiu K 2023 Opt. Express 31 28764Google Scholar

    [10]

    Liu Y, Wu Z M, Tan S L, Xia G Q 2023 Opt. Laser Technol. 161 109200Google Scholar

    [11]

    Jin J Y, Jiang N, Zhang Y Q, Feng W Z, Zhao A K, Liu S Q, Peng J F, Qiu K, Zhang Q W 2022 Opt. Express 30 13647Google Scholar

    [12]

    Wang Q P, Xia G Q, Tan S L, Liu Y, Liu Y T, Zhao M R, Wu Z M 2022 Appl. Opt. 61 10086Google Scholar

    [13]

    Zhou C D, Huang Y, Yang Y G, Cai D Y, Zhou P, Lau K, Li N Q, Li X F 2024 Opto-Electron Adv. 8 240135

    [14]

    Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A 2019 IEEE J. Sel. Top. Quant. 26 1

    [15]

    Xiang S Y, Wen A J, Pan W 2016 IEEE Photonics J. 8 1

    [16]

    Fan X Q, Mao X X, Wang L S, Fu S N, Wang A B, Wang Y C 2024 Opt. Lett. 49 4445Google Scholar

    [17]

    Xiang S Y, Song Z W, Gao S, Han Y N, Zhang Y H, Guo X X, Hao Y 2021 Acta Photonica Sin. 50 1020001Google Scholar

    [18]

    Xiang S Y, Ren Z X, Song Z W, Zhang Y H, Guo X X, Han G Q, Hao Y 2021 IEEE T. Neur. Net. Lear. 32 2494

    [19]

    Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Lightwave Technol. JLT 37 3987Google Scholar

    [20]

    Zhang S Y, Tang X, Xia G Q, Wu Z M 2020 Semiconductor Lasers and Applications X 11545 70

    [21]

    Huang Y, Zhou P, Lau K Y, Li N Q 2024 ACS Photonics 11 5012Google Scholar

    [22]

    Kinzel W, Kanter I 2007 Handbook of Chaos Control pp301–324

    [23]

    Li A R, Jiang N, Geng Y, Zhang Q, Xiao Y L, Zhang Y Q, Xu B, Qiu K 2024 J. Lightw. Technol. 42 8730Google Scholar

    [24]

    Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Chin. Phys. 16 1996Google Scholar

    [25]

    Wang Z R, Li P, Jia Z W, Wang W J, Xu B J, Shore K A, Wang Y C 2021 Opt. Express 29 17940Google Scholar

    [26]

    Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. 19 1874Google Scholar

    [27]

    Saldutti M, Yu Y, Mørk J 2024 Laser Photonics Rev. 18 2300840Google Scholar

    [28]

    Fan Y L, Shi T, Zhang J, Shore K A 2024 Opt. Express 32 19361Google Scholar

    [29]

    Fan Y L, Shore K A, Shao X P 2023 Photonics 10 1249Google Scholar

    [30]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016Google Scholar

    [31]

    Flunkert V, Schöll E 2012 New J. Phys. 14 033039Google Scholar

    [32]

    El-Azab J, El-Khodary A, Hassab-Elnaby S 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 2013, pp199–203

    [33]

    Liu H J, Feng J C 2011 J. Electron. (China) 28 126Google Scholar

    [34]

    赵跃鹏, 张明, 江安义, 王云才 2008 光学学报 28 1236

    Zhao Y P, Zhang M, Jiang A Y, Wang Y C 2008 Acta Opt. Sin. 28 1236

    [35]

    Jiang N, Zhao A K, Xue C P, et al. 2019 Opt. Lett. 44 1536Google Scholar

    [36]

    Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208Google Scholar

    [37]

    穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206Google Scholar

    Mu P H, Pan W, Li N Q, Yan L S, Lou B, Zou X H, Xu M F 2015 Acta Phys Sin. 64 124206Google Scholar

    [38]

    Zhang X T, Guo G, Liu X T, Hu G S, Wang K, Mu P H 2023 Photonics 10 1196Google Scholar

    [39]

    Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69Google Scholar

    [40]

    Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quant. 55 1

    [41]

    Jiang P, Zhou P, Li N Q, et al. 2020 Opt. Express 28 26421Google Scholar

    [42]

    Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101Google Scholar

    [43]

    Sattar Z A, Shore K A 2015 IEEE J. Sel. Topi. Quant. 21 500Google Scholar

    [44]

    Sattar Z A, Shore K A 2016 IEEE J. Quant. 52 1

    [45]

    蒋培, 周沛, 李念强, 穆鹏华, 李孝峰 2021 物理学报 70 114201Google Scholar

    Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2021 Acta Phys. Sin. 70 114201Google Scholar

  • [1] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强. 物理学报, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [2] 贾雅琼, 蒋国平. 基于状态观测器的分数阶时滞混沌系统同步研究. 物理学报, 2017, 66(16): 160501. doi: 10.7498/aps.66.160501
    [3] 潘光, 魏静. 一种分数阶混沌系统同步的自适应滑模控制器设计. 物理学报, 2015, 64(4): 040505. doi: 10.7498/aps.64.040505
    [4] 穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰. 双路激光混沌复用系统的混沌同步及安全性能研究. 物理学报, 2015, 64(12): 124206. doi: 10.7498/aps.64.124206
    [5] 韩冬, 朱芳来. 基于高增益降维观测器的一类混沌同步. 物理学报, 2013, 62(12): 120513. doi: 10.7498/aps.62.120513
    [6] 魏月, 樊利, 夏光琼, 陈于淋, 吴正茂. 基于混沌信号非相干光注入下两半导体激光器间的双向混沌通信. 物理学报, 2012, 61(22): 224203. doi: 10.7498/aps.61.224203
    [7] 何元, 邓涛, 吴正茂, 刘元元, 夏光琼. 非对称电流偏置下互耦半导体激光器的混沌同步特性研究. 物理学报, 2011, 60(4): 044204. doi: 10.7498/aps.60.044204
    [8] 操良平, 夏光琼, 邓涛, 林晓东, 吴正茂. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [9] 王小发, 夏光琼, 吴正茂. 光电负反馈下单向耦合注入垂直腔表面发射激光器的混沌同步特性研究. 物理学报, 2009, 58(7): 4669-4674. doi: 10.7498/aps.58.4669
    [10] 樊利, 夏光琼, 吴正茂. 基于光电反馈的激光混沌并联同步系统研究. 物理学报, 2009, 58(2): 989-994. doi: 10.7498/aps.58.989
    [11] 张秀娟, 王冰洁, 杨玲珍, 王安帮, 郭东明, 王云才. 平坦宽带混沌激光的产生及同步. 物理学报, 2009, 58(5): 3203-3207. doi: 10.7498/aps.58.3203
    [12] 李秀春, 徐 伟, 肖玉柱. 基于积分观测器实现一类受扰混沌系统的同步. 物理学报, 2008, 57(3): 1465-1470. doi: 10.7498/aps.57.1465
    [13] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [14] 周 平. 利用标量控制器实现一类混沌系统同步. 物理学报, 2007, 56(7): 3777-3781. doi: 10.7498/aps.56.3777
    [15] 吕 翎, 郭治安, 李 岩, 夏晓岚. 不确定混沌系统的参数识别与同步控制器的backstepping设计. 物理学报, 2007, 56(1): 95-100. doi: 10.7498/aps.56.95
    [16] 廖健飞, 夏光琼, 吴加贵, 许 黎, 吴正茂. 基于光电负反馈的激光混沌串联同步系统研究. 物理学报, 2007, 56(11): 6301-6306. doi: 10.7498/aps.56.6301
    [17] 李孝峰, 潘 炜, 马 冬, 罗 斌, 张伟利, 熊 悦. 激光器自发辐射噪声对混沌光通信系统的影响. 物理学报, 2006, 55(10): 5094-5104. doi: 10.7498/aps.55.5094
    [18] 陈 晶, 张天平. 一类不确定混沌系统的观测器同步. 物理学报, 2006, 55(8): 3928-3932. doi: 10.7498/aps.55.3928
    [19] 高铁杠, 陈增强, 袁著祉, 顾巧论. 基于观测器的混沌系统的同步研究. 物理学报, 2004, 53(5): 1305-1308. doi: 10.7498/aps.53.1305
    [20] 蒋品群, 罗晓曙, 汪秉宏, 方锦清, 陈关荣, 邹艳丽. 超混沌振荡器的单变量单向耦合同步及其电路实验仿真. 物理学报, 2002, 51(9): 1937-1941. doi: 10.7498/aps.51.1937
计量
  • 文章访问数:  504
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-28
  • 修回日期:  2024-12-27
  • 上网日期:  2025-01-13
  • 刊出日期:  2025-03-05

/

返回文章
返回