-
纳米激光器(NL)是实现光集成的重要光学元件, 近年来成为研究热点之一. 然而, 对于NL在混沌同步方向上的研究仍较为稀少. 本文提出一种基于NL的双路激光混沌复用系统, 并详细研究了其同步性能. 研究中还创新性地引入了主被动分解法, 通过主动和被动信号的分解实现高效的信号处理和复用. 具体而言, 通过建立速率方程模型, 探究了NL两个关键参数(Purcell因子$F$、自发辐射耦合因子$\beta $)、系统参数、单参数失配以及多参数同时失配对同步性能的影响. 结果表明, 通过合理选择系统的参数配置, 两主激光器可以在较大的参数范围内保持较低的相关性, 同时确保主从激光器间保持高品质的混沌同步, 满足混沌复用系统的条件. 此外, 单参数失配对主激光器间同步性的影响具有差异性, 但对配对激光器的同步性影响较小; 多参数失配时, 系统仍能在广泛的参数失配范围内满足两主激光器混沌输出的“伪正交性”要求. 本文结果不仅验证了所提系统的可行性, 还充分体现了主动被动分解法在推动NL混沌同步研究中的重要价值, 为该领域的发展提供了新思路.Nanolaser (NL), as an important optical source device, has a significant influence on photonic integrated circuits and has become a research hotspot in recent years. In this work, the synchronization performance of a dual-channel laser chaotic multiplexing system is investigated based on NLs and an active-passive decomposition is used to enhance signal processing and multiplexing efficiency. By establishing a rate equation model, the synchronization characteristics of the system are analyzed, with a focus on two key parameters— Purcell factor (F ) and spontaneous emission coupling factor (β )—as well as the effects of system parameters, single-parameter mismatch, and multi-parameter mismatch. Numerical simulations show that with appropriate parameter configurations, the two master NLs can maintain low correlation, ensuring the "pseudo-orthogonality" of chaotic signals while achieving high-quality chaotic synchronization with their paired slave NLs. In this work it is found that both the Purcell factor (F ) and the spontaneous emission coupling factor (β ) significantly affect the synchronization performance of the system, and the optimal parameter ranges for achieving high-quality synchronization are identified. Additionally, the effects of feedback strength and frequency detuning are explored, revealing that frequency detuning plays a more critical role in the synchronization between the master NLs. The influence of parameter mismatches on system synchronization performance is also emphasized. The system exhibits robustness against single-parameter mismatch and has minimum influence on master-slave synchronization quality. However, multi-parameter mismatch gives rise to more complex effects. Compared with the traditional semiconductor laser systems, this system can maintain “pseudo-orthogonality” over a wider range of parameters, thus achieving higher security and lower channel interference. This research lays a theoretical foundation for chaos synchronization based on NLs and provides new insights for designing secure, stable, and efficient optical communication systems.
-
Keywords:
- nanolaser /
- chaotic synchronization /
- master-slave decomposition method /
- chaotic multiplexing
[1] Jiang N, Zhao A K, Liu S Q, Xue C P, Qiu K 2018 Opt. Express 26 32404
Google Scholar
[2] Tang Y W, Li Q L, Dong W L, Hu M, Zeng R 2021 Opt. Commun. 498 127232
Google Scholar
[3] Wang L S, Du X Y, Mao X X, Guo Y Y, Wang A B, Wang Y C 2024 Opt. Lett. 49 5901
Google Scholar
[4] Wang Y M, Huang Y, Zhou P, Li N Q 2023 Electronics 12 509
Google Scholar
[5] Wang L S, Guo Y Y, Wang D M, Wang Y C, Wang A B 2019 Opt. Commun. 453 124350
Google Scholar
[6] Rontani D, Choi D, Chang C Y, Locquet A, Citrin D S 2016 Sci. Rep. 6 35206
Google Scholar
[7] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quant. 10 991
Google Scholar
[8] Cai D Y, Mu P H, Huang Y, Zhou P, Li N Q 2024 Chaos Soliton. Fract. 189 115652
Google Scholar
[9] Li X Y, Jiang N, Zhang Q, Tang C J, Zhang Y Q, Hu G, Cao Y S, Qiu K 2023 Opt. Express 31 28764
Google Scholar
[10] Liu Y, Wu Z M, Tan S L, Xia G Q 2023 Opt. Laser Technol. 161 109200
Google Scholar
[11] Jin J Y, Jiang N, Zhang Y Q, Feng W Z, Zhao A K, Liu S Q, Peng J F, Qiu K, Zhang Q W 2022 Opt. Express 30 13647
Google Scholar
[12] Wang Q P, Xia G Q, Tan S L, Liu Y, Liu Y T, Zhao M R, Wu Z M 2022 Appl. Opt. 61 10086
Google Scholar
[13] Zhou C D, Huang Y, Yang Y G, Cai D Y, Zhou P, Lau K, Li N Q, Li X F 2024 Opto-Electron Adv. 8 240135
[14] Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A 2019 IEEE J. Sel. Top. Quant. 26 1
[15] Xiang S Y, Wen A J, Pan W 2016 IEEE Photonics J. 8 1
[16] Fan X Q, Mao X X, Wang L S, Fu S N, Wang A B, Wang Y C 2024 Opt. Lett. 49 4445
Google Scholar
[17] Xiang S Y, Song Z W, Gao S, Han Y N, Zhang Y H, Guo X X, Hao Y 2021 Acta Photonica Sin. 50 1020001
Google Scholar
[18] Xiang S Y, Ren Z X, Song Z W, Zhang Y H, Guo X X, Han G Q, Hao Y 2021 IEEE T. Neur. Net. Lear. 32 2494
[19] Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Lightwave Technol. JLT 37 3987
Google Scholar
[20] Zhang S Y, Tang X, Xia G Q, Wu Z M 2020 Semiconductor Lasers and Applications X 11545 70
[21] Huang Y, Zhou P, Lau K Y, Li N Q 2024 ACS Photonics 11 5012
Google Scholar
[22] Kinzel W, Kanter I 2007 Handbook of Chaos Control pp301–324
[23] Li A R, Jiang N, Geng Y, Zhang Q, Xiao Y L, Zhang Y Q, Xu B, Qiu K 2024 J. Lightw. Technol. 42 8730
Google Scholar
[24] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Chin. Phys. 16 1996
Google Scholar
[25] Wang Z R, Li P, Jia Z W, Wang W J, Xu B J, Shore K A, Wang Y C 2021 Opt. Express 29 17940
Google Scholar
[26] Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. 19 1874
Google Scholar
[27] Saldutti M, Yu Y, Mørk J 2024 Laser Photonics Rev. 18 2300840
Google Scholar
[28] Fan Y L, Shi T, Zhang J, Shore K A 2024 Opt. Express 32 19361
Google Scholar
[29] Fan Y L, Shore K A, Shao X P 2023 Photonics 10 1249
Google Scholar
[30] Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016
Google Scholar
[31] Flunkert V, Schöll E 2012 New J. Phys. 14 033039
Google Scholar
[32] El-Azab J, El-Khodary A, Hassab-Elnaby S 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 2013, pp199–203
[33] Liu H J, Feng J C 2011 J. Electron. (China) 28 126
Google Scholar
[34] 赵跃鹏, 张明, 江安义, 王云才 2008 光学学报 28 1236
Zhao Y P, Zhang M, Jiang A Y, Wang Y C 2008 Acta Opt. Sin. 28 1236
[35] Jiang N, Zhao A K, Xue C P, et al. 2019 Opt. Lett. 44 1536
Google Scholar
[36] Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208
Google Scholar
[37] 穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206
Google Scholar
Mu P H, Pan W, Li N Q, Yan L S, Lou B, Zou X H, Xu M F 2015 Acta Phys Sin. 64 124206
Google Scholar
[38] Zhang X T, Guo G, Liu X T, Hu G S, Wang K, Mu P H 2023 Photonics 10 1196
Google Scholar
[39] Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69
Google Scholar
[40] Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quant. 55 1
[41] Jiang P, Zhou P, Li N Q, et al. 2020 Opt. Express 28 26421
Google Scholar
[42] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101
Google Scholar
[43] Sattar Z A, Shore K A 2015 IEEE J. Sel. Topi. Quant. 21 500
Google Scholar
[44] Sattar Z A, Shore K A 2016 IEEE J. Quant. 52 1
[45] 蒋培, 周沛, 李念强, 穆鹏华, 李孝峰 2021 物理学报 70 114201
Google Scholar
Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2021 Acta Phys. Sin. 70 114201
Google Scholar
-
参数 符号 参考值 约束因子 $\varGamma $ 0.645 载流子寿命/ns ${\tau _{\text{n}}}$ 1 光子寿命/ps ${\tau _{\text{p}}}$ 0.36 反馈延迟/ns ${\tau _{\text{d}}}$ 0.2 差分增益/(cm3·s–1) ${g_n}$ 1.64 × 10–6 透明载流子密度/cm–3 ${N_0}$ 1.1 × 10–18 增益饱和因子/cm3 $\varepsilon $ 2.3 × 10–17 线宽增强因子 $\alpha $ 5 活性区体积/cm3 ${V_{\text{α }}}$ 3.96 × 10–13 纳米激光器的波长/nm ${\lambda _0}$ 1591 激光面反射率 $R$ 0.85 注入比 ${R_{{\text{inj}}}}$ 0—0.1 外镜的功率反射率 ${R_{{\text{ext}}}}$ 0.95 折射率 $n$ 3.4 空腔长度/μm $L$ 1.39 反馈耦合分数 $f$ 0—0.9 -
[1] Jiang N, Zhao A K, Liu S Q, Xue C P, Qiu K 2018 Opt. Express 26 32404
Google Scholar
[2] Tang Y W, Li Q L, Dong W L, Hu M, Zeng R 2021 Opt. Commun. 498 127232
Google Scholar
[3] Wang L S, Du X Y, Mao X X, Guo Y Y, Wang A B, Wang Y C 2024 Opt. Lett. 49 5901
Google Scholar
[4] Wang Y M, Huang Y, Zhou P, Li N Q 2023 Electronics 12 509
Google Scholar
[5] Wang L S, Guo Y Y, Wang D M, Wang Y C, Wang A B 2019 Opt. Commun. 453 124350
Google Scholar
[6] Rontani D, Choi D, Chang C Y, Locquet A, Citrin D S 2016 Sci. Rep. 6 35206
Google Scholar
[7] Lin F Y, Liu J M 2004 IEEE J. Sel. Top. Quant. 10 991
Google Scholar
[8] Cai D Y, Mu P H, Huang Y, Zhou P, Li N Q 2024 Chaos Soliton. Fract. 189 115652
Google Scholar
[9] Li X Y, Jiang N, Zhang Q, Tang C J, Zhang Y Q, Hu G, Cao Y S, Qiu K 2023 Opt. Express 31 28764
Google Scholar
[10] Liu Y, Wu Z M, Tan S L, Xia G Q 2023 Opt. Laser Technol. 161 109200
Google Scholar
[11] Jin J Y, Jiang N, Zhang Y Q, Feng W Z, Zhao A K, Liu S Q, Peng J F, Qiu K, Zhang Q W 2022 Opt. Express 30 13647
Google Scholar
[12] Wang Q P, Xia G Q, Tan S L, Liu Y, Liu Y T, Zhao M R, Wu Z M 2022 Appl. Opt. 61 10086
Google Scholar
[13] Zhou C D, Huang Y, Yang Y G, Cai D Y, Zhou P, Lau K, Li N Q, Li X F 2024 Opto-Electron Adv. 8 240135
[14] Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A 2019 IEEE J. Sel. Top. Quant. 26 1
[15] Xiang S Y, Wen A J, Pan W 2016 IEEE Photonics J. 8 1
[16] Fan X Q, Mao X X, Wang L S, Fu S N, Wang A B, Wang Y C 2024 Opt. Lett. 49 4445
Google Scholar
[17] Xiang S Y, Song Z W, Gao S, Han Y N, Zhang Y H, Guo X X, Hao Y 2021 Acta Photonica Sin. 50 1020001
Google Scholar
[18] Xiang S Y, Ren Z X, Song Z W, Zhang Y H, Guo X X, Han G Q, Hao Y 2021 IEEE T. Neur. Net. Lear. 32 2494
[19] Xiang S Y, Wang B, Wang Y, Han Y N, Wen A J, Hao Y 2019 J. Lightwave Technol. JLT 37 3987
Google Scholar
[20] Zhang S Y, Tang X, Xia G Q, Wu Z M 2020 Semiconductor Lasers and Applications X 11545 70
[21] Huang Y, Zhou P, Lau K Y, Li N Q 2024 ACS Photonics 11 5012
Google Scholar
[22] Kinzel W, Kanter I 2007 Handbook of Chaos Control pp301–324
[23] Li A R, Jiang N, Geng Y, Zhang Q, Xiao Y L, Zhang Y Q, Xu B, Qiu K 2024 J. Lightw. Technol. 42 8730
Google Scholar
[24] Zhang W L, Pan W, Luo B, Li X F, Zou X H, Wang M Y 2007 Chin. Phys. 16 1996
Google Scholar
[25] Wang Z R, Li P, Jia Z W, Wang W J, Xu B J, Shore K A, Wang Y C 2021 Opt. Express 29 17940
Google Scholar
[26] Li N Q, Pan W, Yan L S, Luo B, Zou X H 2014 Commun. Nonlinear Sci. 19 1874
Google Scholar
[27] Saldutti M, Yu Y, Mørk J 2024 Laser Photonics Rev. 18 2300840
Google Scholar
[28] Fan Y L, Shi T, Zhang J, Shore K A 2024 Opt. Express 32 19361
Google Scholar
[29] Fan Y L, Shore K A, Shao X P 2023 Photonics 10 1249
Google Scholar
[30] Rontani D, Locquet A, Sciamanna M, Citrin D S 2010 Opt. Lett. 35 2016
Google Scholar
[31] Flunkert V, Schöll E 2012 New J. Phys. 14 033039
Google Scholar
[32] El-Azab J, El-Khodary A, Hassab-Elnaby S 2013 High Capacity Optical Networks and Emerging/Enabling Technologies, Magosa, Cyprus, 2013, pp199–203
[33] Liu H J, Feng J C 2011 J. Electron. (China) 28 126
Google Scholar
[34] 赵跃鹏, 张明, 江安义, 王云才 2008 光学学报 28 1236
Zhao Y P, Zhang M, Jiang A Y, Wang Y C 2008 Acta Opt. Sin. 28 1236
[35] Jiang N, Zhao A K, Xue C P, et al. 2019 Opt. Lett. 44 1536
Google Scholar
[36] Zhao Q C, Yin H X 2013 Opt. Laser Technol. 47 208
Google Scholar
[37] 穆鹏华, 潘炜, 李念强, 闫连山, 罗斌, 邹喜华, 徐明峰 2015 物理学报 64 124206
Google Scholar
Mu P H, Pan W, Li N Q, Yan L S, Lou B, Zou X H, Xu M F 2015 Acta Phys Sin. 64 124206
Google Scholar
[38] Zhang X T, Guo G, Liu X T, Hu G S, Wang K, Mu P H 2023 Photonics 10 1196
Google Scholar
[39] Wu S F, Buckley S, Schaibley J R, Feng L F, Yan J Q, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X D 2015 Nature 520 69
Google Scholar
[40] Qu Y, Xiang S Y, Wang Y, Lin L, Wen A J, Hao Y 2019 IEEE J. Quant. 55 1
[41] Jiang P, Zhou P, Li N Q, et al. 2020 Opt. Express 28 26421
Google Scholar
[42] Li N Q, Pan W, Yan L S, Luo B, Xu M F, Tang Y L, Jiang N, Xiang S Y, Zhang Q 2012 J. Opt. Soc. Am. B 29 101
Google Scholar
[43] Sattar Z A, Shore K A 2015 IEEE J. Sel. Topi. Quant. 21 500
Google Scholar
[44] Sattar Z A, Shore K A 2016 IEEE J. Quant. 52 1
[45] 蒋培, 周沛, 李念强, 穆鹏华, 李孝峰 2021 物理学报 70 114201
Google Scholar
Jiang P, Zhou P, Li N Q, Mu P H, Li X F 2021 Acta Phys. Sin. 70 114201
Google Scholar
计量
- 文章访问数: 504
- PDF下载量: 11
- 被引次数: 0