搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

芝诺悖论与黑洞信息丢失问题

葛先辉

引用本文:
Citation:

芝诺悖论与黑洞信息丢失问题

葛先辉
cstr: 32037.14.aps.74.20241751

Zeno’s paradox and black hole information loss problem

Ge Xianhui
cstr: 32037.14.aps.74.20241751
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 量子力学中量子态演化的幺正性同广义相对论中的绝对性概念之间的冲突, 是量子引力理论必须面对的关键难题. 本文首先回顾了芝诺悖论的主要内容, 以及牛顿力学中“极限”和“速度”概念在解决这一悖论中所起的关键作用. 以此为类比, 研究了量子纠缠冯·诺伊曼熵作为Rényi熵的极限, 在黑洞蒸发过程中可被视为状态量, 而模哈密顿量可被视为守恒量. 由此出发, 详细探讨了黑洞蒸发过程中引力路径积分中的霍金鞍点和副本虫洞鞍点对副本参数n的依赖. 进一步指出副本技巧与量子不可克隆定理之间的关系, 指出需要引入一个新的物理量——n依赖的相对熵来描述黑洞蒸发过程中状态的变化. 在黑洞蒸发过程中, 系统从霍金鞍点过渡到虫洞鞍点时,其副本参数n依赖的相对熵呈现增长趋势. 这进一步揭示了在模空间中, 黑洞从霍金鞍点向副本虫洞鞍点的演化过程具有不可逆性.
    The black hole information paradox—a fundamental conflict between quantum unitarity and semi-classical gravity—remains unresolved within the framework of quantum gravity. This work builds a conceptual bridge between this modern dilemma and Zeno’s ancient paradox of motion, emphasizing that they all rely on limit processes to reconcile infinite divisibility with finite physical outcomes. Although previous researches have established information conservation in black hole evaporation by copying wormholes, this study transcends mere unitarity verification to answer a deeper question: How do we quantify the statistical evolution and inherent irreversibility of Hawking radiation? Methods : i) Gravitational path integral formalism : We compute Rényi entropies $ S_n = \dfrac{1}{1-n} \ln \text{Tr}(\rho^n) $ by analytic continuation $( n \to 1 )$, incorporating both disconnected geometries (Hawking saddles) and connected replica wormhole saddles. ii) JT gravity model : A two-dimensional Jackiw-Teitelboim (JT) gravity coupled to a conformal bath is analyzed, with End-of-the-World (EOW) branes modeling early Hawking radiation states. iii) Modular thermodynamics : Modular entropy $ S_m $ and entanglement capacity $ C_n $ are defined as:           $ S_m = \log\text{Tr}(\rho^n) - n\partial_n\log\text{Tr}(\rho^n), \quad C_n = n^2\partial_n^2\log\text{Tr}(\rho^n),$mirroring thermodynamic entropy and heat capacity. Key results : i) Page curve restoration : The von Neumann entropy transitions from linear growth (Hawking phase) to zero (wormhole-dominated phase) at the Page time: $ t_{\text{Page}} \propto {S_{\text{BH}}}/({n\kappa c}), \quad S_{\text{BH}} = {A}/({4G_N}), $indicating faster entropy reduction for higher n. ii) Replica wormhole mechanism : The gravitational path integral reveals a topological transition:           $ \text{Tr}(\rho^n) \approx \dfrac{kZ_1^n + k^n Z_n}{(kZ_1)^n} \quad \Rightarrow \quad \text{Dominance shift at } k \sim {\mathrm{e}}^{S_0}$.Quantum non-cloning constraints: A reversibility paradox arises: while n-copies -copies of a known state allow full reconstruction, the non-cloning theorem forbids replication of unknown states. This necessitates the a priori existence of multiple replicas to ensure consistency. iii) Connection to Zeno’s paradox : The resolution of Zeno’s paradox through Newtonian limits $( v = \lim\limits_{\Delta t \to 0} \Delta x / \Delta t $) parall) parallels the replica trick’s role in black hole physics: iv) Infinite-to-finite mapping : Both employ limit operations to compress divergent processes (infinite steps or entropy growth) into finite observables. Discrete vs. continuous : Challenge classical spacetime continuity, hinting at holographic or discrete quantum spacetime. Irreversibility and generalized second law : The relative entropy $ S(\rho \| \sigma) $, defined as:               $ S(\rho \| \sigma) = \text{Tr}(\rho \log \rho) - \text{Tr}(\rho \log \sigma),$monotonically increases during the Hawking-to-wormhole transition, establishing statistical irreversibility in modular space. This generalized second law persists despite microscopic unitarity, analogous to thermodynamic irreversibility in closed systems with the formula: $ \left(S_n-S_{\rho}\right)-n\left(\left\langle H\right\rangle_n-\left\langle H\right\rangle_{\rho}\right)\geqslant 0 $. Conclusion :Our results address the black hole information paradox and the irreversible problem through three pillars: i) Unitarity : Replica wormholes enforce unitarity via non-perturbative spacetime topology changes. ii) Modular thermodynamics : A framework linking entanglement entropy, relative entropy, and irreversibility. iii) Replica priority principle : Multiple radiation replicas exist a priori, circumventing quantum cloning constraints.This work transcends mere information conservation, advancing into the second layer of black hole physics: Characterizing the irreversible evolution of Hawking radiation in modular space.
      通信作者: 葛先辉, gexh@shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275166, 12311540141)资助的课题.
      Corresponding author: Ge Xianhui, gexh@shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275166, 12311540141).
    [1]

    Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar

    [2]

    Hawking S W 1976 Phys. Rev. D 14 2460Google Scholar

    [3]

    Susskind L, Thorlacius J 1993 Phys. Rev. D 48 3743Google Scholar

    [4]

    Susskind L, Thorlacius J 1994 Phys. Rev. D 49 966Google Scholar

    [5]

    Maldacena J 1999 Int. J. Theor. Phys. 38 1113Google Scholar

    [6]

    Hartman T, Shaghoulian E, Strominger A 2020 J. High Energy. Phys. 07 022Google Scholar

    [7]

    Hashimoto K, Iizuka N, Matsuo Y 2020 J. High Energy. Phys. 06 085Google Scholar

    [8]

    Wang X, Li R, Wang J 2021 J. High Energy. Phys. 04 103

    [9]

    Kim W, Nam M 2021 Eur. Phys. J. C 81 869Google Scholar

    [10]

    Ling Y, Liu Y, Xian Z Y 2021 J. High Energy. Phys. 03 251

    [11]

    Yu M H, Ge X H 2023 Phys. Rev. D 107 066020Google Scholar

    [12]

    Yu M H, Ge X H 2022 Eur. Phys. J. C 82 14Google Scholar

    [13]

    Ge X H Ph.D Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) [葛先辉 2006 博士论文 (上海: 中国科学院上海天文台)]

    Ge X H Ph.D Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences)

    [14]

    Ge X H, Shen Y G 2005 Phys. Lett. B 612 61Google Scholar

    [15]

    Ge X H, Shen Y G 2005 Int. J. Mod. Phys. D 14 1321Google Scholar

    [16]

    Ge X H, Shen Y G 2004 Class. Quant. Grav. 21 1941Google Scholar

    [17]

    Ge X H, Shen Y G 2004 Chin. Phys. Lett. 21 1413Google Scholar

    [18]

    Page D N 1993 Phys. Rev. Lett. 71 3743Google Scholar

    [19]

    Page D N 2013 JCAP 1309 028

    [20]

    Page D N 1993 Phys. Rev. Lett. 71 1291Google Scholar

    [21]

    Lewkowycz A, Maldacena J 2013 J. High Energy. Phys. 08 090Google Scholar

    [22]

    Engelhardt N, Wall A 2015 J. High Energy. Phys. 01 073Google Scholar

    [23]

    Almheiri A, Engelhardt N, Marolf D, Maxfield H 2019 J. High Energy. Phys. 12 063Google Scholar

    [24]

    Almheiri A, Mahajan R, J. Maldacena J, Zhao Y 2020 J. High Energy. Phys. 03 149Google Scholar

    [25]

    Penington G 2020 J. High Energy. Phys. 09 002Google Scholar

    [26]

    Almheiri A, Hartman T, Maldacena J, Shaghoulian E, Tajdini A 2021 Rev. Mod. Phys. 93 035002Google Scholar

    [27]

    Almheiri A, Mahajan R, Maldacena J 2019 arXiv: 1910.11077 [hep-th]

    [28]

    Hollowood T, Kumar S 2020 J. High Energy. Phys. 08 094Google Scholar

    [29]

    Goto K, Hartman T, Tajdini A 2021 J. High Energy. Phys. 04 289Google Scholar

    [30]

    Miao R 2024 Eur. Phys. J. C 84 84Google Scholar

    [31]

    Chu J W, Deng F Y, Zhou Y 2021 J. High Energy. Phys. 10 149Google Scholar

    [32]

    Chen Y M, Qi X L, Zhang P 2020 J. High Energy. Phys. 06 121Google Scholar

    [33]

    Du D H, Gan W C, Shu F W, Sun J R 2023 Phys. Rev. D 107 026005Google Scholar

    [34]

    Ling Y, Liu P, Liu Y X, Niu C, Xian Z Y, Zhang C Y 2022 J. High Energy. Phys. 02 037Google Scholar

    [35]

    Penington G, Shenker S H, Stanford D, Yang Z B 2022 J. High Energy. Phys. 03 205Google Scholar

    [36]

    Almheiri A, Hartman T, Maldacena J, Shaghoulian E, Tajdini A 2020 J. High Energy. Phys. 05 013Google Scholar

    [37]

    Wotters W K, Zurek W H 1982 Nature 299 802Google Scholar

    [38]

    Rangamania R, Takayanagi T 2016 Lect. Notes Phys. 931 1Google Scholar

    [39]

    Nakaguchia Y, Nishiokab T 2016 J. High Energy. Phys. 12 129Google Scholar

    [40]

    Dong X 2016 Nat. Commun. 7 12472Google Scholar

    [41]

    Casini H 2008 Class. Quant. Grav. 25 205021Google Scholar

  • 图 1  引力路径积分示意图. 指标ij代表不同的态. 引力区域用蓝色显示; EOW用红色显示 (a)$ |\langle \psi_i|\psi_j\rangle|^2 $的边界条件; (b)和(c)分别为两种填充方式

    Fig. 1.  Schematic diagram for the gravitational path integral. The indices i and j represent different states. The gravitational region is shown in blue and the EOW brane is shown in red: (a) The bodunary conditions for $ |\langle \psi_i|\psi_j\rangle|^2 $; (b) and (c) are two different filling ways.

    图 2  纠缠熵的示意图. 在一个连续的量子场论(QFT)中, 柯西面(Cauchy slice) Σ被空间划分为两个区域. 标记$ A $其中一个区域为$ {\cal{A}}$, 补集为$ \bar{\cal{A}} = \varSigma/{\cal{A}} $. 这两个区域之间的分界是一个余维数为2的曲面, 称为纠缠面

    Fig. 2.  The entanglement entropy in QFT, A Cauchy slice Σ is divided into two regions. The region $ {\cal{A}} $ and its complementary $ \bar{\cal{A}}= \varSigma/{\cal{A}} $. The boundary between these two regions is a surface with a codimension of 2, called the entangling surface.

    表 1  统计力学量与模空间物理量的类比

    Table 1.  Analogy between statistical mechanical quantities and physical quantities in modular space

    统计力学量 表达式 Modular类比 表达式
    逆温度 β 副本参数 n
    哈密顿量 H 模哈密顿量 ${\cal{H}}=-\log {\boldsymbol{\rho}}_A$
    配分函数 $Z(\beta)={\mathrm{Tr}}({\mathrm{e}}^{-\beta H})$ 副本配分函数 $Z_n(n)={\mathrm{Tr}}({\mathrm{e}}^{-n {\cal{H}}_A})$
    自由能 $F(\beta)=-\dfrac{1}{\beta}\log {\mathrm{Tr}}[{\mathrm{e}}^{-\beta H}]$ 副本自由能 $F(n)= -\dfrac{1}{n}\log [{\mathrm{Tr}}_A {\boldsymbol{\rho}}^n_{A}]$
    能量 $E(\beta)=\langle H \rangle=-\partial_{\beta} \log[{\mathrm{Tr\, e}}^{-\beta H}]$ 副本能量 $E(n)=-\partial_n \log [{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]$
    热力学熵 $S(\beta)=\log[{\mathrm{Tr \,e}}^{-\beta H}]-\beta \partial_{\beta}\log[{\mathrm{Tr \,e}}^{-\beta H}]$ 模熵 $S_m= \log[{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]-n \partial_n \log[{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]$
    热容量 $C(\beta)=\beta^2 \partial^2_{\beta}\log[{\mathrm{Tr \,e}}^{-\beta H}]$ 纠缠容量 $C_n=n^2 \partial^2_n \log[{\mathrm{Tr}} {\boldsymbol{\rho}}^n_A]$
    下载: 导出CSV
  • [1]

    Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar

    [2]

    Hawking S W 1976 Phys. Rev. D 14 2460Google Scholar

    [3]

    Susskind L, Thorlacius J 1993 Phys. Rev. D 48 3743Google Scholar

    [4]

    Susskind L, Thorlacius J 1994 Phys. Rev. D 49 966Google Scholar

    [5]

    Maldacena J 1999 Int. J. Theor. Phys. 38 1113Google Scholar

    [6]

    Hartman T, Shaghoulian E, Strominger A 2020 J. High Energy. Phys. 07 022Google Scholar

    [7]

    Hashimoto K, Iizuka N, Matsuo Y 2020 J. High Energy. Phys. 06 085Google Scholar

    [8]

    Wang X, Li R, Wang J 2021 J. High Energy. Phys. 04 103

    [9]

    Kim W, Nam M 2021 Eur. Phys. J. C 81 869Google Scholar

    [10]

    Ling Y, Liu Y, Xian Z Y 2021 J. High Energy. Phys. 03 251

    [11]

    Yu M H, Ge X H 2023 Phys. Rev. D 107 066020Google Scholar

    [12]

    Yu M H, Ge X H 2022 Eur. Phys. J. C 82 14Google Scholar

    [13]

    Ge X H Ph.D Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences) [葛先辉 2006 博士论文 (上海: 中国科学院上海天文台)]

    Ge X H Ph.D Dissertation (Shanghai: Shanghai Astronomical Observatory, Chinese Academy of Sciences)

    [14]

    Ge X H, Shen Y G 2005 Phys. Lett. B 612 61Google Scholar

    [15]

    Ge X H, Shen Y G 2005 Int. J. Mod. Phys. D 14 1321Google Scholar

    [16]

    Ge X H, Shen Y G 2004 Class. Quant. Grav. 21 1941Google Scholar

    [17]

    Ge X H, Shen Y G 2004 Chin. Phys. Lett. 21 1413Google Scholar

    [18]

    Page D N 1993 Phys. Rev. Lett. 71 3743Google Scholar

    [19]

    Page D N 2013 JCAP 1309 028

    [20]

    Page D N 1993 Phys. Rev. Lett. 71 1291Google Scholar

    [21]

    Lewkowycz A, Maldacena J 2013 J. High Energy. Phys. 08 090Google Scholar

    [22]

    Engelhardt N, Wall A 2015 J. High Energy. Phys. 01 073Google Scholar

    [23]

    Almheiri A, Engelhardt N, Marolf D, Maxfield H 2019 J. High Energy. Phys. 12 063Google Scholar

    [24]

    Almheiri A, Mahajan R, J. Maldacena J, Zhao Y 2020 J. High Energy. Phys. 03 149Google Scholar

    [25]

    Penington G 2020 J. High Energy. Phys. 09 002Google Scholar

    [26]

    Almheiri A, Hartman T, Maldacena J, Shaghoulian E, Tajdini A 2021 Rev. Mod. Phys. 93 035002Google Scholar

    [27]

    Almheiri A, Mahajan R, Maldacena J 2019 arXiv: 1910.11077 [hep-th]

    [28]

    Hollowood T, Kumar S 2020 J. High Energy. Phys. 08 094Google Scholar

    [29]

    Goto K, Hartman T, Tajdini A 2021 J. High Energy. Phys. 04 289Google Scholar

    [30]

    Miao R 2024 Eur. Phys. J. C 84 84Google Scholar

    [31]

    Chu J W, Deng F Y, Zhou Y 2021 J. High Energy. Phys. 10 149Google Scholar

    [32]

    Chen Y M, Qi X L, Zhang P 2020 J. High Energy. Phys. 06 121Google Scholar

    [33]

    Du D H, Gan W C, Shu F W, Sun J R 2023 Phys. Rev. D 107 026005Google Scholar

    [34]

    Ling Y, Liu P, Liu Y X, Niu C, Xian Z Y, Zhang C Y 2022 J. High Energy. Phys. 02 037Google Scholar

    [35]

    Penington G, Shenker S H, Stanford D, Yang Z B 2022 J. High Energy. Phys. 03 205Google Scholar

    [36]

    Almheiri A, Hartman T, Maldacena J, Shaghoulian E, Tajdini A 2020 J. High Energy. Phys. 05 013Google Scholar

    [37]

    Wotters W K, Zurek W H 1982 Nature 299 802Google Scholar

    [38]

    Rangamania R, Takayanagi T 2016 Lect. Notes Phys. 931 1Google Scholar

    [39]

    Nakaguchia Y, Nishiokab T 2016 J. High Energy. Phys. 12 129Google Scholar

    [40]

    Dong X 2016 Nat. Commun. 7 12472Google Scholar

    [41]

    Casini H 2008 Class. Quant. Grav. 25 205021Google Scholar

  • [1] 戴伟鹏, 贺衎, 侯晋川. 基于Rényi-α熵的参数化纠缠度量. 物理学报, 2024, 73(4): 040303. doi: 10.7498/aps.73.20231503
    [2] 李俊青, 黄丽, 崔世杰, 王银珠. 量子态在两体和k体下基于min相对熵的量子关联测度. 物理学报, 2023, 72(1): 010302. doi: 10.7498/aps.72.20221293
    [3] 王莹, 侯凤贞, 戴加飞, 刘新峰, 李锦, 王俊. 改进的相对转移熵的癫痫脑电分析. 物理学报, 2014, 63(21): 218701. doi: 10.7498/aps.63.218701
    [4] 张梅, 王俊. 基于改进的符号相对熵的脑电信号时间不可逆性研究. 物理学报, 2013, 62(3): 038701. doi: 10.7498/aps.62.038701
    [5] 沈韡, 王俊. 基于符号相对熵的心电信号时间不可逆性分析. 物理学报, 2011, 60(11): 118702. doi: 10.7498/aps.60.118702
    [6] 许元男, 赵远, 刘丽萍, 张宇, 孙秀冬. 基于伪Wigner-Ville分布和Rényi熵的显著图目标检测. 物理学报, 2010, 59(2): 980-988. doi: 10.7498/aps.59.980
    [7] 张丽春, 胡双启, 李怀繁, 赵 仁. 轴对称黑洞的量子统计熵. 物理学报, 2008, 57(6): 3328-3332. doi: 10.7498/aps.57.3328
    [8] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 物理学报, 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
    [9] 王波波. 环面黑洞背景下量子场的熵. 物理学报, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [10] 张丽春, 赵 仁. Sen黑洞熵与能斯特定理. 物理学报, 2004, 53(2): 362-366. doi: 10.7498/aps.53.362
    [11] 孙鸣超. 起源于引力场的Vaidya-Bonner-de Sitter黑洞的量子熵. 物理学报, 2003, 52(6): 1350-1353. doi: 10.7498/aps.52.1350
    [12] 赵仁, 张丽春. Kim黑洞熵与能斯特定理. 物理学报, 2001, 50(4): 593-596. doi: 10.7498/aps.50.593
    [13] 林 海. 满足热力学第三定律的修正的黑洞的熵公式. 物理学报, 2000, 49(8): 1413-1415. doi: 10.7498/aps.49.1413
    [14] 刘文彪, 朱建阳, 赵峥. Nernst定理与Reissner-Nordstrom黑洞Dirac场的熵. 物理学报, 2000, 49(3): 581-585. doi: 10.7498/aps.49.581
    [15] 赵 峥, 朱建阳. 能斯特定理与黑洞的普朗克绝对熵. 物理学报, 1999, 48(8): 1558-1564. doi: 10.7498/aps.48.1558
    [16] 缪炎刚. 一种自对偶理论的规范不变形式及其量子化. 物理学报, 1993, 42(4): 536-543. doi: 10.7498/aps.42.536
    [17] 欧发. 最小熵产生定理与光学被动腔. 物理学报, 1990, 39(7): 40-47. doi: 10.7498/aps.39.40-2
    [18] 李如生. 最小熵产生定理和定态的稳定性. 物理学报, 1985, 34(7): 956-959. doi: 10.7498/aps.34.956
    [19] 陈式刚. Glansdorff-Prigogine判据与最小熵产生定理. 物理学报, 1980, 29(10): 1315-1322. doi: 10.7498/aps.29.1315
    [20] 侯伯宇, 段一士, 葛墨林. 不可易规范场的对偶荷. 物理学报, 1976, 25(6): 514-520. doi: 10.7498/aps.25.514
计量
  • 文章访问数:  451
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-22
  • 修回日期:  2025-01-26
  • 上网日期:  2025-02-24

/

返回文章
返回