搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于γ全吸收装置的大体积BaF2探测单元的α/γ鉴别方法研究

邹翀 张奇玮 栾广源 吴鸿毅 罗淏天 陈玄博 王晓宇 贺国珠 任杰 黄翰雄 阮锡超 鲍杰 朱兴华

引用本文:
Citation:

用于γ全吸收装置的大体积BaF2探测单元的α/γ鉴别方法研究

邹翀, 张奇玮, 栾广源, 吴鸿毅, 罗淏天, 陈玄博, 王晓宇, 贺国珠, 任杰, 黄翰雄, 阮锡超, 鲍杰, 朱兴华

Research on α/γ Discriminate Method of Bulk BaF2 Detector for Gamma Total Absorption Facility

Zou Chong, Zhang Qiwei, Luan Guangyuan, Wu Hongyi, Luo Haotian, Chen Xuanbo, Wang Xiaoyu, He Guozhu, Ren Jie, Huang Hanxiong, Ruan Xichao, Bao Jie, Zhu Xinghua
Article Text (iFLYTEK Translation)
PDF
导出引用
  • γ全吸收型探测装置由40个BaF2探测单元组成,用于在线测量中子辐射俘获反应截面数据,填补国内实验数据的空白。实验本底的一个重要来源是BaF2晶体自身包含的α粒子。为扣除α粒子本底,数据获取系统采用全波形采集的方式,在线实验存储的数据量为118 MB/s,产生了较大的死时间。利用BaF2探测单元测量三种放射源(22Na、137Cs及60Co)的实验数据,确定了信号波形的积分长度为2000 ns时,能够达到最佳能量分辨率;使用快总成分比、脉冲宽度和时间衰减常数三种方法进行α粒子和γ射线的鉴别,计算得到快总成分比(快成分5 ns总成分200 ns)方法的品质因子为1.19~1.41,脉冲宽度(10%峰值)方法的品质因子为0.94~1.04,时间衰减常数方法的品质因子为0.93~1.07。通过品质因子的定量分析和能谱的比较,确定快总成分比鉴别方法效果最好,能够有效去除α粒子本底,为下一步升级数据获取系统,减少实验数据量,降低截面数据不确定度奠定基础。
    The Gamma-ray Total Absorption Facility (GTAF), which is composed of 40 BaF2 detection units, is designed to measure the cross section data of neutron radiation capture reaction online, in order to comply the experimental nuclear data sheet. Since 2019, several formidable experiment results have been analyzed and published where we consumed that one of the most important sources of experimental background is initial α particles emitted from the BaF2 crystal, the core component of the detection unit in GTAF, itself.
    The development of data analysis algorithms to eliminate the influence of alpha particles in experimental data has become a key aspect, considering the current industrial manufacturing process capabilities, impurities Ra, and its compound, cannot be completely removed from the BaF2. In this paper, to fulfill the need of data collect, online measurement and analysis of neutron radiation cross section, the data acquisition system of GTAF adopts the method of full waveform acquisition, resulting in a substantial amount of data recorded, transmitted, and stored during experiment, which also affects the uncertainty of the cross-section data. The amount of data stored in the online experiment is about 118 MB/s, resulting in a large dead time.
    Based on the signal waveform characteristics of the BaF2 detection unit, to address the aforementioned issues, three methods, namely the ratio of fast to total component, pulse width, and time decay constant, are employed to identify and discriminate α particles and γ rays, with the quality factor FOM utilized as an evaluation value and several experiments using three radioactive sources (22Na, 137C, 60Co) used to verify.
    Due to the slow components of BaF2 light decay time being about 620 ns, the waveform pulse should essentially return to baseline at approximately 1900 ns to 2000 ns, allowing for the complete waveform of the γ rays signal to be captured at that moment, which might provide the best energy resolution. Therefore, in the online experiment, the integration length for the energy spectrum is chosen to be 2000 ns in this paper.
    The quality factors of fast total component ratio (fast component 5 ns, total component 200 ns) method are 1.19~1.41, pulse width (10% peak) method are 0.94~1.04, and time attenuation constant method are 0.93~1.07. Through the quantitative analysis of quality factor and the comparison of energy spectrum, it is determined that the fast total component ratio method has the best effect, which can effectively remove the background of α particles.
    The next step is to upgrade the online experimental data acquisition system to reduce the amount of experimental data and the uncertainty of cross section data. The experiment data need to be recorded should be the crossing threshold time for each signal waveform (for the time-of-flight method) and the amplitude integration value of 5 ns after the threshold (for the fast component), of 200 ns after the threshold (for the total component) and of 2000 ns (for the energy), as well as the related detection unit number. These mentioned information should be sufficient to complete the online experimental data online processing, including processing the α particle background and (n,γ) reactions data. It is estimated that the data acquisition rate of the upgraded system will decrease from 118 MB/s to 24 MB/s, which can significantly reduce the dead time of the data acquisition system and thereby improve the accuracy of cross section data.
  • [1]

    Ding D Z 2001 China Basic Science 1 13(in Chinese) [丁大钊 2001 中国基础科学1 13]

    [2]

    Chandler D, Hartanto D, Bae J W, Burg K M, Robert Y, Sizemore C 2025 Annals of Nuclear Energy211 110920

    [3]

    Arnould M, Katsuma M 2008 International Conference on Nuclear Data for Science and Technology Nice, France, April 22-27, 2007 7

    [4]

    Kompe D 1969 Nucl. Phys.133 513

    [5]

    Wisshak K, Kappeler F, Reffo G 1984 Nucl.Sci.Eng.88 594

    [6]

    Terada K,KatabuchiT, Mizumoto M, Arai T,Saito T, Igashira M,Hirose K, Nakamura S, Kimura A, Harada H, Hori J, Kino K, Kiyanagi Y 2015 Progress in Nuclear Energy82 118

    [7]

    Kobayashi K, Lee S, Yamamoto S 2004 Nucl.Sci.Eng.146 209

    [8]

    Guber K H, Derrien H, Leal L C, Arbanas G, Wiarda D, Koehler P E, Harvey A. 2010 Phys. Rev. C82 057601

    [9]

    Lee J, Hori J I, Nakajima K, Sano T, Lee S 2017 J. Nucl. Sci. Tech.54 1046

    [10]

    Kim H I, Paradela C, Sirakov I, Becker B, Capote R, Gunsing F, KimG N, Kopecky S, Lampoudis C, LeeY O, Massarczyk R, Moens A, Moxon M, PronyaevV G, Schillebeeckx P, Wynants R 2016 Eur. Phys. J. A52 170

    [11]

    Mingrone F, Massimi C, Altstadt S 2014 International Conference on Nuclear Data for Science and Technology New York, USA, March 4–8, 2013 18

    [12]

    Ren J, Ruan X C, Bao J, Luan G Y, Jiang W, An Q, Bai H Y, Cao P, Chen Q P, Chen Y H, Cheng P J, Cui Z Q, Fan R R, Feng C Q, Gu M H, Guo F Q, Han C C, Han Z J, He G Z, He Y C, He Y F, Huang H X, Huang W L, Huang X R, Ji X L, Ji X Y, Jiang H Y, Jing H T, Kang L, Kang M T, Li B, Li L, Li Q, Li X, Li Y, Li Y, Liu R, Liu S B, Liu X Y, Ma Y L, Ning C J, Qi B B, Song Z H, Sun H, Sun X Y, Sun Z J, Tan Z X, Tang H Q, Tang J Y, Wang P C, Wang Q, Wang T F, Wang Y F, Wang Z H, Wang Z, Wen J, Wen Z W, Wu Q B, Wu X G, Wu X, Xie L K, Yang Y W, Yi H, Yu L, Yu T, Yu Y J, Zhang G H, Zhang J, Zhang L H, Zhang L Y, Zhang Q M, Zhang Q W, Zhang X P, Zhang Y L, Zhang Z Y, Zhao Y T, Zhou L, Zhou Z Y, Zhu D Y, Zhu K J, Zhu P 2019 Radiation Detection Technology and Methods3 52

    [13]

    Wisshak K, Voss F, Kaeppeler F, Krticka M, Gallino R 2006 Phys. Rev. C73 015802

    [14]

    Endo S, Kimura A, Nakamura S, Iwamoto O, Iwamoto N, Rovira G, Terada K, Meigo S, Toh Y, Segawa M, Maeda M, Tsuneyama M 2022 Journal of Nuclear Science and Technology59 318

    [15]

    Mosby S, Bredeweg T A, Couture A, Jandel M, Kawano T, Ullmann J, Henderson R A, Wu C Y 2018 Nuclear Data Sheets 148 312

    [16]

    Laminack A, Blackmon J.C, Couture A, Greene J P, Krticka M, Macon K T, Mosby S, Prokop C, Ullmann J L, Valenta S 2022 Phys. Rev. C106 025802

    [17]

    Zhong Q P, Zhou Z Y, Tang H Q, Chen X L, He G Z, Zhang Q W, Guo W X, Yuan J L, Ma X Y, Wang Q, Ruan X C, Li Z H 2008 Chin. Phys. C 32 102

    [18]

    Ren J, Ruan X C, Tang H Q, Ge Z G, Huang H X, Jing H T, Tang J Y, Huang W L 2014 Nucl. Tech.37 110521 (in Chinese) [任杰, 阮锡超, 唐洪庆, 葛智刚, 黄翰雄, 敬罕涛, 唐靖宇, 黄蔚玲 2014 核技术37 110521]

    [19]

    Zhang Q W, He G Z, Huang X, Ruan X C, Li Z H, Zhu X H 2014 Atomic Energy Science and Technology48 70 (in Chinese) [张奇玮,贺国珠,黄兴,阮锡超,李志宏,朱兴华2014 原子能科学技术48 70]

    [20]

    Zhang Q W, He G Z, Huang X, Cheng P J, Ruan X C, Zhu X H 2016 Atomic Energy Science and Technology50 536 (in Chinese) [张奇玮,贺国珠,黄兴,程品晶,阮锡超,朱兴华2016 原子能科学技术50 536]

    [21]

    Zhang QW, Luan GY, Ren J, Ruan XC, He GZ, Bao J, Sun Q, Huang HX, Wang ZH, Gu MH, Yu T, Xie LK, Chen YH, An Q, Bai HY, Bao Y, Cao P, Chen HL, Chen QP, Chen YK, Chen Z, Cui ZQ, Fan RR, Feng CQ, Gao KQ, Han CC, Han ZJ, He YC, Hong Y, Huang WL, Huang XR, Ji XL, Ji XY, Jiang W, Jiang HY, Jiang ZJ, Jing HT, Kang L, Kang MT, Li B, Li C, Li JW, Li L, Li Q, Li X, Li Y, Liu R, Liu SB, Liu XY, Mu QL, Ning CJ, Qi BB, Ren ZZ, Song YP, Song ZH, Sun H, Sun K, Sun XY, Sun ZJ, Tan ZX, Tang HQ, Tang JY, Tang XY, Tian BB, Wang LJ, Wang PC, Wang Q, Wang TF, Wen J, Wen ZW, Wu QB, Wu XG, Wu X, Yang YW, Yi H, Yu L, Yu YJ, Zhang GH, Zhang LH, Zhang XP, Zhang YL, Zhang ZY, Zhao YB, Zhou LP, Zhou ZY, Zhu DY, Zhu KJ, Zhu P, Zhu XH. 2021 Acta Phys. Sin. 70 222801 (in Chinese) [张奇玮,栾广源,任杰,阮锡超,贺国珠,鲍杰,孙琪,黄翰雄,王朝辉,顾旻皓,余滔,解立坤,陈永浩,安琪,白怀勇,鲍煜,曹平,陈昊磊,陈琪萍,陈裕凯,陈朕,崔增琪,樊瑞睿,封常青,高可庆,韩长材,韩子杰,何泳成,洪杨,黄蔚玲,黄锡汝,季筱璐,吉旭阳,蒋伟,江浩雨,姜智杰,敬罕涛,康玲,康明涛,李波,李超,李嘉雯,李论,李强,李晓,李样,刘荣,刘树彬,刘星言,穆奇丽,宁常军,齐斌斌,任智洲,宋英鹏,宋朝晖,孙虹,孙康,孙晓阳,孙志嘉,谭志新,唐洪庆,唐靖宇,唐新懿,田斌斌,王丽娇,王鹏程,王琦,王涛峰,文杰,温中伟,吴青彪,吴晓光,吴煊,羊奕伟,易晗,于莉,于永积,张国辉,张林浩,张显鹏,张玉亮,张志永,赵豫斌,周路平,周祖英,朱丹阳,朱科军,朱鹏,朱兴华 2021 物理学报70 222801]

    [22]

    Luan G Y, Ren J, Zhang Q W, Ruan X C, He G Z, Cheng P J, Guo M W 2022 Journal of Isotopes 35 273 (in Chinese) [栾广源,任杰,张奇玮,阮锡超,贺国珠,程品晶,郭明伟 2022同位素35 273]

    [23]

    Shi B, Peng M, Zhang Q W, He G Z, Zhou Z Y, Tang H Q 2018 Atomic Energy Science and Technology52 1537 (in Chinese) [石斌,彭猛,张奇玮,贺国珠,周祖英,唐洪庆2018原子能科学技术52 1537]

    [24]

    Zhang Q W, He G Z, Luan G Y, Cheng P J, Ruan X C, Zhu X H 2021 Power Laser and Particle Beams33 0440 (in Chinese) [张奇玮,贺国珠,栾广源,程品晶,阮锡超,朱兴华2021 强激光与粒子束33 0440]

    [25]

    Wang X Y, He G Z, Zhang Q W, Luo H T, Xu K Z, Li Q, Xie L K, Luan G Y, Ruan X C, Zou C, Chen X B, Wu H Y, Fan R R, Jiang W, Cao P, Yu T. 2024 Atomic Energy Science and Technology58 2262 (in Chinese) [王晓宇,贺国珠,张奇玮,罗淏天,徐阔之,李倩,解立坤,栾广源,阮锡超,邹翀,陈玄博,吴鸿毅,樊瑞睿,蒋伟,曹平,余滔2024原子能科学技术58 2262]

    [26]

    Luo HT, Zhang QW, Luan GY, Wang XY, Zou C, Ren J, Ruan XC, He GZ, Bao J, Sun Q, Huang HX, Wang ZH, Wu HY, Gu MH, Yu T, Xie LK, Chen YH, An Q, Bai HY, Bao Y, Cao P, Chen HL, Chen QP, Chen YK, Chen Z, Cui ZQ, Fan RR, Feng CQ, Gao KQ, Han CC, Han ZJ, He YC, Hong Y, Huang WL, Huang XR, Ji XL, Ji XY, Jiang W, Jiang HY, Jiang ZJ, Jing HT, Kang L, Kang MT, Li B, Li C, Li JW, Li L, Li Q, Li X, Li Y, Liu R, Liu SB, Liu XY, Mu QL, Ning CJ, Qi BB, Ren ZZ, Song YP, Song ZH, Sun H, Sun K, Sun XY, Sun ZJ, Tan ZX, Tang HQ, Tang JY, Tang XY, Tian BB, Wang LJ, Wang PC, Wang Q, Wang TF, Wen J, Wen ZW, Wu QB, Wu XG, Wu X, Yang YW, Yi H, Yu L, Yu YJ, Zhang GH, Zhang LH, Zhang XP, Zhang YL, Zhang ZY, Zhao YB, Zhou LP, Zhou ZY, Zhu DY, Zhu KJ, Zhu P, Zhu XH. Acta Phys. Sin. 73 072801 (in Chinese) [罗淏天,张奇玮,栾广源,王晓宇,邹翀,任杰,阮锡超,贺国珠,鲍杰,孙琪,黄翰雄,王朝辉,吴鸿毅,顾旻皓,余滔,解立坤,陈永浩,安琪,白怀勇,鲍煜,曹平,陈昊磊,陈琪萍,陈裕凯,陈朕,崔增琪,樊瑞睿,封常青,高可庆,韩长材,韩子杰,何泳成,洪杨,黄蔚玲,黄锡汝,季筱璐,吉旭阳,蒋伟,江浩雨,姜智杰,敬罕涛,康玲,康明涛,李波,李超,李嘉雯,李论,李强,李晓,李样,刘荣,刘树彬,刘星言,穆奇丽,宁常军,齐斌斌,任智洲,宋英鹏,宋朝晖,孙虹,孙康,孙晓阳,孙志嘉,谭志新,唐洪庆,唐靖宇,唐新懿,田斌斌,王丽娇,王鹏程,王琦,王涛峰,文杰,温中伟,吴青彪,吴晓光,吴煊,羊奕伟,易晗,于莉,于永积,张国辉,张林浩,张显鹏,张玉亮,张志永,赵豫斌,周路平,周祖英,朱丹阳,朱科军,朱鹏,朱兴华2024 物理学报73 072801]

    [27]

    Ma X Y, Zhong Q P, Zhou Z Y, Guo W X, Yuan J L, Wang Q, Zhang Q W, Su M, Ruan X C, Bao J, Huang H X, Jiang J, Nie Y B, Li X, Liu G, Lan C L. 2009 Atomic Energy Science and Technology43 180 (in Chinese) [马霄云,仲启平,周祖英,郭维新,袁继龙,王强,张奇玮,苏明,阮锡超,鲍杰,黄翰雄,蒋静,聂阳波,李霞,刘刚,兰长林2009 原子能科学技术43 180]

    [28]

    Zhang Q W, Luan G Y, He G Z, Cheng P J, Ruan X C, Zhu X H 2020 Nuclear Physics Review37 771 (in Chinese) [张奇玮,栾广源,贺国珠,程品晶,阮锡超,朱兴华2020 原子核物理评论37 771]

    [29]

    Zhang Q W, Luan G Y, Guo M W, He G Z, Ruan X C, Zou C, Zhu X H. 2021 Modern Applied Physics 12 040401 (in Chinese) [张奇玮,栾广源,郭明伟,贺国珠,阮锡超,邹翀,朱兴华2021现代应用物理12 040401]

    [30]

    Peng M, He G Z, Luo H, Zhang Q W, Shi B, Zhou Z Y, Lan C L. 2016 Atomic Energy Science and Technology50 1866 (in Chinese) [彭猛,贺国珠,骆宏,张奇玮,石斌,周祖英,兰长林 2016 原子能科学技术50 1866]

  • [1] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, doi: 10.7498/aps.71.20220629
    [2] 程凯, 魏鑫, 曾德凯, 季选韬, 朱坤, 王晓冬. 基于微结构气体探测器对单能和连续谱快中子的模拟解谱. 物理学报, doi: 10.7498/aps.70.20201954
    [3] 孟猛, 祁强, 赫崇君, 丁栋舟, 赵书文, 施俊杰, 任国浩. Gd3(Al,Ga)5O12:Ce闪烁晶体缺陷对其发光性能的影响. 物理学报, doi: 10.7498/aps.70.20201697
    [4] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, doi: 10.7498/aps.67.20180689
    [5] 梁帅西, 秦敏, 段俊, 方武, 李昂, 徐晋, 卢雪, 唐科, 谢品华, 刘建国, 刘文清. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量. 物理学报, doi: 10.7498/aps.66.090704
    [6] 张存波, 闫涛, 杨志强, 任伟涛, 朱占平. 频率对半导体器件热击穿影响的理论模型. 物理学报, doi: 10.7498/aps.66.018501
    [7] 张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽. NaYF4:Tm3+纳米棒中激光脉宽调控的荧光选择输出特性. 物理学报, doi: 10.7498/aps.65.204205
    [8] 孙华娟, 颜晓红, 郝学元. 多值数据的自适应脉冲宽度调制预加重方法. 物理学报, doi: 10.7498/aps.64.018402
    [9] 郝翔, 谢瑞良, 杨旭, 刘韬, 黄浪. 基于脉冲宽度调制的滑模变结构控制的一阶H桥逆变器的分岔和混沌行为研究. 物理学报, doi: 10.7498/aps.62.200503
    [10] 周洪澄, 王秉中, 丁帅, 欧海燕. 时间反演电磁波在金属丝阵列媒质中的超分辨率聚焦. 物理学报, doi: 10.7498/aps.62.114101
    [11] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, doi: 10.7498/aps.62.122901
    [12] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, doi: 10.7498/aps.61.024101
    [13] 樊瑞睿, 侯凤杰, 欧阳群, 范胜男, 陈元柏, 伊福廷. micro-bulk工艺micromegas的研究. 物理学报, doi: 10.7498/aps.61.092901
    [14] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性. 物理学报, doi: 10.7498/aps.58.8249
    [15] 杨增强, 周效信. 控制双激光脉冲的宽度提高N2分子的取向. 物理学报, doi: 10.7498/aps.57.4099
    [16] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, doi: 10.7498/aps.57.2141
    [17] 刘世杰, 麻健勇, 沈自才, 孔伟金, 沈 健, 晋云霞, 赵元安, 邵建达, 范正修. 多层介质膜脉冲宽度压缩光栅与超短脉冲作用时的性能分析. 物理学报, doi: 10.7498/aps.56.4542
    [18] 陈树琪, 刘智波, 周文远, 田建国, 臧维平, 宋 峰, 张春平. 克尔介质中脉冲宽度对瞬态热光非线性效应的影响. 物理学报, doi: 10.7498/aps.53.3577
    [19] 李晨曦, 陆坤权, 赵雅琴. 能量分辨率对EXAFS的影响. 物理学报, doi: 10.7498/aps.36.1496
    [20] 林金谷, 刘承惠, 朱振和, 赖瑞生, 霍崇儒. 用非共线二次谐波法实现对锁模激光器超短脉冲宽度的测定. 物理学报, doi: 10.7498/aps.29.406
计量
  • 文章访问数:  38
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-01

/

返回文章
返回