搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于操控中性原子阵列的TeO2反常声光偏转器的实验研究

刘方德 赵非凡 李云达 杨雯馨 姚新江 韩伟 孟增明 张靖

引用本文:
Citation:

用于操控中性原子阵列的TeO2反常声光偏转器的实验研究

刘方德, 赵非凡, 李云达, 杨雯馨, 姚新江, 韩伟, 孟增明, 张靖

Experimental study of TeO2 anomalous acousto-optic deflector for manipulating neutral atom arrays

LIU Fangde, ZHAO Feifan, LI Yunda, YANG Wenxin, Yao Xinjiang, HAN Wei, MENG Zengming, ZHANG Jing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 中性原子阵列因具备单原子的精确操控能力以及强相互作用的可调性,已成为量子计算和量子信息处理中最具潜力的物理平台之一。声光偏转器是构建和控制中性原子阵列的关键器件,可实现对原子的快速、高精度捕获与排列。然而,TeO2反常布拉格型声光偏转器在实际应用中仍存在宽带衍射条件不明确、偏振敏感性与效率低等问题,制约了其在多自由度操控中的性能发挥。本文通过与声光调制器做对比,系统分析了声光偏转器的工作机理,提出了一种可快速确定宽带衍射中心频率与衍射级次的新方法,通过全面测量不同衍射级次及不同偏振入射下的衍射效率与带宽,获得声光偏转器的高速、高效率、大角度偏转的衍射级次和45MHz宽频衍射频率的特定工作条件,研究揭示了宽带偏转性能对超声波模式的依赖机制,明确了调试过程中的关键技术参数,为中性原子阵列的快速构建与动态可编程调控提供了重要技术支撑。
    Neutral atom arrays have emerged as one of the most promising physical platforms for quantum computing and quantum information processing due to their precise single-atom control and tunable strong interactions. The acousto-optic deflector (AOD) is a key device for constructing and manipulating neutral atom arrays, enabling rapid and high-precision atom trapping and arrangement. However, TeO2-based anomalous Bragg AODs still face challenges in practical applications, such as unclear broadband diffraction conditions, polarization sensitivity, and low efficiency, which limit their performance in multi-degree-of-freedom control.
    This study investigates the acousto-optic effects in AOD and acousto-optic modulator (AOM), revealing their differences in diffraction efficiency, polarization characteristics, and applications. By adjusting the azimuthal angle of the AOD, we measured the efficiency and RF bandwidth of the ±1st-order diffracted beams under horizontal and vertical polarization incident light, proposed an experimental method to determine the broadband diffraction center frequency and diffraction order. Additionally, we systematically characterized the operational parameters of AOM, clarifying their performance mechanisms and application-specific differences compared to AOD. The main conclusions are as follows:
    (I) The beam deflection performance of an AOD is closely related to the ultrasonic mode or acoustic velocity: a lower sound velocity results in a larger deflection angles. For TeO2 crystals, when a shear wave propagates along the [110] axis (sound velocity: 0.617 km/s), the diffraction angle reaches 0.842 mrad/MHz (laser wavelength: 532 nm). In contrast, when TeO2 is used in AOM with a longitudinal wave along the [001] axis (sound velocity: 4.26 km/s), the diffraction angle decreases to 0.133 mrad/MHz under the same wavelength.
    (II) To achieve high diffraction efficiency and a broad operational frequency range, the AOD must satisfy the phase-matching condition for anomalous Bragg diffraction. Taking the AOD (model: AA DTSX-250) as an example, it operates in a unidirectional incident mode: when horizontally polarized light (extro-ordinary light) is incident, only the -1st-order diffracted beam satisfies the anomalous Bragg condition. The beam undergoes polarization conversion to vertically polarized light (ordinary light), enabling high-efficiency broadband deflection (center frequency: 82 MHz, bandwidth: 45 MHz). To support future twodimensional deflection implementations, the input and output surfaces of the TeO2 crystal are fabricated with slight bevel angles, ensuring collinearity between the -1st-order diffracted beam and the incident beam at the center frequency. In other cases — (i) +1st-order diffraction of horizontally polarized light and (ii) ±1st-order diffraction of vertically polarized light — the anomalous Bragg condition is not met. These beams retain their original polarization and allow only narrowband deflection.
    These results demonstrate that AODs, leveraging anomalous acoustooptic effects, can achieve high diffraction efficiency, wide frequency tuning ranges, and large deflection angles, making them suitable for high-speed, high-precision beam steering applications. In contrast, AOMs utilize normal acousto-optic effects to perform rapid modulation of beam intensity, frequency, and phase, and are widely used in laser communication and optical fiber transmission. This study provides a detailed technical reference for understanding the operational principles of AODs and their applications in programmable neutral atom arrays.
  • [1]

    Henriet L, Beguin L, Signoles A, Lahaye T, Browaeys A, Reymond G, Jurczak C 2020 Quantum 4327

    [2]

    Barredo D, Léséleuc S, Lienhard V, Lahaye T, Browaeys A 2016 Science 3541021

    [3]

    Endres M, Bernien H, Keesling A, Levine H, Anschuetz E, Krajenbrink A, Senko C, Vuletic V, Greiner M, Lukin M D 2016 Science 3541024

    [4]

    N Antonov S, Kotelnikov V 2019 PAIJ 3, 235

    [5]

    Wang L W, Wen K, Liu F D, Li Y D, Wang P J, Huang L H, Chen L C, Han W, Meng Z M, Zhang J 2022 Chin. Phys. B 31103401

    [6]

    Barredo D, Lienhard V, Léséleuc S, Lahaya T, Browaeys A 2018 Nature 56179

    [7]

    Bluvstein D, Levine H, Semeghini G, Wang T T, Ebadi S, Kalinowski M, Keesling A, Maskara N, Phchler H, Greiner M, Vuletić V, Lukin M D 2022 Nature 604451

    [8]

    Semeghini G, Levine H, Keesling A, Ebadi S, Wang T T, Bluvstein D, Verresen R, Pichler H, Kalinowski M, Samajdar R, Omran A, Sachdev S, Vishwanath A, Greiner M, Vuletić V, Lukin M D 2021 Science 3741242

    [9]

    Jiang RH, Zhou Z Q, Lv X H, Zeng S Q 2012 Rev. Sci. Instrum. 83043709

    [10]

    Lyer V, Losavio B, Saggau P 2003 J Biomed. Opt. 8460

    [11]

    Xu H Q, Jiang Y 2005 Journal of Air & Space Early Warning Research 193 (in chinese) [徐海全, 蒋跃2005空天预警研究学报193]

    [12]

    Jiang H Y, He N, Chen M 2008 Optical Technique 34299(in chinese) [蒋红艳, 何宁, 陈明2008光学技术34299]

    [13]

    Nikulin V, Khandekar R, Sofka J 2008 Optical Engineering 47064301

    [14]

    Yan J W, Yu X D, Han Z, Li T C 2023 Photon. Res. 11600

    [15]

    Meng Z M, Wang L W, Han W, Liu F D, Wen K, Gao C, Wang P J, Chin C, Zhang J 2023 Nature 615231

    [16]

    Wu Y Q, Shankar P M, Lewin P A, Koller D P 1994 T-UFFC 41166

    [17]

    Ruan L F, Tang Z L, Liu X L 2013 Acta Optica Sinica 36 (in chinese) [阮立锋, 唐志列, 刘雪凌2013光学学报3 6]

    [18]

    Das P, Chen H L 1987 Piezoelectrics & Acoustooptics 344(in chinese) [Das P, 陈焕林1987压电与声光3 44]

    [19]

    Li Q, Zheng Y J, Wang Z Y, Li G, Zuo T C 2003 Chinese Journal of Lasers 30795(in chinese) [李强, 郑义军, 王智勇, 李港, 左铁钏2003中国激光30795]

    [20]

    Zhang Z W, Wen Z Y, Shang Z G, Li D L, Hu J 2012 J. Semicond. 33094009

    [21]

    Schrödel Y, Hartmann C, Zheng J A, Lang T, Steudel M, Rutsch M, Salman S H, Kellert M, Pergament M, Hahn-Jose T, Suppelt S, Dörsam J H, Harth A, Leemans W P, Kärtner F X, Hartl I, Kupnik M, Heyl C M 2024 Nat. Photon. 1854

    [22]

    Baryshev V N, Epikhin V M 2010 Quantum Electronics 40431

    [23]

    Wen K, Meng Z M, Wang L W, Chen L C, Huang L H, Zhou L H, Cui X L, Zhang J 2020 Sci. Rep. 105870

    [24]

    Chen L C, Wang P J, Meng Z M, Huang L H, Cai H, Wang D W, Zhu S Y, Zhang J 2018 Phys. Rev. Lett. 120193601

    [25]

    Wang P J, Chen L C, Mi C D, Meng Z M, Huang L H, Nawaz K S, Cai H, Wang D W, Zhu S Y, Zhang J 2020 npj Quantum Inf. 618

    [26]

    Xu J, Stroud R 1992 Acousto-Optic Devices: Principles, Design, and Applications (Wiley-Interscience)

    [27]

    Xu J P 1978 Acta Phys. Sin. 27421(in chinese) [徐介平1978物理学报27421]

    [28]

    Li D R, Lü X H, Wu P, Luo Q M, Chen R. W, Zeng S Q 2006 Acta Phys. Sin. 554729(in chinese) [李德荣, 吕晓华, 吴萍, 骆清铭, 陈伟, 曾绍群 2006物理学报554729]

  • [1] 彭毅, 汪纯婧, 李晶, 高凯悦, 徐汉城, 陈传杰, 钱沐杨, 董冰岩, 王德真. 大气压填充式反应器等离子体解离二氧化碳反应机理数值模拟. 物理学报, doi: 10.7498/aps.74.20241241
    [2] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 基于微尺度光学偶极阱的一维单原子阵列的实验制备. 物理学报, doi: 10.7498/aps.73.20240135
    [3] 李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮. 具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备. 物理学报, doi: 10.7498/aps.72.20230478
    [4] 王浩, 曹珊珊, 苏俊豪, 徐海涛, 王震, 郑加金, 韦玮. 基于双包层光纤布拉格光栅传感器的锂电池组温度场监控. 物理学报, doi: 10.7498/aps.71.20212302
    [5] 崔涛, 王康妮, 高凯歌, 钱林勇. 带有多孔二氧化硅间隔层的导模共振光栅实现染料激光器发射增强. 物理学报, doi: 10.7498/aps.70.20201017
    [6] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器. 物理学报, doi: 10.7498/aps.70.20210695
    [7] 张若羽, 李培丽. 基于一维耦合腔光子晶体的声光可调谐平顶滤波器的研究. 物理学报, doi: 10.7498/aps.70.20201461
    [8] 周雯, 季珂, 陈鹤鸣. 基于平行磁控的磁化等离子体光子晶体THz波调制器. 物理学报, doi: 10.7498/aps.66.054210
    [9] 起俊丰, 钟祝强, 王广娜, 夏光琼, 吴正茂. 高斯切趾型光纤布拉格光栅外腔半导体激光器的混沌输出特性. 物理学报, doi: 10.7498/aps.66.244207
    [10] 常晓阳, 尧舜, 张奇灵, 张杨, 吴波, 占荣, 杨翠柏, 王智勇. 基于分布式布拉格反射器结构的空间三结砷化镓太阳能电池抗辐照研究. 物理学报, doi: 10.7498/aps.65.108801
    [11] 秦晨, 余辉, 叶乔波, 卫欢, 江晓清. 基于绝缘体上硅的一种改进的Mach-Zehnder声光调制器. 物理学报, doi: 10.7498/aps.65.014304
    [12] 刘超, 裴丽, 李卓轩, 宁提纲, 高嵩, 康泽新, 孙将. 光纤布拉格光栅型全光纤声光调制器的特性研究. 物理学报, doi: 10.7498/aps.62.034208
    [13] 兰峰, 杨梓强, 史宗君. 带有锥度结构的同轴开槽布拉格反射器研究. 物理学报, doi: 10.7498/aps.60.091101
    [14] 李德荣, 吕晓华, 吴 萍, 骆清铭, 陈 伟, 曾绍群. 声光偏转器扫描飞秒激光的时间色散补偿. 物理学报, doi: 10.7498/aps.55.4729
    [15] 吴丹丹, 佘卫龙. 双轴晶体电光调制器的最优设计. 物理学报, doi: 10.7498/aps.54.134
    [16] 岳立娟, 沈 柯. 布拉格声光双稳系统时空混沌的单向耦合同步. 物理学报, doi: 10.7498/aps.54.5671
    [17] 李世忱. LiNbO3晶体压电应变光束调制器及激光锁模器解析. 物理学报, doi: 10.7498/aps.42.1020
    [18] 邰仁忠, 吕福云, 袁树忠, 关信安, 李兵. 压电诱导型声光调制器中的电光效应. 物理学报, doi: 10.7498/aps.41.1012
    [19] 张洪钧, 戴建华, 杨君慧, 高存秀. 双稳液晶电光调制器. 物理学报, doi: 10.7498/aps.30.810
    [20] 徐介平. 氧化碲声光偏转器的布拉格带宽和扫描线性问题. 物理学报, doi: 10.7498/aps.27.421
计量
  • 文章访问数:  51
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-24

/

返回文章
返回