搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

力载作用下基于CT原位表征的TATB造型粉颗粒体系力学行为演化研究

陶杰 李海宁 戴斌 蓝林钢 郭菲 张伟斌 聂福德

引用本文:
Citation:

力载作用下基于CT原位表征的TATB造型粉颗粒体系力学行为演化研究

陶杰, 李海宁, 戴斌, 蓝林钢, 郭菲, 张伟斌, 聂福德

Study on Mechanical Behavior Evolution of TATB Particle System Based on CT in-situ Characterization under Load

Tao Jie, Li Hai-Ning, Dai Bin, Lan Lin-Gang, Guo Fei, Zhang Wei-Bin, Nie Fu-De
Article Text (iFLYTEK Translation)
PDF
导出引用
  • TATB是目前安全性能最好的炸药,TATB造型粉颗粒经压制成型的高聚物粘结炸药( PBX)在军事中具有重要的应用。在应力作用下,TATB造型粉颗粒体系的演化决定了成型药柱的细观结构和整体质量。TATB造型粉颗粒体系在力载作用下的结构演化和力学特性变化难以表征。本研究采用X-μCT层析成像与同步原位力载相结合的方法,通过对CT图像处理与分析,建立了TATB造型粉颗粒体系的三维孔隙网络模型( PNM),基于该模型获得了接触数量、接触面积、接触强弱、配位数等关键特征参量的演化特性。结果表明,0~5 MPa下,随着应力的增加,TATB造型粉颗粒体系中颗粒接触数量呈下降趋势,减少率为53.3%;总接触面积减少率为31.5%,但强弱接触占比几乎维持不变;颗粒体积平均增加率为45.50%,平均配位数由7.27增加到9.44。该项研究揭示了颗粒在成型过程初期的力学行为演化规律,实现了颗粒体系力载过程的三维、定量、原位分析,对炸药颗粒压制过程的力学特性的认识有重要科学意义和工程意义。
    TATB is currently the safest explosive in terms of safety performance. Polymer bonded explosive (PBX) formed by pressing TATB particles has important applications in military. Under the action of stress, the evolution of TATB particle system determines the microstructure and overall quality of molding grain. The molding method of PBX is usually realized by molding technology. During the process of molding, the structural evolution and mechanical properties of TATB particle system are very complex under the action of loading, and the high discreteness, strong non-linearity and bonding characteristics are difficult to characterize.
    In this study, X-μ CT tomography and synchronous in-situ force loading were used to develop a set of image processing technology for TATB particle system, which was a multi-component, irregular, multi-particle size, heterogeneous, viscoelastic special composite material. High-quality CT images of TATB particles under force loading were obtained. A three-dimensional pore network model (PNM) of TATB particle system was established by CT image processing and analysis. Based on the model, the evolution characteristics of key parameters such as contact number, contact area, contact strength and coordination number were obtained.
    The results indicate the following evolutionary characteristics: at 0~5 MPa, with the process of pressing, the stress of TATB particle system increased continuously, and the number of particle contacts in the particle system decreases, with a reduction rate of53.3%; The total contact area decreased by31.5%, but the average contact area of a single particle continued to increase; The strength and weak contact of the entire particle system showed a downward trend, but the proportion of strength and weak remained almost unchanged, reflecting the stable characteristics of the TATB molding particle system in the external stable, linear, and slow loading process, and the average proportion of strong contact was 37.74%; The average increase rate of particle volume was 45.50%, and the curve of equivalent radius was very consistent with the curve of average particle volume; The average coordination number of the entire particle system increased from 7.27 to 9.44, and the highest coordination number range was 6~10. The morphological distribution showed the characteristics of approximately normal distribution, double-peak nearly normal distribution, flat-peak nearly normal distribution. At 5 MPa, some particles showed the characteristics of rotation and adaptive rearrangement, which was consistent with the quantitative analysis of the trend of particle contact number.
    This study reveals the movement, deformation and fusion rules of particles in the initial stage of the forming process, achieving the three-dimensional, quantitative and In-situ analysis of the force loading process of the particle system, and has important scientific and engineering significance for the understanding of the mechanical characteristics of the explosive particle pressing process.
  • [1]

    Dong H S, Zhou F F 1989 Performance of high-energy explosives and related substances (Beijing: Science Press) p20-32(in Chinese) [董海山, 周芬芬1989高能炸药及相关物性能(北京: 科学出版社)第20-32页]

    [2]

    Fan H, He G S, Yang Z J, Nie F D, Chen P W 2019 Acta Phys. Sin. 68106201(in Chinese) [范航, 何冠松, 杨志剑, 聂福德, 陈鹏万2019物理学报68106201]

    [3]

    Hamilton B W, Kroonblawd M P, Isiam M M, Strachan A 2019 Journal of Physical Chemistry C 12321969.

    [4]

    Steele B A, Clarke S M, Kroonblawd M P, Kuo I F, Pagoria P F, Tkachev S N, Smith J S, Bastea S, Fried L E, Zaug J M, Stavrou E, Tschauner O 2019 Applied Physics Letters. 114191901

    [5]

    Hertz H 1882 J. Reine Angew. Math. 1882156

    [6]

    Chang C S, Liao C L 1990 Int. J. Solids Structures. 26437

    [7]

    Tordesillas A, Peters J F, Gardiner B S 2004 Int J Numer Anal Met,28981

    [8]

    Andrade J E, Cacute V, Lim K W, Jerves A 2012 Géotechnique Letters, 2135

    [9]

    Coppersmith S N, Liu C H, Majumdar S, Narayan O, Witten T A 1996 Physical Review E, 534673

    [10]

    Silva M D, Rajchenbach J 2000 Nature. 406708

    [11]

    Andrade J E, Avila C F 2012 Granular Matter. 1451

    [12]

    Hurley R, Marteau E, Ravichandran G, Andrade J E 2014 Journal of the Mechanics and Physics of Solids. 63154

    [13]

    Zhai C P, Herbold E B, Hurley R C 2020 PNAS, 1176234

    [14]

    Chen Q, Wang Q H, Zhao C, Zhang Q, Hou M Y 2015 Acta Phys. Sin. 64154502(in Chinese) [陈琼,王青花,赵闯,张祺,厚美瑛2015物理学报64154502]

    [15]

    Løvoll G. Måløy K J, Flekkøy E G 1999 Physical Review E, 605872

    [16]

    Miao T D, Yi C H, Qi Y L, Mu Q S, Liu Y 2007 Acta Phys. Sin.564713(in Chinese) [苗天德,宜晨虹,齐艳丽,慕青松,刘源2007物理学报564713]

    [17]

    Yang R W. 2007 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [杨荣伟2009硕士学位论文(北京:清华大学)]

    [18]

    Zhou J, Long S, Wang Q, Dinsmore A D 2006 Science. 3121631

    [19]

    Sanfratello L, Fukushima E, Behringer R P 2009 Granular Matter. 111

    [20]

    Xing Y, Zheng J, Li J D, Cao Y X, Pan W, Zhang J, Wang Y J 2021 Physical Review Letters. 126048002

    [21]

    Baur M, Claussen J, Gerth S, Kollmer J, Shreve T, Uhlmann N, Pöschel T 2019 Powder Technology. 356439

    [22]

    Nguyen C D, Benahmed N, Andò E, Sibille L, Philippe P 2019 Acta Geotechnica. 14749

    [23]

    Brisard S, Serdar M, Monteiro P J M 2020 Cement and Concrete Research. 128105824

    [24]

    Ramesh S, Thyagaraj T 2022 Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 811

    [25]

    Fonseca J, O’Sullivan C, Coop M R, Lee P D 2012 Soils and Foundations 52712

    [26]

    Ma Y X, Liu C, Wang H, Zhang C X, Chen H, Zhang W B 2020 Chin.J. Energ. Mater. 28960(in Chinese) [马寅翔,刘晨,王慧,张才鑫,陈华,张伟斌2020含 能材料28960]

    [27]

    Dai B 2015 M.S. (Beijing: Graduate School of China Academy of Engineering Physics) (in Chinese) [戴斌2015硕士学位论文(北京: 中国工程物理研究院研究生院)]

    [28]

    Koyuncu C F, Durmaz I, Cetin-Atalay R, Gunduz D C 201422nd Signal Processing and Communications Applications Conference, Trabzon, April 23-25, 2014 p1971

    [29]

    Mouelhi A, Sayadi M, Fnaiech F, Mrad K 2013 Biomedical Signal Processing and Control. 8421

    [30]

    Li Z T, Liu D M, Cai Y D, Ranjith P G, Yao Y B 2017 Fuel. 20943

    [31]

    Jing H L, Dan H C, Shan H Y, Liu X 2023 Materials. 167426

    [32]

    Harshini D R D G, Gamage R P, Kumari W G P 2024 Gas Science and Engineering. 125205280

    [33]

    Zakirov T R, Galeev A A, Korolev E A, Statsenko E O 2016 Curr. Sci. 1102142

    [34]

    Ren X Z, Linden J V D, Narsilio G 2019 Geoscience. 33345(in Chinese) [任显卓, LINDEN Joost van der, NARSILIO Guillermo 201933345]

    [35]

    Yin S H, Chen X, Liu C, Wang L M, Yan R F 2020 Chinese Journal of Engineering. 42972(in Chinese) [尹升华,陈勋,刘超,王雷鸣,严荣富2020工 程科学学报42972]

  • [1] 刘瀚扬, 华南, 王一诺, 梁俊卿, 马鸿洋. 基于量子随机行走和多维混沌的三维图像加密算法. 物理学报, doi: 10.7498/aps.71.20220466
    [2] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.70.20210324
    [3] 易军. 非晶纤维的制备和力学行为. 物理学报, doi: 10.7498/aps.66.178102
    [4] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, doi: 10.7498/aps.66.066201
    [5] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, doi: 10.7498/aps.66.234501
    [6] 赵信文, 李欣竹, 张航, 王学军, 宋萍, 张汉钊, 康强, 黄金, 吴强. 冲击波作用下微米尺度金属颗粒群的动力学行为. 物理学报, doi: 10.7498/aps.66.104701
    [7] 蒋文灿, 陈华, 张伟斌. TATB晶体声子谱及比热容的第一性原理研究. 物理学报, doi: 10.7498/aps.65.126301
    [8] 吴迪平, 李星祥, 秦勤, 管奔, 臧勇. 离散颗粒层被横向推移过程中的力学行为研究. 物理学报, doi: 10.7498/aps.63.098201
    [9] 李兰凯, 王厚生, 倪志鹏, 程军胜, 王秋良. 超导线圈绕制过程的力学行为研究. 物理学报, doi: 10.7498/aps.62.058403
    [10] 寻之朋, 唐刚, 夏辉, 郝大鹏. 1+1 维抛射沉积模型内部结构动力学行为的数值研究. 物理学报, doi: 10.7498/aps.62.010503
    [11] 季颖, 毕勤胜. 高维广义蔡氏电路中的快慢动力学行为及其分岔分析. 物理学报, doi: 10.7498/aps.61.010202
    [12] 胡孝平, 郭红. 原子质心运动对型三能级原子动力学行为的影响. 物理学报, doi: 10.7498/aps.58.272.1
    [13] 姜泽辉, 郑瑞华, 赵海发, 吴 晶. 完全非弹性蹦球的动力学行为. 物理学报, doi: 10.7498/aps.56.3727
    [14] 汪 敏, 胡小方, 伍小平. 物体内部三维位移场分析的数字图像相关方法. 物理学报, doi: 10.7498/aps.55.5135
    [15] 唐 军, 杨先清, 仇 康. 反应限制聚集模型的动力学行为的研究. 物理学报, doi: 10.7498/aps.54.3307
    [16] 何岱海, 徐健学, 陈永红. 一两维平面映射系统奇怪动力学行为. 物理学报, doi: 10.7498/aps.48.1611
    [17] 杨援, 戴建华, 张洪钧. 光学双稳态离散模型的动力学行为. 物理学报, doi: 10.7498/aps.43.699
    [18] 滕保华. 三维Ising模型的Green函数方法处理. 物理学报, doi: 10.7498/aps.40.826
    [19] 汪子丹, 姚希贤. Josephson结的动力学行为(Ⅱ). 物理学报, doi: 10.7498/aps.34.1149
    [20] 汪子丹, 姚希贤. Josephson结的动力学行为(Ⅰ). 物理学报, doi: 10.7498/aps.34.1140
计量
  • 文章访问数:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回