搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低磁场螺旋波等离子体中Trivelpiece-Gould波的功率沉积特性

李文秋 唐彦娜 刘雅琳 王刚

引用本文:
Citation:

低磁场螺旋波等离子体中Trivelpiece-Gould波的功率沉积特性

李文秋, 唐彦娜, 刘雅琳, 王刚

Analysis of power deposition characteristics of Trivelpiece-Gould wave in low magnetic field helicon plasma

Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 深入理解螺旋波等离子体中的低磁场密度峰值现象,对全面揭示螺旋波放电机制至关重要.本研究基于低温等离子体动理学效应和带电粒子温度各向异性假设,利用均匀等离子体中电磁波的一般色散关系,理论分析了低磁场(<100 G)、低气压条件下Trivelpiece-Gould (TG)波的色散特性、波数关系及功率沉积特性.研究结果表明:在ω/2π=13.56 MHz、Ti,z/Te,z= 0.1、n0= 1×1011 cm-3pAr=0.5 mTorr参量条件下,粒子间的碰撞阻尼效应彻底改变了螺旋波与TG波的色散特性和波数关系;对于TG波m=0角向模, n=1径向模较其余高次径向模在功率沉积中扮演主要角色;对于TG波(m=0, n=1)模,在电子温度Te,z (3,8) eV范围内,在低磁场和χe≪1(χe=Te,/Te,z)条件下朗道阻尼在功率沉积中占据主导地位,而在高磁场和χe≫1条件下碰撞阻尼主导功率沉积.
    Low-field peak phenomenon, which has been observed in low magnetic helicon plasma discharge, is generally considered to have great commercial value in the field of low-cost semiconductor etching ion sources. As an important phenomenon in helicon plasma discharge, in-depth theoretical investigation on it may help us form a fully understanding of the physical mechanism behind the helicon plasma discharge.
    As a theoretical attempt to explore this phenomenon, which still has no unified explanation for its appearance, we employ a plasma dielectric tensor model which is more consistent with the actual discharge situation, i.e., using the general plasma dielectric tensor and considering the low temperature plasma kinetic effects and charged particle temperature anisotropy, under typical helicon plasma discharge parameters conditions, i.e., wave frequency ω/2π=13.56 MHz, plasma column radius a=3 cm, neutral gas pressure pAr=0.5 mTorr, plasma density n0=1×1011 cm-3, ratio of axial ion temperature to axial electron temperature Ti,z/Te,z=0.1, the dispersion characteristics and wave number relations of the Whistler waves, mode coupling characteristics between helicon and Trivelpiece-Gould (TG) waves, and power deposition properties of TG wave are theoretically investigated in low magnetic field circumstances. Analytical results suggest that, under low electron temperature Te=3 eV and low magnetic field (B0< 48 G) circumstances, the high order (|s|>1) of electron cyclotron harmonics can be ignored; the electron finite Larmor radius effect should be considered, while the ion finite Larmor radius effect can be ignored; the collision effect (collision damping) among particles completely changes the dispersion characteristics and wave number relations of the Whistler waves; for the helicon and TG waves, the valueB0,MCS(where the mode coupling surface (MCS) located) decreases with the increase of the axial wave number, meanwhile, the collision effect greatly affects the mode coupling characteristic of helicon and TG waves near the mode coupling surface; collision damping and Landau damping respectively dominate wave power deposition in different axial electron temperature ranges; in the typical helicon plasma electron temperature range, Te,z∈(3, 8) eV, the TG wave (m=0, n =1) mode dominates the power deposition; for the TG wave (m =0, n=1) mode, its power deposition peaked at the central axis of the plasma column, for low perpendicular electron temperature and low magnetic field, Landau damping dominates the power deposition, while under high perpendicular electron temperature and higher magnetic field, collision damping dominates the power deposition.
    These conclusions not only further deepens our understanding of the low magnetic field density peak phenomenon at the theoretical level, but also provides new clues for fully revealing the mechanism of helicon discharge mechanism.
  • [1]

    Degeling A W, Jung C O, Boswell R W, Ellingboe A R 1996 Phys. Plasmas 32788

    [2]

    Chen F F, Jiang X, Evans J D, Tynan G, Arnush D 1997 Plasma Phys. Controlled Fusion 39 A411

    [3]

    Braginskii O V, Vasil'Eva A N, Kovalev A S 1998 Plasma Phys. Rep. 24762

    [4]

    Wang S J, Kwak J G, Kim C B, Kim S K 2003 Phys. Lett. A 313278

    [5]

    Shinohara S, Soejima T 1998 Plasma Phys. Controlled Fusion 402081

    [6]

    Degeling A W, Borg G G, Boswell R W 2004 Phys. Plasmas 112144

    [7]

    Lafleur T, Charles C, Boswell R W 2010 Phys. Plasmas 17073508

    [8]

    Chen F F 1992 J. Vac. Sci. Technol., A 101389

    [9]

    Chen F F 2003 Phys. Plasmas 102586

    [10]

    Cho S 2006 Phys. Plasmas 13033504

    [11]

    Sato G, Oohara W, Hatakeyama R 2007 Plasma Sources Sci. Technol. 16734

    [12]

    Barada K K, Chattopadhyay P K, Ghosh J, Kumar S, Saxena Y C 2013 Phys. Plasmas 20042119

    [13]

    Wang Y, Zhao G, Liu Z W, Ouyang J T, Chen Q 2015 Phys. Plasmas 22093507

    [14]

    Cui R, Zhang T, He F, Zheng B, Ouyang J 2024 Plasma Sources Sci. Technol. 33025021

    [15]

    Swanson D G 1989 Plasma waves (New York: Academic Press) p155

    [16]

    Li W Q, Tang Y N, Liu Y L, Wang G 2024 Acta Phys.Sin. 73075202( in Chinese) [李文秋, 唐彦娜, 刘雅琳, 王刚2024物理学报73075202]

    [17]

    Fried B D, Conte S D 2015 The plasma dispersion function: the Hilbert transform of the Gaussian (New York:Academic Press) p1

    [18]

    Huba J D 2016 NRL Plasma Formulary (Washington:Naval Research Laboratory) p34

    [19]

    Kamenski I V, Borg G G 1998 Comput. Phys. Commun. 11310

    [20]

    Li W Q, Tang Y N, Liu Y L, Wang G 2023 Acta Phys.Sin. 72055202( in Chinese) [李文秋, 唐彦娜, 刘雅琳, 王刚2023物理学报72055202]

    [21]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 54253

    [22]

    Martin P, Olivares J, Maass F, Valero E 2018 Results Phys. 111028

    [23]

    Chen F F, Arnush D 1997 Phys. Plasmas 43411

    [24]

    Borg G, Boswell R 1998 Phys. Plasmas 5564

    [25]

    Glaude V M M, Moisan M, Pantel R, Leprince P, Marec J 1980 J. Appl. Phys. 515693

    [26]

    Shamrai K P, Shinohara S 2001 Phys. Plasmas 84659

    [27]

    Li W Q, Zhao B, Wang G 2020 Acta Phys.Sin. 69115201( in Chinese) [李文秋, 赵斌, 王刚2020物理学报69115201]

    [28]

    Loewenhardt P K, Blackwell B D, Boswell R W, Conway G D, Hamberger S M 1991 Phys. Rev. Lett. 672792

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性. 物理学报, doi: 10.7498/aps.73.20241300
    [2] 孟令辉, 任洪波, 刘建晓. 高温等离子体中太赫兹波的传输特性. 物理学报, doi: 10.7498/aps.67.20180647
    [3] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞. S-Ka频段电磁波在等离子体中传输特性的实验研究. 物理学报, doi: 10.7498/aps.67.20170845
    [4] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究. 物理学报, doi: 10.7498/aps.64.174102
    [5] 何昉明, 罗积润, 朱敏, 郭炜. Chodorow型耦合腔慢波结构色散特性和耦合阻抗理论分析. 物理学报, doi: 10.7498/aps.62.174101
    [6] 史宗君, 杨梓强, 侯钧, 兰峰, 梁正. 金属柱平板慢波系统高频特性研究. 物理学报, doi: 10.7498/aps.60.046803
    [7] 杨涓, 龙春伟, 陈茂林, 许映桥, 谭小群. 外加磁场微波等离子体喷流对平面电磁波衰减的实验研究. 物理学报, doi: 10.7498/aps.58.4793
    [8] 周磊, 唐昌建. 不均匀等离子体中电磁波与Langmuir波的相互作用. 物理学报, doi: 10.7498/aps.58.8254
    [9] 路志刚, 魏彦玉, 宫玉彬, 吴周淼, 王文祥. 具有任意槽的矩形波导栅慢波结构高频特性的研究. 物理学报, doi: 10.7498/aps.56.3318
    [10] 杨 涓, 朱 冰, 毛根旺, 许映乔, 刘俊平. 真空中不同极化电磁波在微波等离子体喷流中的衰减特性实验研究. 物理学报, doi: 10.7498/aps.56.7120
    [11] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析. 物理学报, doi: 10.7498/aps.56.7138
    [12] 朱 冰, 杨 涓, 黄雪刚, 毛根旺, 刘俊平. 真空环境中等离子体喷流对反射电磁波衰减的实验研究. 物理学报, doi: 10.7498/aps.55.2352
    [13] 杨宏伟, 陈如山, 张 云. 等离子体的SO-FDTD算法和对电磁波反射系数的计算分析. 物理学报, doi: 10.7498/aps.55.3464
    [14] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究. 物理学报, doi: 10.7498/aps.54.3236
    [15] 张 勇, 莫元龙, 徐锐敏, 延 波, 谢小强. 等离子体填充盘荷波导高频特性分析. 物理学报, doi: 10.7498/aps.54.5239
    [16] 宋法伦, 曹金祥, 王 舸. 弱电离等离子体对电磁波吸收的物理模型和数值求解. 物理学报, doi: 10.7498/aps.54.807
    [17] 岳玲娜, 王文祥, 魏彦玉, 宫玉彬. 同轴任意槽形周期圆波导慢波结构色散特性的研究. 物理学报, doi: 10.7498/aps.54.4223
    [18] 宋法伦, 曹金祥, 王舸. 电磁波在径向非均匀球对称等离子体中的衰减. 物理学报, doi: 10.7498/aps.53.1110
    [19] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析. 物理学报, doi: 10.7498/aps.52.3102
    [20] 刘明海, 胡希伟, 江中和, 刘克富, 辜承林, 潘垣. 电磁波在大气层人造等离子体中的衰减特性. 物理学报, doi: 10.7498/aps.51.1317
计量
  • 文章访问数:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回