-
亚声速射流的流场中存在着动能、热能、声能等多种形式能量的输运与转化, 影响射流的稳定性和噪声辐射等特性, 准确认识射流中各模态能量的输运特性是发展高效降噪措施的重要基础. 基于拓展型亥姆霍兹分解流声分离方法, 发展了基于流声分离的脉动能量方程, 可有效地分离脉动能量及能流矢量中涡、熵、声及非线性模态的贡献, 为揭示流动近场的能量输运特性提供了分析工具. 将该方程应用于射流马赫数0.9的亚声速射流, 获得并分析了流声模态能量的空间分布特征和输运特性. 研究发现: 亚声速射流脉动能中的涡模态能量和熵模态能量分布于射流近场并向下游输运; 声模态能量在势核外向远场辐射, 在势核内则由束缚波携带传播至上游; 多模态非线性相互作用相关的能量集中于射流尾迹区内, 输运无显著方向性.In the near-field of a subsonic jet, complex energy transport and transformation processes occur between kinetic energy, thermal energy, and acoustic energy, which play a crucial role in jet instability and noise radiation. Accurately characterizing the transport features of each energy component is essential for developing effective noise suppression technologies. According to Myers’ precise energy equation for total disturbances in any steady flow [1991 J. Fluid Mech. 226 383], the present study develops a modified energy equation based on hydro-acoustic mode decomposition to separate the contributions of vortical, entropic, and acoustic modes to the total disturbance energy. The method begins with the decomposition formulas for velocity, pressure, and density, following the hydro-acoustic mode decomposition method proposed by Han et al. [2023 Phys. Fluids 35 076107]. In Myers’ energy equation framework, the disturbances of primitive variables (velocity, pressure, and density) are expressed as linear combinations of their vortical, entropic, and acoustic components. With this formula, the vortical (entropic, acoustic) energy is defined as being contributed only by the disturbance of the corresponding mode, while the nonlinear energy is attributed to interaction between vortical, entropic, and acoustic components. This approach yields a modified energy equation capable of distinguishing the individual contributions of vortical, entropic, and acoustic modes to both total disturbance energy and energy flux, thus making it particularly suitable for analyzing energy transport characteristics in the near flow field. The developed equation is used to analyze a subsonic jet with a Mach number of 0.9, revealing different spatial distributions and transport mechanisms of hydrodynamic energy and acoustic energy. The results indicate that vortical energy and entropic energy are mainly concentrated in the near-field, convecting downstream at a velocity about 0.8 times the jet velocity. In contrast, acoustic energy exhibits dual propagation characteristics: it radiates outward to the far field through acoustic waves outside the potential core, while propagating upstream through trapped waves inside the potential core. The energy related to multi-mode nonlinear interactions is mainly concentrated in the jet wake and propagates without obvious directionality. The total disturbance energy is mainly contributed by vortical energy, while the acoustic energy only accounts for a small part of the total disturbance energy, approximately 10–3 of the total. This refined analysis provides deeper insights into the complex energy dynamics in subsonic jets and valuable information for predicting and controlling jet noise strategies. The modified energy equation provides a robust framework for understanding and quantifying the intricate energy transport processes in jet flows.
-
图 2 三维流场$\theta = 0$位置处及轴对称模态压力脉动 (a)三维流场$\theta = 0$位置处压力脉动[19]; (b)轴对称模态压力脉动[19]
Fig. 2. The distribution of pressure perturbation for 3D flow field at $\theta = 0$ and for asymmetric mode: (a) The distribution of pressure perturbation for 3D flow field at $\theta = 0$[19]; (b) the distribution of pressure perturbation for asymmetric mode[19].
图 5 总脉动能量以及各模态能量的瞬态和时间平均值的空间分布 (a) $E$; (b) $\bar E$; (c) ${E_{\text{r}}}$; (d) ${\bar E_{\text{r}}}$; (e) ${E_{\text{a}}}$; (f) ${\bar E_{\text{a}}}$; (g) ${E_{\text{s}}}$; (h) ${\bar E_{\text{s}}}$; (i) ${E_{\text{n}}}$; (j) ${\bar E_{\text{n}}}$
Fig. 5. Spacial distribution of instantaneous and time-averaged total energy perturbation and the decomposed components: (a) $E$; (b) $\bar E$; (c) ${E_{\text{r}}}$; (d) ${\bar E_{\text{r}}}$; (e) ${E_{\text{a}}}$; (f) ${\bar E_{\text{a}}}$; (g) ${E_{\text{s}}}$; (h) ${\bar E_{\text{s}}}$; (i) ${E_{\text{n}}}$; (j) ${\bar E_{\text{n}}}$.
表 1 流声模态能量的空间积分及占比
Table 1. Spatial integral of total energy and the decomposed components.
$E$ ${E_{\text{r}}}$ ${E_{\text{a}}}$ ${E_{\text{s}}}$ ${E_{\text{n}}}$ 总能量 $1.27 \times {10^{ - 3}}$ $1.12 \times {10^{ - 3}}$ $1.74 \times {10^{ - 6}}$ $5.28 \times {10^{ - 5}}$ $9.20 \times {10^{ - 5}}$ 百分比/% — 88.4 0.14 4.16 7.26 -
[1] Viswanathan K 2024 Int. J. Aeroacoust. 23 184
Google Scholar
[2] Jordan P, Gervais Y 2008 Exp. Fluids 44 1
[3] 李晓东, 徐希海, 高军辉, 何敬玉 2018 空气动力学学报 36 398
Li X D, Xu X H, Gao J H, He J Y 2018 Acta Aerodyn. Sin. 36 398
[4] Chu B T 1965 Acta Mech. 1 215
Google Scholar
[5] Tam C K W, Viswanathan K, Ahuja K K, Panda J 2008 J. Fluid Mech. 615 253
Google Scholar
[6] Tam C K W 2019 Philos. Trans. R. Soc. London, Ser. A 377 20190078
[7] Obrist D 2011 Phys. Fluids 23 024901
[8] Cavalieri A, Jordan P, Lesshafft L 2019 Appl. Mech. Rev. 71 020802
Google Scholar
[9] Cavalieri A, Rodriguez D, Jordan P, Colonius T, Gervais Y 2013 J. Fluid Mech. 730 559
Google Scholar
[10] Papamoschou D 2018 Int. J. Aeroacoust. 17 52
Google Scholar
[11] Jordan P, Daviller G, Comte P 2013 J. Sound Vib. 332 3924
Google Scholar
[12] Doak P 1989 J. Sound Vib. 131 67
Google Scholar
[13] Liu Qilin, Lai Huanxin 2022 Phys. Fluids 34 045125
Google Scholar
[14] 刘琪麟, 赖焕新 2022 工程热物理学报 43 3266
Liu Q, Lai H. 2022 J. Eng. Thermophys., 43 3266
[15] Unnikrishnan S, Gaitonde D V 2016 J. Fluid Mech. 800 387
Google Scholar
[16] Myers M 1986 J. Sound Vib. 109 277
Google Scholar
[17] Myers M K 1991 J. Fluid Mech. 226 383
Google Scholar
[18] Han S, Li H, Luo Y, Wang Y, Ma R, Zhang S 2023 Phys. Fluids 35 076107
Google Scholar
[19] Towne A, Dawson S, Brès G A, Lozano-Duran A, Saxton-Fox T, Parthasarathy A, Jones A R, Biler H, Yeh C, Patel H D, Taira K 2023 AIAA J. 61 2867
Google Scholar
[20] Vreman A 2004 Phys. Fluids 16 3570.
[21] Brès G A, Jordan P, Jaunet V, Rallic M L, Cavalieri A V G, Towne A, Lele S K, Colonius T, Schmidt O T 2018 J. Fluid Mech., 851 83
[22] Brès G A, Jordan P, Colonius T, Rallic M L, Jaunet V, Lele S K 2014 Proceedings of the Summer Program. Stanford, CA: Center for Turbulence Research, Stanford University 2014 p221
[23] Freund J B 1997 AIAA J. 35 740
Google Scholar
[24] Mani A 2012 J. Comput. Phys. 231 704
Google Scholar
[25] 韩帅斌, 王益民, 武从海, 罗勇, 李虎 2024 力学学报 56 3142
Google Scholar
Han S, Wang Y, Wu C, Luo Y, Li H 2024 Chin. J. Theor. Appl. Mech. 56 3142
Google Scholar
[26] Mao F, Shi Y, Wu J 2010 Acta Mech. Sin. 26 355
Google Scholar
[27] Wu J, Ma H, Zhou M 2006 Vorticity and Vortex Dynamics (Berlin: Springer) p341
[28] Sagaut P, Cambon C 2008, Homogeneous turbulence dynamics (Cambridge: Cambridge University Press) p80
[29] Kovasznay L S G 1953 J. Aeronaut. Sci. 20 657
Google Scholar
[30] Chu B T, Kovásznay L S G 1958 J. Fluid Mech. 3 494
Google Scholar
[31] Campos L 2007 Appl. Mech. Rev. 60 149
Google Scholar
[32] Zaman K B M Q, Fagan A F, Upadhyay P 2022 J. Fluid Mech. 931 A30
Google Scholar
[33] Schmidt O T, Towne A, Colonius T, Cavalieri A V G, Jordan P, Bres G A 2017 J. Fluid Mech. 825 1153
Google Scholar
[34] Suzuki T, Colonius T 2006 J. Fluid Mech. 565 197
Google Scholar
[35] Towne A, Cavalieri A V, Jordan P, Colonius T, Schmidt O, Jaunet V, Bres G A 2017 J. Fluid Mech. 825 1113
Google Scholar
[36] Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345
Google Scholar
[37] 赵鲲, 章荣平, 杨玫, 王勋年, 余荣科 2024 空气动力学学报 42 15
Google Scholar
Zhao K, Zhang P R, Yang M, Wang X N, Yu R K 2024 Acta Aerodyn. Sin. 42 15
Google Scholar
[38] 王益民, 马瑞轩, 武从海, 罗勇, 张树海 2021 物理学报 70 194302
Google Scholar
Wang Y, Ma R, Wu C, Luo Y, Zhang S 2021 Acta Phys. Sin. 70 194302
Google Scholar
[39] 马瑞轩, 王益民, 张树海, 武从海, 王勋年 2021 物理学报 70 104301
Ma R, Wang Y, Zhang S, Wu C, Wang X 2021 Acta Phys. Sin. 70 14301
计量
- 文章访问数: 289
- PDF下载量: 10
- 被引次数: 0