搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于流声分离的亚声速射流能量输运特性分析

韩帅斌 罗勇 李虎 王益民 武从海

引用本文:
Citation:

基于流声分离的亚声速射流能量输运特性分析

韩帅斌, 罗勇, 李虎, 王益民, 武从海

Energy transport analysis of subsonic jet based on hydro-acoustic mode decomposition

HAN Shuaibin, LUO Yong, LI Hu, WANG Yimin, WU Conghai
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 亚声速射流的流场中存在着动能、热能、声能等多种形式能量的输运与转化, 影响射流的稳定性和噪声辐射等特性, 准确认识射流中各模态能量的输运特性是发展高效降噪措施的重要基础. 基于拓展型亥姆霍兹分解流声分离方法, 发展了基于流声分离的脉动能量方程, 可有效地分离脉动能量及能流矢量中涡、熵、声及非线性模态的贡献, 为揭示流动近场的能量输运特性提供了分析工具. 将该方程应用于射流马赫数0.9的亚声速射流, 获得并分析了流声模态能量的空间分布特征和输运特性. 研究发现: 亚声速射流脉动能中的涡模态能量和熵模态能量分布于射流近场并向下游输运; 声模态能量在势核外向远场辐射, 在势核内则由束缚波携带传播至上游; 多模态非线性相互作用相关的能量集中于射流尾迹区内, 输运无显著方向性.
    In the near-field of a subsonic jet, complex energy transport and transformation processes occur between kinetic energy, thermal energy, and acoustic energy, which play a crucial role in jet instability and noise radiation. Accurately characterizing the transport features of each energy component is essential for developing effective noise suppression technologies. According to Myers’ precise energy equation for total disturbances in any steady flow [1991 J. Fluid Mech. 226 383], the present study develops a modified energy equation based on hydro-acoustic mode decomposition to separate the contributions of vortical, entropic, and acoustic modes to the total disturbance energy. The method begins with the decomposition formulas for velocity, pressure, and density, following the hydro-acoustic mode decomposition method proposed by Han et al. [2023 Phys. Fluids 35 076107]. In Myers’ energy equation framework, the disturbances of primitive variables (velocity, pressure, and density) are expressed as linear combinations of their vortical, entropic, and acoustic components. With this formula, the vortical (entropic, acoustic) energy is defined as being contributed only by the disturbance of the corresponding mode, while the nonlinear energy is attributed to interaction between vortical, entropic, and acoustic components. This approach yields a modified energy equation capable of distinguishing the individual contributions of vortical, entropic, and acoustic modes to both total disturbance energy and energy flux, thus making it particularly suitable for analyzing energy transport characteristics in the near flow field. The developed equation is used to analyze a subsonic jet with a Mach number of 0.9, revealing different spatial distributions and transport mechanisms of hydrodynamic energy and acoustic energy. The results indicate that vortical energy and entropic energy are mainly concentrated in the near-field, convecting downstream at a velocity about 0.8 times the jet velocity. In contrast, acoustic energy exhibits dual propagation characteristics: it radiates outward to the far field through acoustic waves outside the potential core, while propagating upstream through trapped waves inside the potential core. The energy related to multi-mode nonlinear interactions is mainly concentrated in the jet wake and propagates without obvious directionality. The total disturbance energy is mainly contributed by vortical energy, while the acoustic energy only accounts for a small part of the total disturbance energy, approximately 10–3 of the total. This refined analysis provides deeper insights into the complex energy dynamics in subsonic jets and valuable information for predicting and controlling jet noise strategies. The modified energy equation provides a robust framework for understanding and quantifying the intricate energy transport processes in jet flows.
  • 图 1  数值模拟计算域及数据库区域示意图[21]

    Fig. 1.  Schematic for the computational domain for the numerical simulation and the zone of dataset[21].

    图 6  密度脉动及各模态频率-波数谱 (a)原始密度脉动; (b)声模态; (c)涡模态; (d)熵模态

    Fig. 6.  Frequency-wavenumber diagram for the density perturbation and the decomposed components: (a) Raw density perturbation; (b) acoustic component; (c) vortical component; (d) entropic component.

    图 2  三维流场$\theta = 0$位置处及轴对称模态压力脉动 (a)三维流场$\theta = 0$位置处压力脉动[19]; (b)轴对称模态压力脉动[19]

    Fig. 2.  The distribution of pressure perturbation for 3D flow field at $\theta = 0$ and for asymmetric mode: (a) The distribution of pressure perturbation for 3D flow field at $\theta = 0$[19]; (b) the distribution of pressure perturbation for asymmetric mode[19].

    图 3  轴对称模态密度脉动及其声涡熵模态空间分布 (a)原始密度脉动; (b)声模态; (c)涡模态; (d)熵模态

    Fig. 3.  The distribution of density perturbation and the acoustic, vortical and entropic mode: (a) Raw density perturbation; (b) acoustic component; (c) vortical component; (d) entropic component.

    图 4  x/D = 4.0位置处密度脉动及其流声模态的均方根随径向位置r的变化

    Fig. 4.  The root mean square of density perturbation and the hydrodynamic and acoustic component along r at x/D = 4.0.

    图 5  总脉动能量以及各模态能量的瞬态和时间平均值的空间分布 (a) $E$; (b) $\bar E$; (c) ${E_{\text{r}}}$; (d) ${\bar E_{\text{r}}}$; (e) ${E_{\text{a}}}$; (f) ${\bar E_{\text{a}}}$; (g) ${E_{\text{s}}}$; (h) ${\bar E_{\text{s}}}$; (i) ${E_{\text{n}}}$; (j) ${\bar E_{\text{n}}}$

    Fig. 5.  Spacial distribution of instantaneous and time-averaged total energy perturbation and the decomposed components: (a) $E$; (b) $\bar E$; (c) ${E_{\text{r}}}$; (d) ${\bar E_{\text{r}}}$; (e) ${E_{\text{a}}}$; (f) ${\bar E_{\text{a}}}$; (g) ${E_{\text{s}}}$; (h) ${\bar E_{\text{s}}}$; (i) ${E_{\text{n}}}$; (j) ${\bar E_{\text{n}}}$.

    图 7  各模态时均能流线(灰色背景为各模态时均能量) (a)涡模态; (b)熵模态; (c)非线性模态; (d)声模态

    Fig. 7.  Streamline of time-averaged intensity for the decomposed components: (a) Vortical component; (b) entropic component; (c) nonlinear component; (d) acoustic component.

    图 8  时均声模态能流线脉动及对流部分 (a)脉动部分Iap; (b)对流部分Iac

    Fig. 8.  Streamline of time-averaged acoustic intensity: (a) Perturbation component; (b) convective component.

    表 1  流声模态能量的空间积分及占比

    Table 1.  Spatial integral of total energy and the decomposed components.

    $E$ ${E_{\text{r}}}$ ${E_{\text{a}}}$ ${E_{\text{s}}}$ ${E_{\text{n}}}$
    总能量 $1.27 \times {10^{ - 3}}$ $1.12 \times {10^{ - 3}}$ $1.74 \times {10^{ - 6}}$ $5.28 \times {10^{ - 5}}$ $9.20 \times {10^{ - 5}}$
    百分比/% 88.4 0.14 4.16 7.26
    下载: 导出CSV
  • [1]

    Viswanathan K 2024 Int. J. Aeroacoust. 23 184Google Scholar

    [2]

    Jordan P, Gervais Y 2008 Exp. Fluids 44 1

    [3]

    李晓东, 徐希海, 高军辉, 何敬玉 2018 空气动力学学报 36 398

    Li X D, Xu X H, Gao J H, He J Y 2018 Acta Aerodyn. Sin. 36 398

    [4]

    Chu B T 1965 Acta Mech. 1 215Google Scholar

    [5]

    Tam C K W, Viswanathan K, Ahuja K K, Panda J 2008 J. Fluid Mech. 615 253Google Scholar

    [6]

    Tam C K W 2019 Philos. Trans. R. Soc. London, Ser. A 377 20190078

    [7]

    Obrist D 2011 Phys. Fluids 23 024901

    [8]

    Cavalieri A, Jordan P, Lesshafft L 2019 Appl. Mech. Rev. 71 020802Google Scholar

    [9]

    Cavalieri A, Rodriguez D, Jordan P, Colonius T, Gervais Y 2013 J. Fluid Mech. 730 559Google Scholar

    [10]

    Papamoschou D 2018 Int. J. Aeroacoust. 17 52Google Scholar

    [11]

    Jordan P, Daviller G, Comte P 2013 J. Sound Vib. 332 3924Google Scholar

    [12]

    Doak P 1989 J. Sound Vib. 131 67Google Scholar

    [13]

    Liu Qilin, Lai Huanxin 2022 Phys. Fluids 34 045125Google Scholar

    [14]

    刘琪麟, 赖焕新 2022 工程热物理学报 43 3266

    Liu Q, Lai H. 2022 J. Eng. Thermophys., 43 3266

    [15]

    Unnikrishnan S, Gaitonde D V 2016 J. Fluid Mech. 800 387Google Scholar

    [16]

    Myers M 1986 J. Sound Vib. 109 277Google Scholar

    [17]

    Myers M K 1991 J. Fluid Mech. 226 383Google Scholar

    [18]

    Han S, Li H, Luo Y, Wang Y, Ma R, Zhang S 2023 Phys. Fluids 35 076107Google Scholar

    [19]

    Towne A, Dawson S, Brès G A, Lozano-Duran A, Saxton-Fox T, Parthasarathy A, Jones A R, Biler H, Yeh C, Patel H D, Taira K 2023 AIAA J. 61 2867Google Scholar

    [20]

    Vreman A 2004 Phys. Fluids 16 3570.

    [21]

    Brès G A, Jordan P, Jaunet V, Rallic M L, Cavalieri A V G, Towne A, Lele S K, Colonius T, Schmidt O T 2018 J. Fluid Mech., 851 83

    [22]

    Brès G A, Jordan P, Colonius T, Rallic M L, Jaunet V, Lele S K 2014 Proceedings of the Summer Program. Stanford, CA: Center for Turbulence Research, Stanford University 2014 p221

    [23]

    Freund J B 1997 AIAA J. 35 740Google Scholar

    [24]

    Mani A 2012 J. Comput. Phys. 231 704Google Scholar

    [25]

    韩帅斌, 王益民, 武从海, 罗勇, 李虎 2024 力学学报 56 3142Google Scholar

    Han S, Wang Y, Wu C, Luo Y, Li H 2024 Chin. J. Theor. Appl. Mech. 56 3142Google Scholar

    [26]

    Mao F, Shi Y, Wu J 2010 Acta Mech. Sin. 26 355Google Scholar

    [27]

    Wu J, Ma H, Zhou M 2006 Vorticity and Vortex Dynamics (Berlin: Springer) p341

    [28]

    Sagaut P, Cambon C 2008, Homogeneous turbulence dynamics (Cambridge: Cambridge University Press) p80

    [29]

    Kovasznay L S G 1953 J. Aeronaut. Sci. 20 657Google Scholar

    [30]

    Chu B T, Kovásznay L S G 1958 J. Fluid Mech. 3 494Google Scholar

    [31]

    Campos L 2007 Appl. Mech. Rev. 60 149Google Scholar

    [32]

    Zaman K B M Q, Fagan A F, Upadhyay P 2022 J. Fluid Mech. 931 A30Google Scholar

    [33]

    Schmidt O T, Towne A, Colonius T, Cavalieri A V G, Jordan P, Bres G A 2017 J. Fluid Mech. 825 1153Google Scholar

    [34]

    Suzuki T, Colonius T 2006 J. Fluid Mech. 565 197Google Scholar

    [35]

    Towne A, Cavalieri A V, Jordan P, Colonius T, Schmidt O, Jaunet V, Bres G A 2017 J. Fluid Mech. 825 1113Google Scholar

    [36]

    Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345Google Scholar

    [37]

    赵鲲, 章荣平, 杨玫, 王勋年, 余荣科 2024 空气动力学学报 42 15Google Scholar

    Zhao K, Zhang P R, Yang M, Wang X N, Yu R K 2024 Acta Aerodyn. Sin. 42 15Google Scholar

    [38]

    王益民, 马瑞轩, 武从海, 罗勇, 张树海 2021 物理学报 70 194302Google Scholar

    Wang Y, Ma R, Wu C, Luo Y, Zhang S 2021 Acta Phys. Sin. 70 194302Google Scholar

    [39]

    马瑞轩, 王益民, 张树海, 武从海, 王勋年 2021 物理学报 70 104301

    Ma R, Wang Y, Zhang S, Wu C, Wang X 2021 Acta Phys. Sin. 70 14301

  • [1] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响. 物理学报, doi: 10.7498/aps.70.20202021
    [2] 程巍, 滕鹏晓, 吕君, 姬培锋, 戴翊靖. 基于大气声传播理论的爆炸声源能量估计. 物理学报, doi: 10.7498/aps.70.20210562
    [3] 张孝石, 许昊, 王聪, 陆宏志, 赵静. 水流冲击超声速气体射流实验研究. 物理学报, doi: 10.7498/aps.66.054702
    [4] 夏峙, 李秀坤. 水下目标弹性声散射信号分离. 物理学报, doi: 10.7498/aps.64.094302
    [5] 刘建平, 侯顺永, 魏斌, 印建平. 亚声速NH3分子束静电Stark减速的理论研究. 物理学报, doi: 10.7498/aps.64.173701
    [6] 陈喆, 吴九汇, 陈鑫, 雷浩, 侯洁洁. 流经矩形喷嘴的超音速射流啸叫模式切换的实验研究. 物理学报, doi: 10.7498/aps.64.054703
    [7] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, doi: 10.7498/aps.62.084706
    [8] 金蔚, 惠宁菊, 屈世显. 螺旋纳米带中的声子输运. 物理学报, doi: 10.7498/aps.60.016301
    [9] 张亮, 付伟基, 张立凤, 吴海燕, 黄泓. Couette流能量的演变. 物理学报, doi: 10.7498/aps.59.1437
    [10] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, doi: 10.7498/aps.58.8522
    [11] 张运俭, 孟凡宝, 范植开, 罗 雄. 高效强流径向分离腔振荡器研究. 物理学报, doi: 10.7498/aps.57.975
    [12] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, doi: 10.7498/aps.56.1415
    [13] 于 飞, 陈 剑, 李卫兵, 陈心昭. 声场分离技术及其在近场声全息中的应用. 物理学报, doi: 10.7498/aps.54.789
    [14] 袁行球, 李 辉, 赵太泽, 俞国扬, 郭文康, 须 平. 超声速等离子体射流的数值模拟. 物理学报, doi: 10.7498/aps.53.2638
    [15] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, doi: 10.7498/aps.51.1918
    [16] 余超凡, 周义昌. 带有次近邻相互作用的非谐性线性链中亚声速和超声速孤子. 物理学报, doi: 10.7498/aps.43.1677
    [17] 周义昌, 余超凡. 一维线性链的亚声速和超声速孤立子. 物理学报, doi: 10.7498/aps.41.2016
    [18] 夏蒙棼. 低杂波驱动的共振电子径向能量输运. 物理学报, doi: 10.7498/aps.37.1381
    [19] 陈建文, 傅淑芬. 放电激励KrF,ArF激光器中电子能量分布函数和输运系数的计算. 物理学报, doi: 10.7498/aps.30.1165
    [20] 宗有泰, 钱幼能, 周鸿赉. 超流Hell中第一声、第二声和第四声声速的测量. 物理学报, doi: 10.7498/aps.29.1513
计量
  • 文章访问数:  289
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-18
  • 修回日期:  2025-04-18
  • 上网日期:  2025-05-14

/

返回文章
返回