搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子/离子成像技术在冷原子分子及相关领域中的应用

刘洋 沈镇捷 王新成 江玉海

引用本文:
Citation:

电子/离子成像技术在冷原子分子及相关领域中的应用

刘洋, 沈镇捷, 王新成, 江玉海

Electron/Ion Imaging Technology and Its Applications in Cold Atoms, Molecules, and Related Fields

Liu Yang, Shen Zhen-Jie, Wang Xin-Cheng, Jiang Yu-Hai
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 随着激光冷却原子分子技术和全空间电子离子成像技术的日益成熟与发展,运用动量成像技术研究冷原子特征属性和碰撞动力学是一个新兴方向,并且发展了一系列高分辨的电子离子探测装置,在冷分子反应、里德堡原子、核衰变、BEC光电离与冷等离子体、冷原子与离子/电子碰撞、冷原子相干控制、强场超快等研究方向取得一系列创新成果。本文综述了相关领域具有代表性的仪器以及相应的重要成果,最后对成像技术在冷原子上述各相关研究领域中的应用做了相应的总结,并展望了未来的发展趋势。
    With the continuous advancement and maturation of laser cooling techniques for atoms and molecules and full-dimensional electron and ion imaging technology, the application of momentum imaging techniques to investigate the characteristic properties of cold atoms and collision dynamics has emerged as a burgeoning research direction. This progress has driven the development of a series of high-resolution electron and ion detection devices, leading to innovative breakthroughs in fields such as cold molecule reactions, Rydberg atoms, nuclear decay, photoionization of Bose-Einstein condensates (BECs) and cold plasmas, collisions between cold atoms and ions/electrons, coherent control of cold atoms, and strong-field ultrafast physics. This article reviews representative instruments and their corresponding seminal achievements in these domains:
    In cold molecular/cold chemical reactions, imaging technology has unveiled novel perspectives on reaction mechanisms;
    For cold Rydberg atom interactions, it has demonstrated high-precision quantum state manipulation capabilities, advancing quantum information processing;
    In nuclear decay research, it provides ultra-sensitive detection methods, deepening understanding of decay processes;
    For BEC photoionization and cold plasma control, it enables precise monitoring and manipulation of microscopic processes;
    In cold atomic collision studies, it reveals new details in collision dynamics, refining collision theories;
    Regarding coherent control of cold atoms, it achieves accurate quantum state manipulation and interference;
    In strong-field ultrafast processes, it deciphers complex electron dynamics under intense fields, offering innovative approaches for ultrafast laser control.
    Furthermore, This article summarizes the applications of imaging technologies across the aforementioned research areas involving cold atoms, while providing prospects for future developments in this evolving field.
  • [1]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 592631

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 5548

    [3]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87637

    [4]

    Vassen W, Cohen-Tannoudji C, Leduc M, Boiron D, Westbrook C I, Truscott A, Baldwin K, Birkl G, Cancio P, Trippenbach M 2012 Rev. Mod. Phys. 84175

    [5]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 683477

    [6]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 1072357

    [7]

    Eppink A T J B, Parker D H 1999 J. Chem. Phys. 110832

    [8]

    Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T, Wollenhaupt M 2017 Phys. Rev. Lett. 118053003

    [9]

    Dörner R, Mergel V, Bräuning H, Achler M, Weber T, Khayyat K, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Azuma Y, Prior M H, Cocke C L, Schmidt-Böcking H 1998 AIP Conf. Proc. 443334

    [10]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 33095

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 661463

    [12]

    Fang F, Zhou W, Li Y, Qian D, Luo C, Zhao D, Ma X, Yang J 2021 Rev. Sci. Instrum. 92043103

    [13]

    Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D, Rey A M 2011 Phys. Rev. Lett. 107115301

    [14]

    DeMille D 2002 Phys. Rev. Lett. 88067901

    [15]

    DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100023003

    [16]

    Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100043201

    [17]

    Kurz N, Fischer D, Pfeifer T, Dorn A 2021 Rev. Sci. Instrum. 92123202

    [18]

    Hu M G, Liu Y, Grimes D D, Lin Y W, Gheorghe A H, Vexiau R, Bouloufa-Maafa N, Dulieu O, Rosenband T, Ni K K 2019 Science 3661111

    [19]

    Christianen A, Karman T, Groenenboom G C 2019 Phys. Rev. A 100032708

    [20]

    Gao B 2010 Phys. Rev. Lett. 105263203

    [21]

    Croft J F E, Makrides C, Li M, Petrov A, Kendrick B K, Balakrishnan N, Kotochigova S 2017 Nat. Commun. 815897

    [22]

    Salzmann W, Mullins T, Eng J, Albert M, Wester R, Weidemüller M, Merli A, Weber S M, Sauer F, Plewicki M, Weise F, Wöste L, Lindinger A 2008 Phys. Rev. Lett. 100233003

    [23]

    Eimer F, Weise F, Merli A, Birkner S, Sauer F, Wöste L, Lindinger A, Aǧanoǧlu R, Koch C P, Salzmann W, Mullins T, Götz S, Wester R, Weidemüller M 2009 Eur. Phys. J. D 54711

    [24]

    Ghosal S, Doyle R J, Koch C P, Hutson J M 2009 New J. Phys. 11055011

    [25]

    Hu M G, Liu Y, Nichols M A, Zhu L, Quéméner G, Dulieu O, Ni K K 2021 Nat. Chem. 13435

    [26]

    Liu Y X, Zhu L, Luke J, Houwman J J A, Babin M C, Hu M G, Ni K K 2024 Science 3841117

    [27]

    Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49202001

    [28]

    Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T, Browaeys A 2016 Nature 534667

    [29]

    Li W, Mourachko I, Noel M W, Gallagher T F 2003 Phys. Rev. A 67052502

    [30]

    Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19043020

    [31]

    Stecker M, Nold R, Steinert L-M, Grimmel J, Petrosyan D, Fortágh J, Günther A 2020 Phys. Rev. Lett. 125103602

    [32]

    Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R, Endres M 2020 Nat. Phys. 16857

    [33]

    Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124023201

    [34]

    Ohayon B, Rahangdale H, Parnes E, Perelman G, Heber O, Ron G 2020 Phys. Rev. C 101035501

    [35]

    Hong R, Leredde A, Bagdasarova Y, Fléchard X, García A, Knecht A, Müller P, Naviliat-Cuncic O, Pedersen J, Smith E, Sternberg M, Storm D W, Swanson H E, Wauters F, Zumwalt D 2017 Phys. Rev. A 96053411

    [36]

    Schulhoff E E, Drake G W F 2015 Phys. Rev. A 92050701

    [37]

    Fenker B, Gorelov A, Melconian D, Behr J A, Anholm M, Ashery D, Behling R S, Cohen I, Craiciu I, Gwinner G, McNeil J, Mehlman M, Olchanski K, Shidling P D, Smale S, Warner C L 2018 Phys. Rev. Lett. 120062502

    [38]

    Müller P, Bagdasarova Y, Hong R, Leredde A, Bailey K G, Fléchard X, García A, Graner B, Knecht A, Naviliat-Cuncic O, O’Connor T P, Sternberg M G, Storm D W, Swanson H E, Wauters F, Zumwalt D W 2022 Phys. Rev. Lett. 129182502

    [39]

    Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 834776

    [40]

    Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Killian T C 2004 Phys. Rev. Lett. 92143001

    [41]

    Cummings E A, Daily J E, Durfee D S, Bergeson S D 2005 Phys. Rev. Lett. 95235001

    [42]

    Mazets I E 1998 Quantum Semiclass. Opt. 10675

    [43]

    Guthrie J M, Jiang P, Roberts J L 2024 J. Plasma Phys. 90935900104

    [44]

    Kroker T, Großmann M, Sengstock K, Drescher M, Wessels-Staarmann P, Simonet J 2021 Nat. Commun. 12596

    [45]

    Killian T C, McQuillen P, O’Neil T M, Castro J 2012 Phys. Plasmas 19055701

    [46]

    Lyon M, Bergeson S D, Diaw A, Murillo M S 2015 Phys. Rev. E 91033101

    [47]

    Smoll E J, Jana I, Frank J H, Chandler D W 2023 Phys. Rev. A 108 L041301

    [48]

    Schulz M, Moshammer R, Fischer D, Kollmus H, Madison D H, Jones S, Ullrich J 2003 Nature 42248

    [49]

    Fischer D, Globig D, Goullon J, Grieser M, Hubele R, de Jesus V L B, Kelkar A, LaForge A, Lindenblatt H, Misra D, Najjari B, Schneider K, Schulz M, Sell M, Wang X 2012 Phys. Rev. Lett. 109113202

    [50]

    van der Poel M, Nielsen C V, Gearba M A, Andersen N 2001 Phys. Rev. Lett. 87123201

    [51]

    Turkstra J W, Hoekstra R, Knoop S, Meyer D, Morgenstern R, Olson R E 2001 Phys. Rev. Lett. 87123202

    [52]

    Flechard X, Nguyen H, Wells E, Ben-Itzhak I, DePaola B D 2001 Phys. Rev. Lett. 87123203

    [53]

    Huang M T, Wong W W, Inokuti M, Southworth S H, Young L 2003 Phys. Rev. Lett. 90163201

    [54]

    Knoop S, Morgenstern R, Hoekstra R 2004 Phys. Rev. A 70050702

    [55]

    Knoop S, Hasan V G, Morgenstern R, Hoekstra R 2006 Europhys. Lett. 74992

    [56]

    Hubele R, LaForge A, Schulz M, Goullon J, Wang X, Najjari B, Ferreira N, Grieser M, de Jesus V L B, Moshammer R, Schneider K, Voitkiv A B, Fischer D 2013 Phys. Rev. Lett. 110133201

    [57]

    Śpiewanowski M D, Gulyás L, Horbatsch M, Goullon J, Ferreira N, Hubele R, de Jesus V L B, Lindenblatt H, Schneider K, Schulz M, Schuricke M, Song Z, Zhang S, Fischer D, Kirchner T 2015 J. Phys.: Conf. Ser. 601012010

    [58]

    Ghanbari-Adivi E, Fischer D, Ferreira N, Goullon J, Hubele R, LaForge A, Schulz M, Madison D 2017 J. Phys. B: At. Mol. Opt. Phys. 50215202

    [59]

    Muller H G 2002 Appl. Phys. B 74 s17

    [60]

    Yin Y Y, Chen C, Elliott D S, Smith A V 1992 Phys. Rev. Lett. 692353

    [61]

    He P L, Zhang Z H, He F 2020 Phys. Rev. Lett. 124163201

    [62]

    Li R, Yuan J, Wang X, Hou X, Zhang S, Zhu Z, Ma Y, Gao Q, Wang Z, Yan T M, Qin C, Li S, Zhang Y, Weidemüller M, Jiang Y H 2019 J. Instrum. 14 P02022

    [63]

    Ma H, Wang X, Zhang L, Zou Z, Yuan J, Ma Y, Lv R, Shen Z, Yan T, Weidemüller M, Ye D, Jiang Y 2023 Phys. Rev. A 107033114

    [64]

    Zhu G, Schuricke M, Steinmann J, Albrecht J, Ullrich J, Ben-Itzhak I, Zouros T J M, Colgan J, Pindzola M S, Dorn A 2009 Phys. Rev. Lett. 103103008

    [65]

    Schuricke M, Bartschat K, Grum-Grzhimailo A N, Zhu G, Steinmann J, Moshammer R, Ullrich J, Dorn A 2013 Phys. Rev. A 88023427

    [66]

    Pursehouse J, Murray A J, Wätzel J, Berakdar J 2019 Phys. Rev. Lett. 122053204

    [67]

    Acharya B P, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2022 Phys. Rev. A 106023113

    [68]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53095201

    [69]

    Acharya B P, Dodson M, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2021 Phys. Rev. A 104053103

    [70]

    De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126023201

    [71]

    Mežinska S, Dorn A, Pfeifer T, Bartschat K 2024 Phys. Rev. A 110013116

    [72]

    Ma H, Zhang L, Wang X, Zou Z, Lv R, Shen Z, Chen A, Weidemüller M, Ueda K, Ye D, Jiang Y 2025 Phys. Rev. Lett. 134123204

    [73]

    Zhang Y, Wei Q 2020 J. Chem. Phys. 152204302

    [74]

    Wessels P, Ruff B, Kroker T, Kazansky A K, Kabachnik N M, Sengstock K, Drescher M, Simonet J 2018 Commun. Phys. 132

    [75]

    Ruan S, Yu X, Shen Z, Wang X, Liu J, Wu Z, Tan C, Chen P, Yan T M, Ren X, Weidemüller M, Zhu B, Jiang Y 2024 Phys. Rev. A 109023118

    [76]

    Schuricke M, Zhu G, Steinmann J, Simeonidis K, Ivanov I, Kheifets A, Grum-Grzhimailo A N, Bartschat K, Dorn A, Ullrich J 2011 Phys. Rev. A 83023413

    [77]

    Yuan J, Liu S, Wang X, Shen Z, Ma Y, Ma H, Meng Q, Yan T M, Zhang Y, Dorn A, Weidemüller M, Ye D, Jiang Y 2020 Phys. Rev. A 102043112

    [78]

    Ruan S, Han Y, Shen Z, Yu X, Fang Y K, Wang X, Chen A, Liu J, Wu Z, Ueda K, Weidemüller M, Zhu B, Peng L Y, Jiang Y 2024 Phys. Rev. A 110033114

  • [1] 翟晨杰, 王晶, 周俊杰, 王毓, 唐晓明, 周寅, 张灿, 李瑞, 舒晴, 王凯楠, 王双全, 金子骍, 华珊, 孙羿人, 王正豪, 马志祥, 蔡铭豪, 王肖隆, 吴彬, 林强. 基于量子重力仪的航空绝对重力测量. 物理学报, doi: 10.7498/aps.74.20241621
    [2] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量. 物理学报, doi: 10.7498/aps.73.20241215
    [3] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载. 物理学报, doi: 10.7498/aps.73.20240182
    [4] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, doi: 10.7498/aps.72.20231375
    [5] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, doi: 10.7498/aps.71.20212204
    [6] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, doi: 10.7498/aps.70.20210432
    [7] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, doi: 10.7498/aps.70.20201522
    [8] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, doi: 10.7498/aps.69.20191765
    [9] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, doi: 10.7498/aps.68.20190749
    [10] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, doi: 10.7498/aps.67.20181121
    [11] 魏春华, 颜树华, 杨俊, 王国超, 贾爱爱, 罗玉昆, 胡青青. 基于87Rb原子的大失谐光晶格的设计与操控. 物理学报, doi: 10.7498/aps.66.010701
    [12] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格. 物理学报, doi: 10.7498/aps.65.043701
    [13] 田晓, 王叶兵, 卢本全, 刘辉, 徐琴芳, 任洁, 尹默娟, 孔德欢, 常宏, 张首刚. 锶玻色子的“魔术”波长光晶格装载实验研究. 物理学报, doi: 10.7498/aps.64.130601
    [14] 王强, 叶冲. 人工规范势下三阱玻色-爱因斯坦凝聚系统的动力学研究. 物理学报, doi: 10.7498/aps.61.230304
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制. 物理学报, doi: 10.7498/aps.60.113201
    [16] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却. 物理学报, doi: 10.7498/aps.57.6227
    [17] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, doi: 10.7498/aps.55.6606
    [18] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, doi: 10.7498/aps.55.125
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应. 物理学报, doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回