搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

标量-拉曼复合光晶格中超冷原子的拓扑性质

梁成功 杨彩霞 谢思语 魏敏 赵岩

引用本文:
Citation:

标量-拉曼复合光晶格中超冷原子的拓扑性质

梁成功, 杨彩霞, 谢思语, 魏敏, 赵岩

Ground state topological properties of ultracold atoms in composite scalar-Raman optical lattices

LIANG Chenggong, YANG Caixia, XIE Siyu, WEI Ming, ZHAO Yan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用虚时演化法求解拉曼光晶格的平均场Gross-Pitaevskii方程, 基于其基态波函数, 研究该模型中超冷原子的拓扑性质. 研究发现光晶格深度和原子间相互作用强度的竞争导致了丰富的基态结构相图. 当只有标量光晶格存在时, 超冷原子在实空间没有涡旋产生, 在动量空间表现为拓扑平庸的密度峰; 当只有拉曼光晶格存在时, 超冷原子在实空间出现大小相同的涡旋; 当标量光晶格和拉曼光晶格共同作用时, 超冷原子在实空间出现大涡旋和小涡旋, 正反涡旋交错排列, 在动量空间出现具有拓扑非平庸相位的衍射峰, 在自旋表象中产生半量子化的斯格明子晶格.
    The ground-state topological properties of ultracold atoms in composite scalar–Raman optical lattices are systematically investigated by solving the two-component Gross–Pitaevskii equation through the imaginary time evolution method. Our study focuses on the interplay between scalar and Raman optical lattice potentials and the role of interatomic interactions in shaping real-space and momentum-space structures. The competition between lattice depth and interaction strength gives rise to a rich phase diagram of ground-state configurations. In the absence of Raman coupling, atoms in scalar optical lattices exhibit topologically trivial periodic density distributions without forming vortices. When only Raman coupling exists, a regular array of vortices of equal size will appear in one spin component, while the other spin component will remain free of vortices. Strikingly, when scalar and Raman lattices coexist, the system develops complex vortex lattices with alternating large and small vortices of opposite circulation, forming a staggered vortex configuration in real space. In momentum space, the condensate wave function displays nontrivial diffraction peaks carrying a well-defined topological phase structure, whose complexity increases with the depth of the optical potentials increasing. In spin space, we observe the emergence of a lattice of half-quantized skyrmions (half-skyrmions), each carrying a topological charge of ±1/2. These topological textures are confirmed by calculating the spin vector field and integrating the topological charge density. Our results demonstrate how the combination of scalar and Raman optical lattices, together with tunable interactions, can induce nontrivial real-space spin textures and momentum-space topological features. These findings offers new insights into the controllable realization of topological quantum states in cold atom systems.
  • 图 1  当只有(a)—(d)标量势(V0 = 7, M0 = 0)或(e)—(h)拉曼势(V0 = 7, M0 = 5)时, 实空间 ((a), (c), (e), (g))密度分布图和((b), (d), (f), (h))相位分布图 (a), (b), (e), (f)自旋向上; (c), (d), (g), (f)自旋向下

    Fig. 1.  Distribution of density ((a), (c), (e), (g)) and phase diagram ((b), (d), (f), (h)) in real space when there is only (a)–(d) scalar potential (V0 = 7, M0 = 0) or (e)–(h) Raman potential (V0 = 7, M0 = 5: (a), (b), (e), (f) Spin-up; (c), (d), (g), (f) spin-down.

    图 2  当标量-拉曼势并存(V0 = 7, M0 = 5, g22 = 400)时, 实空间密度分布图(左)和相位分布图(右) (a), (b)自旋向上; (c), (d)自旋向下;

    Fig. 2.  Distribution of density (left) and phase diagram (right) in real space when scalar-Raman potential coexists (V0 = 7, M0 = 5, g22 = 400): (a), (b) Spin-up; (c), (d) spin-down.

    图 3  (a)—(d) V0 = 7, M0 = 5以及(e)—(h) V0 = 15, M0 = 9情况下动量空间波函数分布图 (a), (e)自旋向上的波函数实部分布图; (b), (f)自旋向上的波函数虚部分布图; (c), (g)自旋向下的波函数实部分布图; (d), (h)自旋向下的波函数虚部分布图

    Fig. 3.  Distribution diagram of momentum space wave function when (a)–(d) V0 = 7, M0 = 5 and (e)–(h) V0 = 15, M0 = 9: (a), (e) Spin-up distribution of the real part of the wave function; (b), (f) spin-up imaginary distribution of wave functions; (c), (g) spin-down distribution of the real part of the wave function; (d), (h) spin-down imaginary distribution of wave functions.

    图 4  标量-拉曼势并存(V0 = 7, M0 = 5, g22 = 600)时, 实空间密度分布图(左)和相位分布图(右) (a), (b)自旋向上; (c), (d)自旋向下

    Fig. 4.  Distribution of density (left) and phase diagram (right) in real space when scalar-Raman potential coexists (V0 = 7, M0 = 5, g22 = 600): (a), (b) Spin-up; (c), (d) spin-down.

    图 5  (a)自旋结构分布图; (b)拓扑结构分布图

    Fig. 5.  (a) Spin structure distribution diagram; (b) topological structure distribution map.

    图 6  (a)实空间密度分布图和(b)能量随时间演化图(其中V0 = 7, M0 = 5, g22 = 400)

    Fig. 6.  Distribution of density (a) and energy evolution diagram over time (b) in real space (V0 = 7, M0 = 5, g22 = 400).

  • [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687

    [3]

    Gaubatz U, Rudecki P, Schiemann S, Bergmann K 1990 J. Chem. Phys. 92 5363

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 83

    [5]

    Aidelsburger M 2015 Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (New York: Springer) pp27-47

    [6]

    Struck J, Simonet J, Sengstock K 2014 Phys. Rev. A 90 031601

    [7]

    Xu Z F, You L, Ueda M 2013 Phys. Rev. A 87 063634

    [8]

    Anderson B M, Spielman I B, Juzeliūnas G 2013 Phys. Rev. Lett. 111 125301

    [9]

    Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Rey A M 2016 Phys. Rev. Lett. 116 035301

    [10]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402

    [11]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y J, Chen S Liu X J, Pan J W 2016 Science 354 83

    [12]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y J, Liu X J, Chen S, Pan J W 2021 Science 372 271

    [13]

    Liu S, Hua W, Zhang D J 2020 Rep. Math. Phys. 86 271

    [14]

    Han W, Zhang S Y, Jin J J Liu W M 2012 Phys. Rev. A 85 043626

    [15]

    Han W, Juzeliūnas G, Zhang W, Liu W M 2015 Phys. Rev. A 91 013607

    [16]

    Guo H, Wang Y J, Wang L X, Zhang X F 2008 Acta Phys. Sin. 69 010302(in Chinese)[郭慧, 王雅君, 王林雪, 张晓斐 2020 物理学报69 010302]

    [17]

    Kasamatsu K, Tsubota M, Ueda M 2005 Phys. Rev. A 71 043611

    [18]

    Wu C J , Mondragon-Shem I, Zhou X F 2011 Chin. Phys. Lett. 28 097102

    [19]

    Xu Z F, Lü R, You L 2011 Phys. Rev. A 83 053602

    [20]

    Sinha S, Nath R, Santos L 2011 Phys. Rev. Lett. 107 270401

    [21]

    Hu H, Ramachandhran B, Pu H, Liu X J 2012 Phys. Rev. Lett. 108 010402

    [22]

    Yang S J, Wu Q S, Zhang S N, Feng S 2008 Phys. Rev. A 77 033621

    [23]

    Heinze S, Von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Blügel S 2011 Nat. Phys. 7 713

    [24]

    Leslie L S, Hansen A, Wright K C, Deutsch B M, Bigelow N P 2009 Phys. Rev. Lett. 103 250401

    [25]

    丁贝, 王文洪 2018 物理 47 15Google Scholar

    Ding B, Wang W H 2018 Physics 47 15Google Scholar

    [26]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [27]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

  • [1] 毛一屹, 戴汉宁. 弯曲时空下的Aubry-André-Harper动量态链. 物理学报, doi: 10.7498/aps.74.20241592
    [2] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩. 物理学报, doi: 10.7498/aps.73.20241103
    [3] 曾超, 毛一屹, 吴骥宙, 苑涛, 戴汉宁, 陈宇翱. 一维超冷原子动量光晶格中的手征对称性破缺拓扑相. 物理学报, doi: 10.7498/aps.73.20231566
    [4] 蔡德欢, 屈苏平. 周期驱动拉曼晶格系统中的动力学拓扑现象. 物理学报, doi: 10.7498/aps.73.20240535
    [5] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, doi: 10.7498/aps.72.20230701
    [6] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦. 物理学报, doi: 10.7498/aps.72.20230740
    [7] 文凯, 王良伟, 周方, 陈良超, 王鹏军, 孟增明, 张靖. 超冷87Rb原子在二维光晶格中Mott绝缘态的实验实现. 物理学报, doi: 10.7498/aps.69.20200513
    [8] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, doi: 10.7498/aps.68.20190153
    [9] 邓天舒, 易为. 动力学淬火过程中的不动点及衍生拓扑现象. 物理学报, doi: 10.7498/aps.68.20181928
    [10] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, doi: 10.7498/aps.68.20181965
    [11] 徐润东, 刘文良, 武寄洲, 马杰, 肖连团, 贾锁堂. 磁光阱中超冷钠-铯原子碰撞的实验研究. 物理学报, doi: 10.7498/aps.65.093201
    [12] 段俊毅, 王勇, 张临杰, 李昌勇, 赵建明, 贾锁堂. 铯47D精细能级超冷里德堡原子自由演化的动力学研究. 物理学报, doi: 10.7498/aps.64.023201
    [13] 秦帅锋, 郑公平, 马骁, 李海燕, 童晶晶, 杨博. 弱磁场下三阱光学超晶格中自旋为1的超冷原子特性研究. 物理学报, doi: 10.7498/aps.62.110304
    [14] 徐园芬. 一维Tonks-Girardeau原子气区域中 Gross-Pitaevskii方程简化模型的精确行波解. 物理学报, doi: 10.7498/aps.62.100202
    [15] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化. 物理学报, doi: 10.7498/aps.61.043205
    [16] 徐志君, 刘夏吟. 光晶格中非相干超冷原子的密度关联效应. 物理学报, doi: 10.7498/aps.60.120305
    [17] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究. 物理学报, doi: 10.7498/aps.56.6373
    [18] 王彦华, 杨海菁, 张天才, 王军民. 用吸收法对铯原子磁光阱中冷原子数目的测量. 物理学报, doi: 10.7498/aps.55.3403
    [19] 孙宇航, 李福利. 单个二能级超冷原子在多个单模腔场间的共振隧穿和光子辐射. 物理学报, doi: 10.7498/aps.55.1153
    [20] 熊锦, 牛中奇, 张智明. 原子质心运动的量子效应对光场量子噪声压缩的影响. 物理学报, doi: 10.7498/aps.51.2245
计量
  • 文章访问数:  218
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-27
  • 修回日期:  2025-07-29
  • 上网日期:  2025-08-14

/

返回文章
返回